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Abstract—The present work focuses on the forward link of
a broadband multibeam satellite system that aggressively reuses
the user link frequency resources. Two fundamental practical
challenges, namely the need to frame multiple users per trans-
mission and the per-antenna transmit power limitations, are
addressed. To this end, the so-called frame-based precoding
problem is optimally solved using the principles of physical
layer multicasting to multiple co-channel groups under per-
antenna constraints. In this context, a novel optimization problem
that aims at maximizing the system sum rate under individual
power constraints is proposed. Added to that, the formulation
is further extended to include availability constraints. As a
result, the high gains of the sum rate optimal design are
traded off to satisfy the stringent availability requirements of
satellite systems. Moreover, the throughput maximization with a
granular spectral efficiency versus SINR function, is formulated
and solved. Finally, a multicast-aware user scheduling policy,
based on the channel state information, is developed. Thus,
substantial multiuser diversity gains are gleaned. Numerical
results over a realistic simulation environment exhibit as much
as 30% gains over conventional systems, even for 7 users
per frame, without modifying the framing structure of legacy
communication standards.

Index Terms—Broadband Multibeam Satellite systems, Op-
timal Linear Precoding, Sum Rate Maximization, Multicast
Multigroup beamforming, Per-antenna Constraints

I. INTRODUCTION & RELATED WORK

Aggressive frequency reuse schemes have shown to be

the most promising way towards spectrally efficient, high-

throughput wireless communications. In this context, linear

precoding, a transmit signal processing technique that exploits

the offered spatial degrees of freedom of a multi-antenna

transmitter, is brought into play to manage interferences.

Such interference mitigation techniques and subsequently full

frequency reuse configurations, are enabled by the availability

of channel state information (CSI) at the transmitter.
In fixed broadband multibeam satellite communications

(satcoms), the relatively slow channel variations facilitate

the channel acquisition process. Therefore, such scenarios

emerge as the most promising use cases of full frequency

reuse configurations. Nevertheless, the incorporation of linear

precoding techniques is inhibited by the inherent characteris-

tics of the satellite system [1], [2]. The present contribution
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focuses on two fundamental constraints stemming from the

practical system implementation. Firstly, the framing structure

of satcom standards, such as the second generation digital

video broadcasting for satellite standard DVB − S2 [3] and its

most recent extensions DVB − S2X [4], inhibit scheduling a

single user per transmission. Secondly, non-flexible on-board

payloads prevent power sharing between beams.

Focusing on the first practical constraint, the physical layer

design of DVB − S2 [3] has been optimized to cope with the

noise limited, with excessive propagation delays and intense

fading phenomena, satellite channel. Therefore, long forward

error correction (FEC) codes and fade mitigation techniques

that rely on an adaptive link layer design (adaptive coding and

modulation – ACM) have been employed. The latest evolution

of DVB − S2X, through its –synchronous over the multiple

beams– superframes (cf. annex E of [4]), allows for the incor-

poration of the aforementioned interference mitigation tech-

niques (cf. annex C of [5]). A small-scale example of the ap-

plication of linear precoding methods within the DVB − S2X
standard is depicted in Fig. 1. Clearly, the underlying framing

structure hinders the calculation of a precoding matrix on a

user-by-user basis. During one transmission period, one frame

per beam accommodates a different number of users, each

with different data requirements. Added to that, the application

of FEC block coding over the entire frame requires that co-

scheduled users decode the entire frame and then extract the

data they need. Also, the unequal data payloads amongst users

simultaneously served in different beams further complicates

the joint processing of the multiple streams. Consequently,

despite the capacity achieving channel based precoding [6],

practical system implementations emanate the consideration

of precoding on a frame-by-frame basis. The notion of frame-

based precoding is presented in more detail in [1], [2].

From a signal processing perspective, physical layer (PHY)

multicasting to multiple co-channel groups [7] can provide the

theoretically optimal precoders when a multi-antenna transmit-

ter conveys independent sets of common data to distinct groups

of users. This scenario is known as PHY multigroup multicast

beamforming (or equivalently precoding). The optimality of

the multicast multigroup precoders for frame-based precod-

ing is intuitively clear, under the following considerations.

In multicasting, the same symbol is transmitted to multiple

receivers. This is the fundamental assumption of frame-based

precoding as well, since the symbols of one frame, regardless

of the information they convey, are addressed to multiple users.
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Fig. 1. Frame-based precoding in DVB − S2X. Function f(·) denotes the FEC coding operation over the data dxy that are uniquely addressed to user
x of beam y, as identified in the right side of the plot. Consequently, the j-th transmitted symbol sij , belonging to the i-th superframe (SF), contains an
encoded bit-stream that needs to be received by all co-scheduled users. In SFs 3 and 4, different number of users are co-scheduled.

Fig. 2. Transmitter functional block diagram, based on DVB-S2 [3], extended
to incorporate advanced interference mitigation techniques.

These users need to receive the entire frame, decode it and then

extract information that is relevant to them. The connection

between PHY multigroup multicast beamforming (precoding)

and frame-based precoding was firstly established in [8].

The second practical constraint tackled in the present work

includes a maximum limit on the per-antenna transmitted

power. Individual per-antenna amplifiers prevent power shar-

ing amongst the antennas of the future full frequency reuse

compatible satellites. On board flexible amplifiers, such as

multi-port amplifiers and flexible traveling wave tube ampli-

fiers [9], come at high costs. Also, power sharing is impossible

in distributed antenna systems (DAS), such as constellations

of cooperative satellite systems (e.g. dual satellite systems [10]

or swarms of nano-satellites).

Enabled by the incorporation of linear precoding in DVB-

S2X, an example of a full frequency reuse transmission chain

is depicted in Fig. 2. The optimal, in a throughput maximizing

sense, precoding matrix, combined with a low complexity user

scheduling algorithm will be presented in the remaining parts

of this work.

