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Abstract—End-to-end measurement is a common tool for
network performance diagnosis, primarily because it can re-
flect user experience and typically requires minimal support
from intervening network elements. Challenges in this ap-
proach are (i) to identify the locale of performance degrada-
tion; and (ii) to perform measurements in a scalable man-
ner for large and complex networks. In this paper we show
how end-to-end delay measurements of multicast traffic can
be used to estimate packet delay variance on each link of a
logical multicast tree. The method does not depend on coop-
eration from intervening network elements; multicast prob-
ing is bandwidth efficient. We establish desirable statistical
properties of the estimator, namely consistency and asymp-
totic normality. We evaluate the approach through model
based and network simulations. The approach extends to
the estimation of higher order moments of the link delay dis-
tribution.

Keywords—End-to-end measurement, queueing delay, es-
timation theory, multicast trees, network tomography

I. INTRODUCTION

A. Background and Motivation.

Monitoring the performance of large communications
networks and diagnosing the causes of its degradation is
a challenging problem. There are two broad approaches
to performance diagnosis. In theinternal approach, direct
measurements are made at or between network elements,
e.g. of packet loss or delay. This approach has a number
of potential limitations: it may not be available for gen-
eral users; coverage may not span paths of interest; mea-
surements may be disabled during period of high load; is-
sues of scale gathering and correlating the measurements
in large networks; how to compose per hop measurements
to and end-to-end view.

This motivatesexternal approaches, diagnosing the net-
work through end-to-end measurements, without necessar-
ily assuming the cooperation of network elements on the
path. There has been much recent experimental work to
understand the phenomenologyof end-to-end performance
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(e.g., see [1], [2], [8], [21], [16], [23], [24], [26]); several
measurement infrastructure projects are in development
(including CAIDA [6], Felix [10], IPMA [12], NIMI [15],
Surveyor [30]) with the aim to collect and analyze end-to-
end measurements across a mesh of paths between a num-
ber of hosts. Standard diagnostic tools for IP networks,
ping andtraceroute report roundtrip loss and delay.
A recent refinement of this approach,pathchar [13], es-
timates hop-by-hop link capacities, packet delay and loss
rates. pathchar is still under evaluation; initial expe-
rience indicates many packets are required for inference
leading to either high load of measurement traffic or long
measurement intervals, although adaptive approaches can
reduce this [9]. More broadly, measurement approaches
based on Time To Live (TTL) expiry require the coop-
eration of network elements in returning Internet Control
Message Protocol (ICMP) messages. In future, encapsula-
tion may hide TTL from higher layers that would see just
a single hop between tunnel endpoints. Finally, the suc-
cess of active measurement approaches to performance di-
agnosis may itself cause increased congestion if intensive
probing techniques are widely adopted.

In response to some of these concerns, a multicast-based
approach to active measurement has been proposed re-
cently in [3], [4]. The idea is that correlation in perfor-
mance seen onintersecting end-to-end paths can be used to
draw inferences about the performance characteristics of
their common portion, without cooperation from the net-
work. Multicast traffic is well suited for this since a given
packet only occurs once per link in the (logical) multi-
cast tree. Characteristics such as loss and end-to-end delay
seen at different endpoints are highly correlated. Another
advantage is in scalability. Suppose packets are exchanged
on a mesh of paths between a collection ofN measurement
hosts stationed in a network. With unicast the probe load
on the network may grow proportionally toN2 in some
links of the network. with multicast the load grows pro-
portionally only toN .

B. Contribution

In this paper we describe a method to infer the variance
of internal link delays from measured end-to-end delays
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Fig. 1. LEFT: Two leaf tree. RIGHT: m-leaf tree.

of multicast probe packets. It is assumed that the link de-
lays are independent random variables, both spatially (i.e.
between different links) and temporally (i.e. between dif-
ferent packets); later we discuss the impact of violation
of these assumptions. The method rests on (generaliza-
tions of) the following observation. Consider the logical
multicast topology of Figure 1(left), in which packets are
multicast from the root0 to receivers1 and2. D

i

is the
random delay on linki, and the source-to-leaf delays from
the root0 to the leaf nodes1 and2 areX

1

= D

k

+D

1

and
X

2

= D

k

+ D

2

respectively. Then a simple calculation
shows that, under the independence assumption,

Var(D

k

) = Cov(X

1

; X

2

); (1)

i.e. we express the variance of an internal link delay in
terms of the covariance of the source-to-leaf delays. We
can form an unbiased estimate ofCov(X

1

; X

2

) directly
from end-to-end measurements; this constitutes an unbi-
ased estimate ofVar(D

k

). The same method extends to
higher order moments; when the nodek had branching ra-
tio m, we are able to estimate the firstm moments ofD

k

;
see Figure 1(right). We specify the delay model in Sec-
tion II and describe the basic moment estimators in Sec-
tion III.

Here we focus on estimation of the delay variance, ei-
ther on individual links, or from the root to a given node.
In Section IV we show how the above scheme can be used
to obtain multiple unbiased estimates of the variance of the
delay from the root to a given nodek, one estimator for ev-
ery pair of leaf nodes descended through different children
of k. The estimates are consistent, i.e., they converge in
probability to the true variance as the number of probes
grows to infinity. Any convex combination of these esti-
mators shares these properties; although the rate of con-
vergence will be different in each case. This rate can be
used to distinguish between the estimators. We show how
to choose the weights in order to obtain the combination

with the fastest asymptotic rate of convergence.
Packet loss reduces the number of packets available for

delay estimation, hence increasing estimator variance. In
Section V we quantify this for an estimation scheme that
makes maximal use of information from survivingpackets,
using all packets reaching a given node pair for which a
covariance estimator is calculated.

The model used here also assumes temporal indepen-
dence, i.e., that delays between successive probe packets at
a given node are not dependent. This can be arranged for
by making the interprobe times greater than the queueing
timescale. However, for a wide class of temporally depen-
dent delay processes–we require only ergodicity–the con-
sistency of the estimators is unaffected, i.e., they still con-
verge to the true values as the number of probes grows to
infinity. However, the rate of convergence may be slower.

In Section VI we report two types of simulation (i)
model simulations with packet delay chosen pseudo-
randomly according to a given distribution; and (ii)ns [22]
simulations that represented both the probe traffic mixed
in with background traffic of TCP and UDP sessions and
delay occurred as result of queueing against background
traffic, and loss due to buffer overflow. The model simula-
tions allow us to compare the theoretical prediction with a
model in a controlled manner. We verify the accuracy of
the delay variance estimator. The variance of the variance
estimators over many simulation runs is conformant with
the model; this verifies the benefit in accuracy of using the
minimum variance estimator. Thens simulation allow us
to investigate the performance of the inference method in a
more realistic setting in which the independence assump-
tion may not be exactly satisfied. We find that dependence
between delays in different links is smaller when buffers
are larger, and that inference is correspondingly more ac-
curate. In a 12 node topology we find the typical error in
estimation is about 23%, based on a sample size of 1,000
probes. We believe this is sufficiently accurate to distin-



3

guish links with high delay variance. As far as we are
aware there are no studies in deployed networks that mea-
sure delay correlation between different nodes. However,
we believe that large and long-lasting spatial dependence
is unlikely in a real network such as the Internet because
of its traffic and link diversity.

C. Implementation Requirements

Since the data for delay inference comprises one-way
packet delays, the primary requirement is the deployment
of measurement hosts with synchronized clocks. (Ac-
tually, since delay covariances are invariant under time-
shifts, the absolute times need not be synchronized, pro-
vided that the rates are identical). Using Global Position-
ing System (GPS) timing it is possible to make one-way
delay measurements accurate to within tens of microsec-
onds or better. GPS is currently used or planned in sev-
eral of the measurement infrastructures mentioned earlier.
The Network Time Protocol (NTP) [17] is more widely
deployed, but provides accuracy in only the order a few
tens of milliseconds, a resolution at least as coarse as the
queueing delays in practice. An alternative approach to
calibration and synchronization of clocks has been devel-
oped in [25], [27], [18].

Another requirement is to know the multicast topol-
ogy. There is a multicast-based measurement tool,
mtrace [19], already in use in the Internet.mtrace re-
ports the route from a multicast source to a receiver, along
with other information about that path such as per-hop
loss and rate. Presently it does not support delay mea-
surements. A potential drawback for larger topologies is
thatmtrace does not scale to large numbers of receivers
as it needs to run once for each receiver to cover the en-
tire multicast tree. In addition,mtrace relies on multi-
cast routers responding to explicit measurement queries;
the feature that can be administratively disabled. An al-
ternative approach that is closely related to the work on
multicast-based loss inference [3], [4] is to infer the logical
multicast topologydirectly from measured probe statistics;
see [5], [28]. The delay variance estimates of the present
paper can also be used to infer topology. This method does
not require cooperation from the network.

D. Use of Delay Variance Estimate

Although prior work has characterized end-to-end de-
lays [1], [21], [24], to the best of our knowledge there is
no generally accepted model for per link delays in real net-
works. Without a model it is difficult to map a given in-
ferred value of the link delay variance to a specific value
of a quality metric, such as the probability of queueing de-
lay exceeding a given value. Nevertheless, we believe that

knowledge of the per link delay variance will be increas-
ingly useful for the following reasons:

Model Development. The mapping problem just described
will become easier upon development of delay models.
We expect these to arise from two sources. The first is
the development of measurement infrastructure projects
in which selected links are instrumented for one-way de-
lay measurements. The second is the development of
multicast-based estimators for the link delaydistribution
from end-to-end measurements, using a more computa-
tionally intensive technique proposed in a companion pa-
per [14]. We anticipate that this will allow the develop-
ment of link delay distribution models, with the distribu-
tion inferred from network measurements.
Ordering. Identification of links with highest delay vari-
ance suggests candidate for links on which performance is
degraded for delay sensitive applications.
Delay and Delay Variation. The variance of the packet
delay (on a link or path) can be used to estimate or bound
the variance of the interpacket delay variation. LetD

i be
the delay encountered by packeti on a given link. The
interpacket delay variation (or jitter) between packetsi and
i+1 on the link isJ i = D

i+1

�D

i; a similar notion applies
to end to end delay. Observe

Var(J

i

) = Var(D

i

)+Var(D

i+1

)�2Cov(D

i

; D

i+1

): (2)