A. Related Work

In the PHY multigroup multicast precoding literature, two

fundamental optimization criteria, namely the sum power min-

imization under specific Quality of Service (QoS) constraints

and the maximization of the minimum SINR (maxmin fair

criterion) have been considered in [7], [11], [12] under a

SPC. Extending these works, a consolidated solution for the

weighted maxmin fair multigroup multicast beamforming

under PACs has been derived in [13], [14]. To this end,

the well established tools of Semi-Definite Relaxation (SDR)

and Gaussian randomization were combined with bisection to

obtain highly accurate and efficient solutions.

The fundamental attribute of multicasting, that is a single

transmission to be addressed to a group of users, constrains

the system performance according to the worst user. There-

fore, the maximization of the minimum SINR is the most

relevant problem and the fairness criterion is imperative [13].

When advancing to multigroup multicast systems, however,

the service levels between different groups can be adjusted

towards achieving some other optimization goal. The sum rate

maximization (maxSR) problem in the multigroup multicast

context was initially considered in [15] under SPC. Therein,

a heuristic iterative algorithm based on the principle of de-

coupling the beamforming design and the power allocation

problem was proposed. In more detail, the SPC max sum rate

problem was solved using a two step optimization algorithm.

The first step was based on the QoS multicast beamforming

problem of [7], as iteratively solved with input QoS targets

defined by the worst user per group in the previous iteration.

The derived precoders push all the users of the group closer

to the worst user thus saving power. The second step of the

algorithm consisted of the gradient based power reallocation

methods of [16]. Hence, a power redistribution takes place

via the sub-gradient method [16] to the end of maximizing

the system sum rate.

In a realistic system design, the need to schedule a large

number users, over subsequent in time transmissions, is of

substantial importance. In the context of multiuser multiple

input multiple output (MU − MIMO) communications, user

scheduling has shown great potential in maximizing the system

throughput performance. In [17], [18], low complexity user

scheduling algorithms allowed for the channel capacity ap-

proaching performance of linear precoding methods when the

number of available users grows large. The enabler for these

algorithms is the exact knowledge of the CSI. Motivated by

these results and acknowledging that the large number of users

served by one satellite can offer significant multiuser diversity

gains, channel based user scheduling over satellite is herein

proposed. Further supporting this claim, the diverse mul-

tiuser satellite environment was exploited towards approaching

the information theoretic channel capacity bounds in [10].
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Therein, user scheduling methods were extended to account

for adjacent transmitters and applied in a multibeam satellite

scenario, exhibiting the importance of scheduling for satcoms.

In the present work, drawing intuitions from the frame-

based design, multicast-aware user scheduling algorithms are

derived. These algorithms, as it will be shown, exploit the

readily available CSI, to glean the multiuser diversity gains of

satellite systems.

Different from the aforementioned works, the sum rate

maximization under PACs has only been considered in [19].

Herein, this principle is used as a stepping stone for the

incremental development of elaborate optimization algorithms

that solve problems inspired by the needs of frame-based

precoding over satellite. The contributions are summarized in

the following points:

• The max SR multigroup multicast problem under PACs

is formulated and solved.

• The above max SR problem is extended to account for

minimum rate constraints (MRCs).

• A novel modulation aware max SR optimization that con-

siders the discretized throughput function of the receive

useful signal power is proposed and heuristically solved.

• A low complexity, CSI based, user scheduling algorithm

that considers the multigroup multicast nature of the

frame-based precoding system is envisaged.

• The developed techniques are evaluated over a multi-

beam, full frequency reuse satellite scenario.

The rest of the paper is structured as follows. Section II

models the multigroup multicast system. Based on this model,

the maxSR, multigroup multicast optimization problem is

formulated and solved in Sec. III. Extending this optimization,

system dependent problems are tackled in Sec. IV. Further on,

user scheduling is discussed in Sec. V. Finally, in Sec. VI, the

performance of the derived algorithms is evaluated, while Sec.

VII concludes the paper.

Notation: In the remainder of this paper, bold face lower

case and upper case characters denote column vectors and

matrices, respectively. The operators (∙)T
, (∙)†, | ∙ |, Tr (∙) and

||∙||2, correspond to the transpose, the conjugate transpose, the

absolute value, the trace and the Euclidean norm operations,

while [∙]ij denotes the i, j-th element of a matrix. An x-

element column vector of ones is denoted as 1x. Finally, ∅
denotes an empty set.

II. SYSTEM MODEL

The focus is on a single broadband multibeam satellite

transmitting to multiple single antenna users. Let Nt denote

the number of transmitting elements, which for the purposes of

the present work, are considered equal to the number of beams

(one feed per beam assumption) and Nu the total number of

users simultaneously served. The received signal at the i-th
user will read as yi = h

†
ix + ni, where h

†
i is a 1 × Nt

vector composed of the channel coefficients (i.e. channel gains

and phases) between the i-th user and the Nt antennas of

the transmitter, x is the Nt × 1 vector of the transmitted

symbols and ni is the complex circular symmetric (c.c.s.)

independent identically distributed (i.i.d) zero mean Additive

White Gaussian Noise (AWGN), measured at the i-th user’s

receiver. Herein, for simplicity, the noise will be normalized

to one and the impact of noise at the receiver side will be

incorporated in the channel coefficients, as will be shown in

the following (Sec. II.A eq. (4) ).

Let us assume that a total of Nt multicast groups are

realized where I = {G1,G2, . . .GNt
} the collection of index

sets and Gk the set of users that belong to the k-th multicast

group, k ∈ {1 . . . Nt}. Each user belongs to only one frame

(i.e. group), thus Gi ∩ Gj =Ø,∀i, j ∈ {1 ∙ ∙ ∙Nt}, while

ρ = Nu/Nt denotes the number of users per group. Let

wk ∈ CNt×1 denote the precoding weight vector applied to

the transmit antennas to beamform towards the k-th group

of users. By collecting all user channels in one channel

matrix, the general linear signal model in vector form reads as

y = Hx + n = HWs + n, where y and n ∈ CNu , x ∈ CNt

and H ∈ CNu×Nt . Since, the frame-based precoding imposes

a single precoding vector for multiple users, the matrix will

include as many precoding vectors (i.e columns) as the number

of multicast groups. This is the number of transmit antennas,

since one frame per-antenna is assumed. Also, the symbol

vector includes a single equivalent symbol for each frame i.e.

s ∈ CNt , inline with the multicast assumptions. Consequently,

a square precoding matrix is realized, i.e. W ∈ C
Nt×Nt .