AssumingD(�) to be stationary, the first two terms on the
RHS of (2) are equal, while under the assumption of tem-
poral independence the last term is zero, and soVar(J

i

) =

2Var(D

i

). Measurements of end-to-end delays in the In-
ternet [1] show that end-to-end delays successive packets
are only slightly dependent when the interpacket time is
longer than the typical queueing timescales. Stronger de-
pendence is found at shorter timescales: successive pack-
ets are more likely to queue together. With positive corre-
lation between successive probe delaysCov(D

i

; D

i+1

) >

0; in this caseVar(J i) is bounded above by2Var(Di

), a
quantity that we can estimate from end-to-end measure-
ments.
Topology Inference. If the logical multicast topology is not
initially known, it can be inferred from delay variances.
This technique uses the estimated variance of the cumula-
tive delay from the source to a given node. Consequently
we shall be interested here in the estimation of cumulative
delay variance as well as link delay variance.

II. T HE TREE AND DELAY MODELS

We identify the physical multicast tree as comprising ac-
tual network elements (the nodes) and the communication
links than join them. The logical multicast tree comprises
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the branch points of the physical tree, and the logical links
between them. The logical links comprise one or more
physical links. Thus each node in the logical tree, except
the leaf nodes and possibly the root, must have 2 or more
children. We can construct the logical tree from the phys-
ical tree by deleting all links with one child and adjust-
ing the links accordingly by directly joining its parent and
child.

Let T = (V; L) denote a logical multicast tree with
nodesV and linksL. We identify one node, the root0,
with the source of probes, andR � V will denote the set
of leaf nodes (identified as the set of receivers). The set of
children of nodej 2 V is denoted byd(j). Each node,k,
apart from the root has a parentf(k) such that(j; k) 2 L.
Define recursively the compositionsfn = f � f

n�1 with
f

1

= f . Nodes are said to be siblings if they have the
same parent. Ifk = f

m

(j) for somem 2 N we say thatj
is descended fork (or equivalently thatk is an ancestor of
j) and write the corresponding partial order inV asj � k.
i _ j will denote the minimal common ancestor ofi andj
in the�-ordering.

We associate each nodek a random variableD
k

taking
values in the extended positive real lineR = R

+

[ f1g.
By conventionD

0

= 0. D
k

is the random delay that would
be encountered by a packet attempting to traverse the link
(f(k); k) 2 L. The valueD

k

= 1 indicates the packet is
lost on the link. The delay experienced on the path from
the root0 to a nodek is X

k

=

P

j�k

D

j

. We assume
that theD

k

are independent. Let�
k

= P[D

k

< 1], the
probability of successful transmission over linkk.

III. N ON-PARAMETRIC ESTIMATION OF DELAY

DISTRIBUTION MOMENTS

In this section we present a class of non-parametric es-
timators of the delay distribution. We assume initially that
all delays are finite:P[D

k

= 1] = 0. Consider first a
logical subtree formed by the root0, and a non-leaf node
k with two descendents1 and2 that are leaf nodes; see
Figure 1(left). By writingX

i

= X

k

+ (X

i

� X

k

) in the
expression forCov(X

1

; X

2

), expanding using the bilinear-
ity of the covariance operatorCov(�; �), and using the mu-
tual independence of the links delaysX

k

; X

1

� X

k

and
X

2

�X

k

, we obtain

Cov(X

1

; X

2

) = Var(X

k

): (3)

Hence any unbiased estimator ofCov(X
1

; X

2

) is also

an unbiased estimator ofVar(X
k

). Let X(i)

1

; X

(i)

2

, i =

1; 2; : : :n be measured end-to-end delays between the
root 0 and leaf nodes1 and 2 respectively. Abbreviate
Cov(X

j

; X

k

) by s
jk

and writes
kk

ass
k

. We estimates
k

by a uniformly minimum variance unbiased estimator of
s

12

, namelybs
12

where

bs

ij

=

1

n � 1

0

@

n

X

m=1

X

(m)

i

X

(m)

j

�

1

n

n

X

m;m

0

=1

X

(m)

i

X

(m

0

)

j

1

A

(4)
At a node with branching ratiom we are able to es-

timate the firstm moments of the delay on the shared
portion of the path from the root; see Figure 1(right).
The cumulant generating function of them leaf delays
X = (X

1

; : : :X

m

) is defined for� 2 Rm by

�(�;X) = logE[exp(

m

X

i=1

�

i

X

i

)]: (5)

The cumulants are defined by partial differentiation w.r.t.
the components�

i

(when derivatives exist): for indices
j

1

; : : : ; j

m

2Z

+

set

K

j

1

;:::;j

m

(X) =

 

m

Y

i=1

@

j

i

@�

j

i

i

!

�(�;X)

�

�

�

�

i

=0

(6)

The first and second cumulantsK1 andK2 of a single
random variable are its mean and variance respectively.
Knowing the cumulants of a set of random variables is
equivalent to knowing their joint distribution. The cumu-
lants ofD

0

are related to those of theX
i

as follows. Set
1 = (1; : : : ; 1) 2 R

m.
Theorem 1: K1

(X) = K

m

(X

k

). Hence any unbi-
ased estimator ofK1

(X) is also an unbiased estimator of
K

m

(X

k

).
Proof: ObserveK1

(X

1

; : : : ; X

m

) = K

1

(X

1

�

X

k

; : : : ; X

m

� X

k

) + K

1

(1X

k

) = K

m

(X

k

). The first
equality is becauseK is affine in each of its arguments,
the second because the cumulant of a set of independent
random variables is zero.