The assumption of independent information transmitted to

different frames implies that the symbol streams {sk}Nt

k=1

are mutually uncorrelated. Also, the average power of the

transmitted symbols is assumed normalized to one. Therefore,

the total power radiated from the antenna array is equal to

Ptot =

Nt
∑

k=1

w
†
kwk = Trace

(

WW†
)

, (1)

where W = [w1,w2, . . .wNt
]. The power radiated by each

antenna element is a linear combination of all precoders and

reads as [20]

Pn =

[

Nt
∑

k=1

wkw
†
k

]

nn

=
[

WW†
]

nn
, (2)

where n ∈ {1 . . . Nt} is the antenna index. The fundamental

difference between the SPC of [7] and the proposed PAC is

clear in (2), where instead of one, Nt constraints are realized,

each one involving all the precoding vectors.

A. Multibeam Satellite Channel

The above general system model is applied over a multi-

beam satellite channel explicitly defined as follows. A 245

beam pattern that covers Europe is employed [22]. For the

purposes of the present work, only a subset of the 245

beams will be considered, as presented in Fig. 3. Such a

consideration is in line with the multiple gate-way (multi-GW)

assumptions of large multibeam systems [21]. However, the

effects of interference from adjacent clusters is left for future

investigations. A complex channel matrix that models the link

budget of each user as well as the phase rotations induced by

the signal propagation is employedin the standards of [22], [9]

and [8]. In more detail, the total channel matrix H ∈ CNu×Nt
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Fig. 3. Beam pattern covering Europe, provided by [22], with the nine beams
considered herein highlighted.

is generated as

H = ΦB, (3)

and includes the multibeam antenna pattern (matrix B) and

the signal phase due to different propagation paths between

the users (matrix Φ). The real matrix B ∈ RNu×Nt models

the satellite antenna radiation pattern, the path loss, the receive

antenna gain and the noise power. Its i, j-th entry is given by

[22]:

bij =

(

√

GRGij

4π(dk ∙ λ−1)
√

κTcsBu

)

, (4)

with dk the distance between the i-th user and the satellite

(slant-range), λ the wavelength, κ the Boltzman constant, Tcs

the clear sky noise temperature of the receiver, Bu the user

link bandwidth, GR the receiver antenna gain and Gij the

multibeam antenna gain between the i-th single antenna user

and the j-th on board antenna (= feed). Hence, the beam gain

for each satellite antenna-user pair, depends on the antenna

pattern and on the user position.

An inherent characteristic of the multibeam satellite channel

is the high correlation of signals at the satellite side. Thus a

common assumption in multibeam channel models is that each

user will have the same phase between all transmit antennas

due to the long propagation path [9]. The identical phase

assumption between one user and all transmit feeds is sup-

ported by the relatively small distances between the transmit

antennas and the long propagation distance of all signals to a

specific receiver. Hence, in (3) the diagonal square matrix Φ

is generated as [Φ]xx = ejφx ,∀ x = 1 . . . Nu where φx is a

uniform random variable in [2π, 0) and [Φ]xy = 0, ∀ x 6= y.

B. Average User Throughput

Based on the above link budget considerations, the achiev-

able average user throughput is normalized over the number

of beams, in order to provide a metric comparable with

multibeam systems of any size. Therefore, the average user

throughput, Ravg as will be hereafter referred to, is given as

Ravg =
2Bu

1 + α

1

Nt

Nt
∑

k=1

fDVB−S2X

(

min
i∈Gk

{SINRi} , t

)

, (5)

in [Gbps/beam], where all parameters are defined in Tab. II

of Sec. VI. In (5), the spectral efficiency function fDVB−S2X

receives as input each users SINR as well as a threshold

vector t. Then, fDVB−S2X performs a rounding of the input

SINR to the closest lower floor given by the threshold vector t

and outputs the corresponding spectral efficiency in [bps/Hz].

This operation is denoted as ⌊∙⌋t. The mapping of receive

SINR regions to a spectral efficiency achieved by a respective

modulation and coding (MODCOD) scheme is explicitly

defined in the latest evolution of the satcom standards [4].

It should also be noted, that the conventional four color

frequency reuse calculations are based on the exact same

formula, with the only modifications being the input SINR,

calculated under conventional four color reuse pattern and

with the pre-log factor reduced by four times, equal to the

conventional fractional frequency reuse [22].

III. SUM RATE MAXIMIZATION

For the precoding design, optimal multigroup multicast pre-

coders under per-antenna constraints are proposed to maximize

the throughput of the multibeam satellite system. The design

of throughput maximizing optimal precoders is a complicated

problem without an explicit solution even for the unicasting

case [23]. When advancing to multicasting assumptions, the

structure of the problem becomes even more involved, as

already explained [11]. Consequently, the present work builds

upon the heuristic methods of [15], [16].

Since a multigroup multicasting scenario entails the flexibil-

ity to maximize the total system rate by providing different ser-

vice levels amongst groups, the multigroup multicast maxSR
optimization aims at increasing the minimum SINR within

each group while in parallel maximizing the sum of the rates

of all groups. Intuitively, this can be accomplished by reducing

the SINR of users with better conditions than the worst user

of their group. Also, groups that contain compromised users

might need to be turned of, hence driving their users to service

unavailability, in order to save power resources and degrees of

freedom. As a result, power is not consumed for the mitigation

of poor channel conditions. Any remaining power budget is

then reallocated to well conditioned and balanced in terms of

performance groups.

A. Per-antenna Power Constrained Optimization

This section focuses on the per-antenna power constrained

maxSR problem, formally defined as

SR : max
{wk}

Nt
k=1

Nu
∑

i=1

log2 (1 + γi)

subject to: γi = min
m∈Gk

|w†
khm|2

∑Nt

l 6=k |w
†
l hm|2 + σ2

m

,

∀i ∈ Gk, k, l ∈ {1 . . . Nt},

and to:

[

Nt
∑

k=1

wkw
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt}.

(6)

(7)

Problem SR receives as input the channel matrices as

well as the per-antenna power constraint vector pant =
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[P1, P2 . . . PNt
]. Following the notation of [7] for ease of

reference, the optimal objective value of SR will be denoted

as c∗ = SR(pant) and the associated optimal point as

{wSR
k }Nt

k=1. The novelty of the SR lies in the PACs, i.e. (7)

instead of the conventional SPC proposed in [15]. Therein,

to solve the elaborate maxSR under a SPC problem, the

decoupling of the precoder calculation and the power loading

over these vectors was considered. The first problem was

solved based on the solutions of [7] while the latter on sub-

gradient optimization methods [16]. To the end of solving the

novel SR problem, a heuristic algorithm is proposed herein.

Different than in [15], the new algorithm calculates the per-

antenna power constrained precoders by utilizing recent results

[13]. Also, modified sub-gradient optimization methods are

proposed to take into account the PACs. More specifically,

instead of solving the QoS sum power minimization problem

of [7], the proposed algorithm calculates the PAC precoding

vectors by solving the following problem [13] that reads as

Q : min
r, {wk}

Nt
k=1

r

subject to:
|w†

khi|2
∑Nt

l 6=k |w
†
l hi|2 + σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . Nt},

and to:
1

Pn

[

Nt
∑

k=1

wkw
†
k

]

nn

≤ r,

∀n ∈ {1 . . . Nt},

(8)

(9)

where r ∈ R
+. Problem Q receives as input the SINR

target vector g = [γ1, γ2, . . . γNu
], that is the individual QoS

constraints of each user, as well as the per-antenna power

constraint vector pant. Let the optimal objective value of Q
be denoted as r∗ = Q(g,pant) and the associated optimal

point as {wQ
k }Nt

k=1. This problem is solved using the well

established methods of SDR and Gaussian randomization [24].

A more detailed description of the solution of Q can be found

in [13], [14] and is herein omitted for conciseness.

To proceed with the power reallocation step, let us rewrite

the precoding vectors calculated from Q as {wQ
k }Nt

k=1 =
{√pkvk}Nt

k=1 with ||vk||22 = 1 and p = [p1 . . . pk]. By

this normalization, the beamforming problem can be decou-

pled into two problems. The calculation of the beamform-

ing directions, i.e. the normalized {vk}Nt

k=1, and the power

allocation over the existing groups, i.e. the calculation of

pk. Since the exact solution of SR is not straightforwardly

obtained, this decoupling allows for a two step optimization.

Under general unicasting assumptions, the SR maximizing

power allocation with fixed beamforming directions is a

convex optimization problem [16]. Nonetheless, when multi-

group multicasting is considered, the cost function CSR =
∑Nt

k=1 log (1 + mini∈Gk
{SINRi}) . is no longer differentiable

due to the mini∈Gk
operation and one has to adhere to sub-

gradient solutions [15]. What is more, as in detail explained

in [15], the cost function needs to be continuously differen-

tiable, strictly increasing, with a log-convex inverse function.

Nevertheless, this is not the case for SR. Towards providing

a heuristic solution to an involved problem without known

optimal solution, an optimization over the logarithmic power

vector s = {sk}Nt

k=1 = {log pk}Nt

k=1, will be considered in the

standards of [15]. Therein, the authors employ a function φ
that satisfies the above assumptions to approximate the utility

function of SR. For more information on function φ and

the suggested approximation, the reader is directed to [15]. It

should be noted that the heuristic nature of this solution does

not necessarily guarantee convergence to a global optimum.

Albeit this, and despite being sub-optimal in the max sum

rate sense, the heuristic solutions attain a good performance,

as shown in [15], [16] and in the following. Consequently, in

the present contribution, the power loading is achieved via the

sub-gradient method [16], under specific modifications over

[15] that are hereafter described.
The proposed algorithm, presented in Alg. 1, is an iterative

two step procedure. In each step, the QoS targets g are calcu-

lated as the minimum target per group of the previous iteration,

i.e. γi = mini∈Gk
{SINRi} ,∀i ∈ Gk, k ∈ {1 . . . Nt}. There-

fore, the new precoders require equal or less power to achieve

the same system sum rate. Any remaining power is then

redistributed amongst the groups to the end of maximizing

the total system throughput, via the sub-gradient method [16].

Focusing of the later method and using the logarithmic power

vector s = {sk}Nt

k=1 = {log pk}Nt

k=1, the sub-gradient search

method is given as

s(t + 1) =
∏

P

[s(t) − δ(t) ∙ r(t)] , (10)

where
∏

P
[x] denotes the projection operation of point x ∈

RNt
onto the set P ⊂ R

+
Nt

. The parameters δ(t) and r(t)
are the step of the search and the sub-gradient of the SR
cost function at the point s(t), respectively. The number of

iterations this method runs, denoted as tmax, is predefined.

The projection operation, i.e.
∏

P
[∙], constrains each iteration

of the sub-gradient to the feasibility set of the SR problem.

The analytic calculation of r(t) follows the exact steps of [15],

[16] and is herein omitted for shortness. In order to account

for the more complicated PACs the projection over a per-

antenna power constrained set is considered as follows. The

set of PACs can be defined as

P =

{

p ∈ R+
Nt

|
[

Nt
∑

k=1

pkvkv
†
k

]

nn

≤ Pn

}

, (11)

where the elements of the power vector p = exp(s) represent

the power allocated to each group. It should be stressed that

this power is inherently different from the power transmitted

by each antenna pant ∈ R
+
Nt

. The connection between

pant and p is given by the normalized beamforming vectors

as easily observed in (11). Different from the sum power

constrained solutions of [15], the per-antenna constrained

projection problem is given by

P :min
p

||p − x||22

subject to :

[

Nt
∑

k=1

pkvkv
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

(12)
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where p ∈ RNt
and x = exp (s(t)). Problem P is a quadratic

problem (QP) [25] and can thus be solved to arbitrary

accuracy using standard numerical methods1. Subsequently,

the solution of (10) is given as s(l + 1) = log (p∗), where

p∗ = P (pant,x) is the optimal point of convex problem

P . To summarize the solution process, the per-antenna power

constrained sum rate maximizing algorithm is given in Alg. 1.