IV. D ELAY VARIANCE ESTIMATION ON GENERAL

TREES

In a general tree letQ(k) = ffi; jg � R j i _ j =

k; g be the set of distinct pairs of leaf-nodes whose�-
least common ancestor isk. Any convex combination
P

fi;jg2Q(k)

�

ij

bs

ij

(i.e. with the�
ij

� 0 and summing
to 1) is also an unbiased estimator ofs

k

. An example the
uniform estimator

1

#Q(k)

X

fi;jg2Q(i_j)

bs

ij

: (7)

One potential disadvantage with the uniform estimator is
that high variance of one of the summands may lead to
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high estimator variance overall. This motivates choosing
convex combinations that are functions of the end-to-end
delays themselves in order to reduce variance. In this sec-
tion we shall assume that all delays a finite with bounded
fourth moments. We shall relax the finiteness assumption
in Section V.

We formalize the notion of (possibly random) convex
combinations ofbs

ij

through acovariance aggregator. For
S � R let F

n

(S) denote the�-algebra generated by the
end-to-end delays(X

k

)

k2S

(i.e. the set of events that
can be determined from knowing(X

k

)

k2S

). A covariance
aggregator� is sequence(�(n))

n2N

of random vectors
f�

ij

(n) : fi; jg 2 Q(k); k 2 V nRgwith 0 � �

ij

(n) � 1

and
P

fi;jg2Q(k)

�

ij

(n) = 1 for eachk 2 V n R. We as-
sume each�

n

to beF
n

(R)-measurable, i.e., it is a func-
tion of the measured delays of the firstn probes. We will
usually suppress the explicit dependence on the number
of probesn. Let bs = fbs

ij

(n) : fi; jg 2 Q(k); k 2

V nRg be a family of estimators,bs
ij

(n) being anF
n

(i; j)-
measurable unbiased estimator ofVar(X

i_j

). Then we es-
timateVar(X

k

) by

V

k

(�; bs) =

X

fi;jg2Q(k)

�

ij

bs

ij

(8)

A covariance aggregator is calleddeterministic if it does
not depend on theX(i). We denote the set of such ag-
gregators with indices inQ(k) by D

k

. An example is the
uniform aggregator that was used in the uniform estimator
(7): �

ij

= (#Q(i _ j))

�1. Define the covariance matrix

C

(ij);(`m)

= Cov ( Z

i

Z

j

; Z

`

Z

m

) ; (9)

where Z

i

= X

i

� E[X

i

]. We will use C(k) =

�

C

(ij);(`m)

�

(ij);(`m)2Q(k)

to denote the matrix obtained by

letting the indices(ij) and(`m) in (9) run overQ(k); this
is a submatrix of the matrixC0

(k) obtained by taking the
indices unrestricted over the setQ

0

(k) of binary subsets of
R(k).

A. Minimum Variance Estimation for Cumulative Delays

In the next theorem we characterize the asymptotic dis-
tribution of thebs

ij

asn ! 1, and give a form for the
estimatorV

k

(�; bs) of minimum cumulative variance.
Theorem 2: (i) For eachk 2 V n R the random vari-

ablesf
p

n (bs

ij

� s

k

) j fi; jg 2 Q(k)g converge in
distribution asn ! 1 to a multivariate Gaussian ran-
dom variable with mean 0 and covariance matrixC(k).
Hence thebs

ij

are consistent estimators ofs
k

and so is
V (�; bs). For any deterministic covariance aggregator�,
p

n(V

k

(�; bs) � s

k

) converges in distribution asn ! 1

to a Gaussian random variable of mean zero and variance
� � C(k) � �.
(ii) The minimal asymptotic varianceinf

�2D

k

� �C(k) ��

is achieved when

�

ij

= �

�

ij

(C(k)) :=

�

C(k)

�1

� 1

�

(ij)

.

1 � C(k)

�1

� 1

(10)
whereC(k)

�1 denotes the inverse matrix ofC(k) and
1

(ij)

= 1, fi; jg 2 Q(k). The corresponding asymptotic

variance of the variance estimator is
�

1 � C(k)

�1

� 1

�

�1

.
Proof: (i) The proof follows from standard results in mul-
tivariate analysis; convergence to the stated Gaussian ran-
dom variable follows by Corollary 1.2.18 in [20]

(ii) Since the�
ij

sum to1, the proof follows by consid-
ering the constrained minimization of� �C(k) ���2k� �1

with Lagrange multiplierk. As a covariance matrix,C(k)

is positive definite and hence invertible; minimization of
the convex function of� takes place at the the stationary
point� = kC(k)

�1

� 1. This yields��(C(k)) upon nor-
malization. The corresponding minimal asymptotic vari-
ance is��(C(k)) �C(k) ��

�

(C(k)) =

�

1 � C(k)

�1

� 1

�

�1.