Input: (see Tab.I) {w(0)
k }Nt

k=1 =
√

Ptot/(N2
t ) ∙ 1Nt

,

pant, j = 0.

Output: {wSR
k }Nt

k=1

begin

while SR does not converge do
j = j + 1
Step 1: Solve r∗ = Q(g(j),pant) to calculate

{w(j)
k }Nt

k=1. The input SINR targets g(j) are

given by the minimum SINR per group, i.e.

γi = mini∈Gk
{SINRi} ,∀i ∈ Gk, k ∈ {1 . . . Nt}.

Step 2: Initialize the sub-gradient search

algorithm as: p(j) = {pk}Nt

k=1 = {||w(j)
k ||22}Nt

k=1,

s(j) = {sk}Nt

k=1 = {log pk}Nt

k=1,

{v(j)
k }Nt

k=1 = {w(j)
k /

√

p
(j)
k }Nt

k=1.

Step 3: Calculate tmax iterations of the

sub-gradient power control algorithm, starting

from s(0) = s(j) :
for t = 0 . . . tmax − 1 do

s(t + 1) =
∏

P
[s(t) − δ(t) ∙ r(t)]

end

s(j+1) = s(tmax − 1),
Step 4: Calculate the current throughput:

c∗ = SR (pant) with {wSR
k }Nt

k=1 =

{w(j+1)
k }Nt

k=1 = {v(j)
k exp(s

(j+1)
k )}Nt

k=1
end

end
Algorithm 1: Sum-rate maximizing multigroup multicasting

under per-antenna power constraints.

B. Complexity & Convergence Analysis

An important discussion involves the complexity of the

proposed algorithm. In [13], [14], the computational burden

for an accurate approximate solution of the per-antenna power

minimization problem Q (step 1 of Alg. 1) has been calculated.

In summary, the relaxed power minimization is an semidefinite

1Analytical methods to solve problem P are beyond the scope of the present
work. For more information, the reader is referred to [25].

TABLE I
INPUT PARAMETERS FOR ALG. 1

Parameter Symbol Value

Sub-gradient iterations tmax 1
Sub-gradient initial value δ(t) 0.4
Sub-gradient step δ(t + 1) δ(t)/2
Gaussian Randomizations Nrand 100
Per-antenna constraints pant Ptot/Nt · 1Nt

User Noise variance σ2

i 1, ∀i ∈ {1 . . . Nu}

programming (SDP) instance with Nt matrix variables of

Nt × Nt dimensions and Nu + Nt linear constraints. The

present work relies on the CVX tool [25] which calls numer-

ical solvers such as SeDuMi to solve semi-definite programs.

The interior point methods employed to solve this SDP require

at most O(Nt log(1/ǫ)) iterations, where ǫ is the desired

numerical accuracy of the solver. Moreover, in each iteration

not more than O(N9
t + N4

t + NuN3
t ) arithmetic operations

will be performed. The solver used [25] also exploits the

specific structure of matrices hence the actual running time is

reduced. Next, a fixed number of iterations of the Gaussian

randomization method is performed [24]. In each random-

ization, a linear problem (LP) is solved with a worst case

complexity of O(Nt
3.5 log(1/ǫ1)) for an ǫ1−optimal solution.

The accuracy of the solution increases with the number of

randomizations [7], [11], [24]. The remaining three steps

of Alg. 1 involve a closed form sub-gradient calculation as

given in [16] and the projection operation, which is a real

valued least square problem under Nt quadratic inequality

PACs. Consequently, the asymptotic complexity of the derived

algorithm is polynomial, dominated by the complexity of the

QoS multigroup multicast problem under PACs.

The convergence of Alg. 1 is guaranteed given that the

chosen step size satisfies the conditions given in [15], [16],

that is the diminishing step size. Herein, δ(l + 1) = δ(l)/2.

What is more, in accordance to [15], only a single iteration

of the sub-gradient is performed in the numerical results (i.e.

tmax = 1).

IV. SYSTEM DRIVEN OPTIMIZATION

Constraints inspired by the inherent nature of satellite

communications emanate the definition of novel optimization

problems. The present section focuses on enabling demanding

in terms of availability satellite services. Increased scepticism

over spectrally efficient, aggressive frequency reuse, multi-

beam satellites stems from the effects of such configurations

on the SINR distribution across the coverage. In full frequency

reuse scenarios, the useful signal power at the receiver is

greatly reduced due to the intra-system interferences. Despite

the throughput gains due to the increased user link bandwidth

and the adequate management of interferences by linear pre-

coding, the mean and variance of the SINR distribution over

the coverage area is generally reduced. This is the price paid

for increasing the frequency reuse. Naturally, this reduction in

the average SINR will lead to a higher utilization of lower

MODCODs and increase the probability of service unavail-

ability over the coverage (outage probability). Retransmissions

that incur in these outage instances, are bound to burden the

system in terms of efficiency. What is more, by acknowledging

the multiuser satellite environment (cf. Sec. V), these outage

periods can potentially become comparable to the inherent

long propagation delay of satcoms. Such a case will render

the overall delay, as experienced by a user, unacceptable. As

a result, the probability of compromised users to experience

long outage periods, needs to be considered in a system level.

In this work, the introduction of minimum rate constraints over

the entire coverage is proposed, as a means to guarantee in the
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physical layer design the stringent availability requirements

typically accustomed in satcoms. The guarantee of a minimum

level of service availability is introduced for the first time in

a maxSR multigroup multicast optimization.

A. Sum Rate Maximization under Minimum Rate Constraints

To provide high service availability, the gains of the sum

rate optimization can be traded-off in favor of a minimum

guaranteed rate across the coverage. This trade-off mostly

depends on the minimum MODCOD supported by the ACM2.