Operationally, the coefficients�
ij

of the minimum vari-
ance estimatorV

k

(�

�

(C(k));bs) of Theorem 2 are to be
calculated from anestimate of the covariance matrixC(k).

LetZ(m)

i

= X

(m)

i

�

1

n

P

n

m=1

X

(m)

i

. Let bC(k) denote the
empirical covariance matrix with entries

b

C(k)

(ij);(i

0

j

0

)

=

n

2

(n� 1)

3

 

n

X

m=1

Z

(m)

i

Z

(m)

j

Z

(m)

i

0

Z

(m)

j

0

�

1

n

n

X

m=1

Z

(m)

i

Z

(m)

j

n

X

m=1

Z

(m)

i

0

Z

(m)

j

0

!

(11)

b

C(k) is an unbiased estimator ofC(k). Estimating
�

�

(C(k)) by��( bC(k)) ands
k

byV
k

(�

�

(

b

C); bs) potentially
introduces bias and increases variance in the estimation
of the s

k

. However, the following Theorem shows that
it is consistent and has the same asymptotic variance as
V

k

(�

�

(C);bs).
Theorem 3: V

k

(�

�

(

b

C(k));bs) is a consistent estimator
of s

k

.
p

n(V

k

(�

�

(

b

C(k);bs)� s

k

) converges in distribution
to a Gaussian random variable of mean zero and variance
�

1 � C(k)

�1

� 1

�

�1

.

Proof: Clearly bC(k) converges almost surely toC(k) as
n ! 1. Since matrix inversion is continuous on the set
of strictly positive definite matrices,��( bC(k)) converges
almost surely (to��(C(k))); since eachbs

ij

converges to
s

ij

= s

k

, V
k

(�

�

(

b

C(k));bs) is consistent.
By the�-method (see e.g. [29]),

p

n (V (�

�

(

b

C(k));bs)�

s

k

) converges to a Gaussian random variable with mean0
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and variance� �C0

(k) � �, where for(`;m) 2 Q

0

(k),

�

`m

=

@

@s

`m

X

fi;jg2Q(k)

�

�

ij

(C(k))s

ij

: (12)

Differentiating,

�

`m

= �

�

`m

(C(k))�

Q(k)

(f`;mg)

+

X

fi;jg2Q(k)

s

ij

@

@s

`m

�

�

ij

(C(k)); (13)

where�
Q(k)

denotes the indicator function of the setQ(k).
But s

ij

= s

i_j

= s

k

for fi; jg in Q(k) and so is constant
in the sum. Since the��

ij

sum to 1, the sum in (13) is zero.
Hence� � C0

(k) � � = �

�

(C(k)) � C(k) � �

�

(C(k)).

B. Minimum Variance Estimation for Link Delays

We can estimate the link delay variance as the difference
of two cumulative variances since

Var(X

k

) = Var(X

f(k)

+D

k

) = Var(X

f(k)

) + Var(D

k

);

(14)
by the independence assumption on link delays. An un-
biased estimator ofr

k

:= Var(D

k

) is V
k

(�

�

(C(k));bs) �

V

f(k)

(�

�

(C(f(k)));bs). We now show that joint optimiza-
tion of the aggregators inV

k

andV
f(k)

will result in an
estimator of lower variance.

Given a pair� = (�(k); �(f(k))) 2 D

k

� D

f(k)

of
deterministic covariance aggregators with indices inQ(k)

andQ(f(k)) respectively, we can form a unbiased esti-
mate ofr

k

as

W

k

(�; bs) := V

k

(�(k);bs)� V

f(k)

(�(f(k));bs) (15)

LetC0

(k) denote the#Q(k)+#Q(f(k))dimensional ma-
trix written in block form

C

0

(k) =

�

C(k) C(k; f(k))

C(k; f(k))

T

C(f(k))

�

; (16)

where C(k; f(k)) is the #Q(k) � #Q(f(k)) matrix
of covariances

�

C

(ij);(`m)

�

(ij)2Q(k);(`m)2Q(f(k))

. Then
statements analogous to Theorem 2(ii) follow straight-
forwardly, using parallel arguments. In particular
p

n(W

k

(�; bs)� r

k

) converges to a Gaussian random vari-
able of mean 0 and variance� � C0

(k)

�1

� and the min-
imum over deterministic aggregators of the asymptotic
variance takes the value(c

1

+c

2

+2c

3

)=(c

1

c

2

�c

2

3

) where
c

1

= 1

k

�C(k)

�1

� 1

k

, c
2

= 1

f(k)

�C(f(k))

�1

� 1

f(k)

and
c

3

= 1

f(k)

� C(k; f(k))

�1

� 1

k

. (Here the subscripts on
1

k

; 1

f(k)

distinguish the subspaces in which these vectors
live).

C. Criteria for Assessing Inference Reliability

In sections IV-A and IV-B we derived expressions for
the variances of estimates of the cumulative and link de-
lays respectively. For a given delay variance estimate, we
can associate its variance by using the plug in estimator
for the corresponding analytic expression. This enables
use to find confidence intervals for the estimates that will
be asymptotically accurate for largen. For example, if we
usen probes to form the estimateV

k

(�

�

(

b

C(k));bs), we as-
sociate with this a variance�2=n where�2 = (1 �

b

C(k)

�1

�

1)

�1. We write confidence limits for the estimate as

V

k

(�

�

(

b

C(k);bs)� z

�=2

�=n; (17)

wherez
�=2

denotes the number that cuts off an area�=2 in
the right tail of the standard normal distribution. This is
used for a confidence interval of level1� �.

V. IMPACT OF LOSS ONESTIMATOR VARIANCE

We relax the assumption of finite delays, Here we iden-
tify infinite delays with packet loss, although the same re-
sults would hold were we to treat as lost any packet with
source to leaf delay greater than some finite value. The
link and cumulative delay random variables will be de-
noted byD0

k

andX 0

k

respectively each possibly taking the
value1. We useD

k

to be the distribution ofD0

k

con-
ditional onD0

k

< 1, and similarly forX
k

. We assume
throughout that theD

k

have finite fourth moments. Since
we are interested in delay variance, we want to estimate
Var(X

k

) andVar(D
k

) even in the presence of packet loss.
For estimation, the effect of packet loss is to reduce the
number of delay samples available, and hence to increase
the variability of the estimates. A simple way to apply
the foregoing theory is to restrict attention to only those
packets that are received at every leaf (or at least at every
element ofR(k) when estimatings

k

). A disadvantage of
this approach is that is does not scale well as the topology
grows. For assuming link loss rates to be bounded away
from zero, the proportion of packets reaching all receivers
in a tree decays geometrically fast in the number of links
in the tree.

An alternative that wastes less data is to calculate pair-
wise estimates ofbs

ij

that use all packets received ati and
j. Let us formalize this. For a subset of receiversS � V

defineI
n

(S) = fi 2 f1; 2; : : : : ; ng j X

(i)

j

< 1 8j 2 Sg:
the subset of the firstn probes that are received at all nodes
in S; setN

n

(S) = #I

n

(S). We will sometimes write
I

n

(i

1

; : : : ; i

r

) for I
n

(fi

1

; : : : ; i

r

g), and similarly forN
n

.
For S � R let V (S) be the set of nodes in the minimal
tree spanning0 andS. SetB(S) =

Q

i2V (S)

�

i

, where
�

i

is the probability of successful transmission over link
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k. Clearly n�1N
n

(S) converges almost surely toB(S)

asn ! 1. Estimator variance can be reduced by us-
ing all packets inI

n

(i; j) to estimates
ij

, not just those in
I

n

(R(i _ j). Define

bv

ij

=

1

N

0

@

X

m

X

(m)

i

X

(m)

j

�

1

N

X

m;m

0

X

(m)

i

X

(m

0

)

j

1

A

(18)
whereN abbreviatesN

n

(i; j) and in the sumsm;m0 run
over I

n

(i; j). bv
ij

is an unbiased estimate ons
ij

. Analo-
gous to the previous results we have

Theorem 4: (i) For eachk 2 V n R the random vari-
ablesf

p

n (bv

ij

� s

k

) j fi; jg 2 Q(k)g converge in distri-
bution asn ! 1 to a multivariate Gaussian random vari-
able with mean 0 and covariance matrixG(k)

(ij);(`m)

=

C(k)

(ij);(`m)

B(i; j; `;m)=(B(i; j)B(`;m)). Hence the
bv

ij

are consistent estimators ofs
k

and so isV
k

(�; bv) for
any deterministic covariance aggregator�. For any deter-
ministic covariance aggregator�,

p

n(V

k

(�; bv)� s

k

) con-
verges in distribution asn ! 1 to a Gaussian random
variable of mean zero and variance� �G(k) � �.
(ii) The minimal asymptotic varianceinf

�2D

k

� �G(k) ��

is achieved when� = �

�

(G); the corresponding minimal
asymptotic variance is

�

1 �G(k)

�1

� 1

�

�1

.

(iii) V
k

(�

�

(

b

G);bv) has the same asymptotic properties as
V

k

(�

�

(G);bv) where the estimated covariancebG is defined
by

N

n

(i; j)N

n

(k; `)

N

n

(i; j; k; `)

b

G

(ij);(k`)

=

X

m

Z

(m)

i

Z

(m)

j

Z

(m)

k

Z

(m)

`

�

1

N

n

(i; j; k; `)

X

m

Z

(m)

i

Z

(m)

j

X

m

0

Z

(m)

k

Z

(m

0

)

`

(19)

where the sums run overI
n

(i; j; k; `).
The corresponding version of the minimum variance

link delay variance estimator follows by replacingC by
G andbs by bv throughout Section IV-B.

VI. SIMULATION EVALUATION

We conducted two types of simulation (i) model simula-
tion with packet delay chosen pseudo-randomly according
to a given distribution;and (ii)ns [22] simulations that rep-
resented both the probe traffic mixed in with background
traffic of TCP and UDP sessions and delay occurred as re-
sult of queueing against background traffic, and loss due to
buffer overflow. The model simulations allow us to com-
pare the theoretical prediction with a model in a controlled
manner; their purpose is to show that the statistical prop-
erties of the estimators conform to the model used. Thens
simulation allow us to investigate the performance of the
inference method in a more realistic setting in which the
model assumption (such as independence) may not be ex-
actly satisfied. Their purpose is to investigate conformance
of the predicted delay variances with those occurring in the
network interior.