Since an intermediate solution between the fairness and the

maxSR goals is of high engineering interest, a novel opti-

mization problem, namely the throughput maximization under

availability constraints, is proposed. The innovation, aspired by

operational requirements, lies in the incorporation of minimum

rate constraints (MRCs) in the PAC sum rate maximizing

problem (equivalently minimum SINR constraints). Formally,

the new optimization problem is defined as

SRA : max
{wk}

Nt
k=1

Nu
∑

i=1

log2 (1 + γi)

s. t.: γi = min
m∈Gk

|w†
khm|2

∑Nt

l 6=k |w
†
l hm|2 + σ2

m

,

∀i ∈ Gk, k, l ∈ {1 . . . Nt},

and to:

[

Nt
∑

k=1

wkw
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},
and to: γi ≥ γmin, ∀i ∈ {1 . . . Nu}.

(13)

(14)

(15)

In SRA, the power allocation needs to account for the MRCs,

i.e. (15). This is achieved by modifying the constraints of

the sub-gradient search [16], as imposed via the projection

of the current power vector onto the convex set of constraints.

Therefore, the additional constraint can be introduced in the

projection method, since it does not affect the convexity of

the formulation. Subsequently, to solve SRA a new projection

that includes the minimum rate constraints is proposed. The

new subset, that is the minSINR constrained set, is a convex

subset of the initially convex set. The availability constrained

projection reads as

PA : min
p

||p − x||22

subject to :
pk|v†

khi|2
∑Nt

l 6=k pl|v†
l hi|2 + σ2

i

≥ γmin,

∀i ∈ Gk, k, l ∈ {1 . . . Nt},

and to :

[

Nt
∑

k=1

pkvkv
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

(16)

(17)

2For instance in DVB − S2X under normal operation over a linearized
channel, the most robust modulation and coding rate can provide quasi error
free communications (frame error probability lower than 10−5) for as low as
−2.85 dB of user SINR, thus achieving a minimum spectral efficiency of
0.4348 [bps/Hz] [5]. Beyond this value, a service outage occurs.

which is a convex optimization problem, that includes one

additional linear constraint, i.e. (16), over P . Provided that

SRA is feasible, then (15) is satisfied and thus a solution for

PA always exists. Similarly to P , this problem can be solved

using standard methods [25].

Subsequently, the solution of SRA is derived following

the steps of Alg. 1 but with a modification in the sub-

gradient method (Step 3), where the projection is calculated

by solving problem PA instead of P . As intuitively expected,

the introduction of MRCs is bound to decrease the system

throughput performance. However, this trade-off can be lever-

aged towards more favorable conditions, by considering other

system aspects, as will be discussed in the following.

B. Throughput Maximization via MODCOD Awareness

A modulation constrained practical system employs higher

order modulations to increase its rate with respect to the useful

signal power. The strictly increasing logarithmic cost functions

describe communications based on Gaussian alphabets and

provide the Shannon upper bound of the system spectral

efficiency. Therefore, the sum rate maximization problems

solved hitherto fail to account for the modulation constrained

throughput performance of practical systems. The complica-

tion lies in the analytically intractable, at least by the methods

considered herein, nature of a step cost function. In the present

section, an attempt to leverage this cost function in favor of the

system throughput performance is presented. In more detail,

benefiting from the finite granularity of the rate function (5)

over the achieved SINR, an extra system level optimization

can be defined as

SRM : max
{wk}

Nt
k=1

Nu
∑

i=1

fDVB−S2X (γi, t)

s. t.: γi = min
m∈Gk

|w†
khm|2

∑Nt

l 6=k |w
†
l hm|2 + σ2

m

,

∀i ∈ Gk, k, l ∈ {1 . . . Nt},

and to:

[

Nt
∑

k=1

wkw
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},
and to: γi ≥ γmin, ∀i ∈ {1 . . . Nu},

(18)

(19)

(20)

where fDVB−S2X(∙, ∙) is the finite granularity step function

defined in (5). The realization of a non-strictly increasing cost

function inhibits the application of gradient based solutions

and necessitates a different solution process. To provide a so-

lution for this elaborate -yet of high practical value- problem,

a heuristic iterative algorithm is proposed. More specifically,

Alg. 2 receives as input the availability constrained precoders

{wSRA
k }Nt

k=1 calculated as described in Sec. IV-A, and cal-

culates an initial SINR distribution. Then, it derives new

precoding vectors under minimum SINR constraints given by

the closest lower threshold of the worst user in each group,

according to the discrete throughput function. Therefore, the

resulting system throughput is not decreased while power is
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saved. This power can now be redistributed. Also, in this man-

ner, the solution guarantees a minimum system availability.

Following this step, an ordering of the groups takes place,

in terms of minimum required power to increase each group

to the next threshold target. For this, the power minimization

problem is executed for each group. Next, each of the available

groups, starting from the group that requires the least power,

is sequentially given a higher target. With the new targets, the

power minimization problem is again solved. This constitutes

a feasibility optimization check. If the required power satisfies

the per antenna constraints, then these precoders are kept.

Otherwise the current group is given its previous feasible

SINR target and the search proceeds to the next group.

Remark: A further improved solution can be attained when

dropping the constraint of a single step increase per group.

Herein, such a consideration is avoided for complexity reasons.

Since each of the Nt groups can take at most Nm possible

SINR values, where Nm denotes the number of MODCODs,

by allowing each group to increase more than one step,

the number of possible combinations can be as much as

(Nm)Nt . As a result, the complexity of the optimal solution

found by searching the full space of possible solutions, grows

exponentially with the number of groups. In the present work,

the high number of threshold values for fDVB−S2X prohibits

such considerations.

The summary of this algorithm is given in Alg. 2. Since it

is an iterative algorithm over the number of available groups,

convergence is guaranteed. Also, since it receives as input the

SRA solution, its complexity is dominated by the complexity

of Alg. 1, as described in Sec. III-B.