A. Model Simulations

The model simulation used an 8 leaf binary tree (see
Figure 2(left)); delays were exponentially distributed. The
delay variances were heterogeneous: leaf links 8 and 15
had delay variance 10, all other links had delay variance 1.
Losses were not modeled. This heterogeneity was chosen
in order to evaluate the advantages of the minimum vari-
ance estimator. We present a representative set of results
from experiments for the link delay varianceW and the
cumulative delay varianceV .
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Weight�
ij

Link pairs(i; j)
0.000018 (8,15)
0.001213 (8,12) (8,13) (10,15) (11,15)
0.001811 (8,14) (9,15)
0.081286 (10,12) (10,13) (11,12) (11,13)
0.121322 (9,12) (9,13) (10,14) (11,14)
0.181077 (9,14)

TABLE I
WEIGHTS FORM INIMUM VARIANCE ESTIMATOR. Topology
of Figure 2. Links 8 and 15 have ten times variance of others.

A.1 Convergence

Figure 3 shows the variance of the cumulative delay
variance from sources to nodesk = 1; 6; 10; 15 in Fig-
ure 2(left), plotted as a function of the number of probes.
On the left is the theoretical varianceVar(V

k

(�

�

(C);bs));
on the right the empirical variance from 100 samples of
V

k

(�

�

(C);bs) found by simulation. Observe in both cases
the decay of the variance towards 0 as the number of
probes increases; furthermore the experimental variance is
very close to the theoretical values over the range of probe
numbers.

Figure 4 shows detail from a single simulation; sam-
ple paths of the link variance estimatorW

k

(�; bs) for links
k = 1; 3; 5; 10 as function of the number of probes, for
up to 10,000 probes. On the left figure, the aggregator�

is uniform, on the right, the minimum variance aggregator
�

�

(

b

C). Observe in both cases that the estimate approaches
the model value, 1, as the number of probes increases.

A.2 Variance Reduction

In Figure 4, convergence is tighter for the minimum
variance estimator (on the right) than in the uniform case;
this is particularly apparent in the left region of each plot,
corresponding to smaller numbers of probes. The differ-

ence is particularly evident for link 1 (which has 2 high
variance links as descendents, 8 and 15) and link 3, which
has link 15 as a descendent. The variance of the estima-
torsW

k

for both these links is decreased in the minimum
variance estimator, relative to the uniform estimator, by re-
ducing the weight�

ij

when i or j corresponds to a high
variance link. This is particularly striking in the mini-
mum variance estimator for link 1; we tabulate the weights
�

ij

(C(1)) in Table I. The weight for the pair(8; 15) of
high variance links is10�4 times the highest weight, that
for pair (9; 14).

To see the statistics of estimator variation reduction, we
display in Figure 5 the ratio of the standard deviation of
the uniform estimator to the standard deviation of the min-
imum variance estimator, and a function of the number
of probes. This in shown on the left for the cumulative
variance, and on the right for the link delay variance. For
the cumulative variance we display only for links, 1,2 and
3; the other internal links the uniform and minimum vari-
ance estimators are identical because there is only one term
in the sum forV . The figures show that the reduction in
variance is roughly uniform across a range of experiment
length up to 10,000 probes. The standard deviation was
roughly halved for the cumulative delay variance, and be-
tween 0.3 and 0.5 for the link delay variance. Reduction
was somewhat greater for the standard deviation of the link
delay variance, except for nodes 4 and 7. These nodes have
only two descendants, one of which terminates a high vari-
ance link; there is no flexibility to avoid the high variance
of the first term ofW

k

= V

k

� V

f(k)

.

B. Network Simulation

B.1 Methodology

Thenssimulations used the topology in Figure 2(right).
We arranged for some heterogeneity between the edges
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and the center of the tree in order to mimic the difference
between the core and edges of a large WAN, with the in-
terior of the tree having higher capacity (5Mb/sec) and la-
tency (50ms) than at the edge (1Mb/sec and 10ms). Each
node had a finite buffer capacity; packet losses were due
to drops for the tail of the buffer. We used buffer capac-
ities of 4 and 20 packets in two different sets of experi-
ments. The cross traffic comprised 66 FTP sessions over
TCP, and 29 UDP traffic sources following an exponen-
tial on-off model; there were on average around 8 back-
ground traffic sources per link. In each simulation we use
the source-to-leaf delays of probes as data to infer delay
variance per internal link by and also from the source to a
given internal node. Since the simulations exhibit packet
loss, the inference was performed using the algorithms de-
scribed in Section V. We compared the inferred valuesW

k

with the actual delay variance for probes on internal links
that was observed during the simulation run. The compar-
ison was performed over each link in Figure 2(right) for
100 simulation runs.

B.2 Comparison of Inferred and Actual Delay Variance

Figure 6 shows scatter plots of 1200 pairs of (inferred,
actual) link delay variance, based on 1000 probes, on the
left with buffer capacity of 4 packets, on the right with
buffer capacity 20 packets. Also shown is the line through
the origin at gradient 1; a point on this line would indi-
cate an instance of perfect inference. In the scatter plots
we differentiate between predictions using the uniform es-
timator, and those using the minimum variance estimator.

Taking each plot separately we observe that inference
is more accurate for the minimum variance estimator than
the uniform estimator, the difference being more evident
for the smaller buffer size. Comparing the plots we see that
inference is more accurate when for the simulated network
with larger buffer capacities, particularly for small delay
variances. A small number of inferred values were nega-
tive. This occurred for some links of high bandwidth for
which queueing delays were small. Estimation of the link
delay variance as the difference between the variance of
the cumulative delays (see (15)) is sensitive to estimation
errors. Nevertheless, the estimation error is sufficiently
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small that is would not impair identification of those links
with the largest delay variance. Furthermore, in practice
we can avoid the worst small variance estimation errors
by eliminating estimates that are not significantly different
from zero according at some confidence level. Similar to
(17), these are the estimatesW

k

from n probes for which
W

k

< z

�

�=

p

n, 1 � � is the desired (one-sided) confi-
dence level, and�2 is the appropriate asymptotic variance
expressed in terms of the estimated covariance.

We attribute bias of inference to departures of the delay
process from the independence assumption of the model.
We calculated the off-diagonal elements of the correlation
matrix of the actual link delays. For buffer size 4 the mean
value was 0.071, the maximum 0.51. For buffer size 20
the mean was 0.021, the maximum 0.17. Thus correla-
tions were more pronounced for the smaller buffer size,
leading to greater inference inaccuracy. We found that bias
was more pronounced in the inference of cumulative delay,
particularly for buffer size 20 where the cumulative delay
variance is almost always overestimated. Bias was less ev-
ident for the link delay variance. Since this is expressed as
a difference of estimated cumulative delay variance, con-
sistent bias in the latter quantities should cancel somewhat
in subtraction. Conversely, small delay variances are better
estimated for for the cumulative than the link case.

In order to quantify the accuracy of inference we define
a metric for evaluating estimator accuracy. Ifw and bw are
the actual and inferred delay variances (either cumulative
to a link or at the link itself) we form theirerror factor

F ( bw;w) = max

�

bw

w

;

w

bw

�

: (20)

For example, ifbw is either twice or halfw, their error fac-
tor is2. As a robust summary statistic to capture the center
of the distribution of error factors, we use the two-sided

buffer = 4 pkts. buffer = 20 pkts.
z unif. min. var. unif. min. var.
0 2.31 2.06 1.32 1.32
2 1.56 1.76 1.23 1.23

TABLE II
QUARTILE WEIGHTED MEDIAN ERROR FACTORS FOR

INFERENCE ON1000 PACKETS. Link delay variance
estimation, according to number of standard deviationsz in

confidence level to avoid small variances. Errors are smaller for
minimum variance estimator than uniform estimator, and also

with increased buffer capacity.

quartile-weighted median (QWM)

(Q

:25

+ 2Q

:5

+ Q

:75

)=4; (21)

whereQ
p

denotes thepth quantile of a given set of error
factors.

In Table II we display the QWM of error factors for
link variance estimation. Small or negative inferred vari-
ances were omitted, the quantityz being the number of
standard deviations characterizing the confidence interval
about0. z = 0 corresponds to rejecting only negative
inferred variances. Ruling out these small variances de-
creases the QWM of the error factor: the smaller variances
typically have higher error factor. (Forz = 2, buffer =4,
it happens that the 75th-percentile of the error factor dis-
tribution is larger for the minimum variance estimator, but
this is atypical). For large buffer sizes the error factors are
noticeably smaller; the difference in accuracy between the
uniform and minimum variance estimator is smaller too.
We found no great advantage in increasing the number of
probes to 10,000 since bias becomes a larger part of the
errors.
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VII. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a novel technique for the
inference from end-to-end measurements of the variance
of the delay encountered by multicast packets on an inter-
nal link. The cooperation of intervening network nodes is
not required.

We constructed a convex family of variance estimators
and found the estimator of minimal asymptotic variance.
Evaluating the minimal variance estimator comes at some
computational cost, namely, the inversion of the covari-
ance matrixbC. In work to be reported elsewhere, we show
how this computation may be considerably simplified for
binary trees, although at the cost of increasing estimator
variance somewhat. Another approach is to compromise
between the computational simplicity of the uniform esti-
mator and variance reduction. An example would be to set
�

ij

= 0 for fi; jg in some subset ofQ(k) in which the
measures end-to-end variancesbs

i

are high. It remains to
develop a robust approach along these lines.

Thens experiments showed typical errors of about 20%
in estimation of the delay variance using 1,000 probes. We
observe that using a 40 bytes probe every 100ms, the load
on the network is less that 4kb/sec and the measurements
can be completed within 2 minutes.

We found inference to be more accurate in networks
with larger buffers; there was smaller correlation between
delays at different nodes and hence closer conformance to
the underlying model. It appear that the larger buffers ad-
mit a greater diversity of connections through a node over
queueing timescales, diluting the correlation seen between
delays at successive nodes. We believe that diversity of
traffic in real networks such as the Internet makes large
and long lasting correlations unlikely. Furthermore the in-
troduction of Random Early Detection (RED) [11] policies
in Internet routers may help reduce dependence; evidence
for this comes from related work on internal link loss in-
ference [4], where the introduction of RED was found to
increase accuracy of inference relative to networks with a
Drop from Tail packet discard mechanism.
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