Input: H, Ptot, σ
2
i ∀i ∈ {1 . . . Nt}, {w(0)

k }Nt

k=1 =
{wSRA

k }Nt

k=1, r(0), γmin

Output: {wout
k }Nt

k=1

begin

j = 0; q = 1; {wout
k }Nt

k=1 = {w(0)
k }Nt

k=1;

Step 1: Solve r∗,(0) = Q(g(0),pant) to calculate

{wQ,(0)
k }Nt

k=1. The input SINR targets are given by

the minimum threshold SINR per group, i.e.

g(0) : γi = ⌊minm∈Gk
{SINRm}⌋t ,∀i,m ∈ Gk, k =

1, . . . , Nt.

for j = 1 . . . Nt do

Step 2: Solve r∗,(j) = Q(g(j),p) to calculate

{wQ,(j)
k }Nt

k=1. The targets of the current j-th

group are increased by one level:

γi =
⌈

minm∈Gj
{SINRm}

⌉

t
,∀i ∈ Gj ;

Order the groups in terms of increasing r∗,(j).
end

while r∗,(q) < 1 do
Step 3: For each group, in a sequence ordered by

the previous step, increase the target by one level;

Solve r∗,(q) = Q(g(q),p) with input targets from

the previous iteration: g(q) = g(q−1); q = q + 1
end

{wout
k }Nt

k=1 = {wQ,(q)
k }Nt

k=1
end

Algorithm 2: Discretized sum rate maximization.

V. USER SCHEDULING

Multibeam satellite systems typically cover vast areas by a

single satellite illuminating a large pool of users requesting ser-

vice. Therefore, a satcom system operates in a large multiuser

environment. In current satcom standards, user scheduling is

based on the traffic demand and channel quality [3]. Thus

DVB − S2 schedules relatively similar in terms of SINR users

in the same frame and a specific link layer mode (assuming

ACM) is employed to serve them. A diagram with the nec-

essary operations performed at the transmitter is illustrated in

Fig. 4 (a) for conventional systems. In aggressive resource

Fig. 4. Scheduling over satellite: (a) Conventional DVB − S2 (b) Opti-
mal joint precoding and scheduling (c) Proposed multicast-aware heuristic
scheduling.

reuse transmitters that employ precoding, scheduling policies

can be based on the principles of MU − MIMO communica-

tions. The inherent difference with conventional systems is that

the CSI for each user is now an Nt dimensional vector rather

than a single SINR value. In the parlance of MU − MIMO
communications the level of similarity between the users can

be measured in terms of orthogonality of the complex vector

channels. To maximize the similarity of two vectors, one needs

to maximize their projection, that is the dot product of the

two vectors. On the contrary, to maximize their orthogonality,

the projection needs to be minimized. As it will be shown

hereafter, by accounting the vector CSI in the scheduling

process, the multiuser gains can be exploited towards further

maximizing the system throughput performance.
Inspired by the multigroup multicast nature of the frame-

based precoding problem, a multicast-aware user scheduling

policy is developed in the present section. In the frame-

based precoding methods presented in the previous sections,

a precoding design over a randomly defined group of users

is assumed. Since all co-scheduled users are served by the

link layer mode imposed by the worst user in each group, sig-

nificant performance losses from a system design perspective

will be realized by this random user grouping. Acknowledging

that CSI is readily available at the transmit side, since it is

a requisite for the application of interference management,

the optimization of the system in any required sense can be

achieved by advanced scheduling methods. These methods,

as shown in Fig. 4 (b) and (c) are based on the exact

CSI. Imperfect CSI assumptions shall be tackled in future

extensions of this work.
The most intrinsic attribute of a joint scheduling and pre-

coding design lies in the coupled nature of the two designs.
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Since precoding drastically affects the useful signal power at

the receive side, the relation between CSI and SINR is not

straightforward. The block diagram in Fig. 4 (b), presents

an optimal joint scheduler. This module jointly performs

precoding and scheduling by feeding the output of the precoder

back to the scheduler. Based on an initial user scheduling,

a precoding matrix calculated by the methods of Sec. IV,

can be applied. Then, the resulting SINR value needs to be

fed back to the scheduler where a new schedule is then re-

calculated. Based on this schedule, a new precoding matrix

needs to be calculated and applied thus leading to a potentially

different SINR distribution. Clearly, this procedure needs to

be performed until all the possible combinations of users are

examined. Thus, the implementation complexity of such a

technique is prohibitive for the system dimensions examined

herein. A reduction of the system dimensions, on the other

hand, reduces the averaging accuracy and renders the results

inaccurate from a system design perspective. Therefore, the

optimal user scheduling policy will not be considered for the

purposes of this work.

As described in the previous paragraph, precoding is af-

fected by scheduling and vice versa. To the end of providing a

low complexity solution to this causality dilemma, a multicast-

aware approach is illustrated in Fig. 4 (c). Based on this

concept, an advanced low complexity CSI based scheduling

method that does not require knowledge of the resulting SINR,

is developed. The key step in the proposed method lies in

measuring the similarity between user channels, given the

readily available CSI. The underlying intuition is that users

scheduled in the same frame should have co-linear (i.e. similar)

channels since they need to receive the same set of symbols

(i.e. frame). On the contrary, interfering users, scheduled in

adjacent synchronous frames, should be orthogonal to mini-

mize interferences [18]. The multicast-aware user scheduling

algorithm, presented in detail in Alg. 3, is a low complexity

heuristic iterative algorithm that allocates orthogonal users

in different frames and simultaneously parallel users with

similar channels in the same frame. In more detail, this two

step algorithm operates as follows. In the first step of the

process, one user per group is allocated according to the semi-

orthogonality criteria originally proposed in [18]. This semi-

orthogonality criterion was originally derived for zero-forcing

ZF precoding, in order to find the users with the minimum

interferences. This approach is adopted for the first step of

the proposed algorithm, since the goal is to allocate non-

interfering users in different groups. Next, a novel second

step provides the multicast awareness of the herein proposed

algorithm. In Step 2, for each of the groups sequentially,

the most parallel users to the previously selected user are

scheduled in the same frame. Subsequently, the similarity of

the co-group channels is maximized.

VI. PERFORMANCE EVALUATION & APPLICATIONS

Based on the simulation model defined in [22], the perfor-

mance of a full frequency reuse, broadband multibeam satellite

that employs frame-based precoding, is compared to conven-

tional four color reuse configurations. Since by the term user,

Input: H

Output: User allocation sets I
begin

Step 1: ∀ l = 1, 2 . . . Nt allocate semi-orthogonal

users to different groups. Let I = ∅ denote the index

set of users allocated to groups,

J = {1, . . . Nu} − {I} the set of unprocessed users

and g(1) = maxk ||hk||2
while |I| < Nt do

forall m ∈ J , l = 1 . . . Nt do

g†
m = h†

m

(

INt
−∑l

q=1

g(q)g
†

(q)

||g(q)||
2
2

)

calculate

the orthogonal component (rejection) of each

unprocessed user’s channel, onto the subspace

spanned by the previously selected users.
end

Select the most orthogonal user to be allocated to

the l-th group: Gl = arg maxm ||gm||2 ,

g(l) = gGl
and update the user allocation sets

I = I ∪ {Gl}, J = J − {Gl}
end

Step 2: for each group select the most parallel users.

for l = 1 . . . Nt do

while |Gl| < ρ do

forall m ∈ J do

um = h†
m

hjh
†
j

||h†
j
||22

, j = [Gl]1; calculate the

projection of each users channel, onto the

first user of each group. Select the user

that is most parallel to the first user of

each group. πl = arg maxm{||um||2} and

update the user allocation sets

Gl = Gl ∪ {πl}, I = I ∪ {Gl},

J = J − {Gl}
end

end

end
end

Algorithm 3: Multicast-Aware User Scheduling Algorithm

TABLE II
LINK BUDGET PARAMETERS

Parameter Value

Frequency Band Ka (20 GHz)
User terminal clear sky temp, Tcs 235.3K
User Link Bandwidth, Bu 500 MHz
Output Back Off, OBO 5 dB
On board Power, Ptot 50 dBW
Roll off, α 0.20
User terminal antenna Gain, GR 40.7 dBi
Multibeam Antenna Gain, Gij Ref: [22]

a individual receive terminal is implied and the terms frame,

beam and group are effectively equivalent in the scenario under

study, the total number of users considered over the entire

coverage can be found by multiplying the users per frame with

the number of beams. The average user throughput given by

(5) is calculated to quantify the potential gains of frame-based

precoding. The rate and SINR distributions over the coverage

before and after precoding are also investigated. Moreover, the
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sensitivity of all discussed methods to an increasing number

of users per frame is presented. The simulation setup is

described in Sec. II-A. For accurate averaging, 100 users per

beam are considered uniformly distributed across the coverage

area illustrated in Fig. 3. The average user throughput Ravg ,

as given via (5), is also averaged over all transmissions

required to serve the initial pool of users. This consideration

provides a fair comparison when user scheduling methods are

considered3. The link budget parameters considered follow the

recommendations of [22] and are summarized in Tab. II. The

minimum SINR value γmin considered herein is −2.85 dB,

corresponding to the minimum value supported by the normal

frame operation of the most recent satcom standards [5].

Operation in even lower values is bound to increase the

reported gains, since a relaxation in the added availability

constraint allows for higher flexibility and thus sum-rate gains.

A. Throughput performance

The validity of the heuristic sum-rate maximization algo-

rithm is established by comparing the performance of the

herein proposed precoders with the optimal in a max−min
fair sense, solutions of [13]. The throughput versus availability

tradeoff between the two formulations will also be exhibited

in the following. In Fig. 5, the average user throughput of the

considered multibeam satellite is plotted versus an increasing

total on board available power, in [Gbps/beam]. Two users

per frame are considered, i.e. ρ = 2. Clearly, the proposed

precoding designs outperform existing approaches. The SR
problem achieves more than 30% gains over the maxmin
fair solutions of [13], [14]. These gains are reduced when

the maxSR under MRCs is considered, i.e. SRA. This is

the price paid for guaranteeing service availability over the

coverage. Finally, the maximum gains are observed when the

modulation aware maxSR precoding, i.e. SRM is employed,

which also guarantees service availability. Consequently, the

best performance is noted for SRM with more than 30% of

gains over the maxmin fair formulation of [13] and as much

as 100% gains over conventional systems in the high power

region, for 2 users per frame.

For the same simulation setting, the cumulative distribution

functions (CDFs) of the SINRs over the coverage area is

given in Fig. 6. Clearly, conventional systems achieve higher

SINRs by the means of the fractional frequency reuse. This

value is around 17 dB, in line with the results of [22]. How-

ever, this does not necessarily translate to system throughput

performance. To guarantee increased SINRs, the frequency

allocated per user is four times reduced. On the other hand,

aggressive frequency reuse reduces the average SINR values

and increases its variance, as seen in Fig. 6. This, however,

allows for more efficient resource utilization and consequently

higher throughput, as seen before in Fig. 5. Moreover, the

superiority of the maxSR techniques proposed herein, over

3Serving less users than the available for selection would drastically
improve the results but not in a fair manner from a system design perspective,
since this would imply that some users are denied service for an infinite time.

the fair solutions is also evident. Amongst these methods, the

best one is SRM as already shown.
The benefits of SRA over SR are clear in Fig. 6, where

the SINR CDF of all methods is presented. Clearly, SRA
guarantees a minimum SINR of -2.85 dB but attains SINRs

higher than 2 dB with less probability than SR. Nevertheless,

SRA can be regarded as a middle step towards advancing to

the more elaborate, SRM algorithm. Since SRM includes

the same availability constraints as SRA, identical availability

gains are noted for both methods. However, SRM exploits

the granular nature of the spectral efficiency function towards

achieving SINRs higher than SR. In Fig. 6, it is clear

that the proposed optimization manages to adapt each user’s

SINR to the throughput function, since the SINR distribution

follows the granular spectral efficiency function. Users have

SINR values in between the DVB-S2X thresholds with very

low probability. This insightful result justifies the increased

gains of SRM, even for guaranteed availability. An additional

observation from Fig. 6 is that 40% of the users operate

utilizing the first four available MODCODs.
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Fig. 5. Average user throughput versus on board available transmit power,
for 2 users per frame.
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Fig. 6. CDF of user SINR over the coverage, for 2 users per frame.

Moreover, Fig. 7 provides the rate CDFs of the conven-

tional and the maxmin fair systems and exhibits the very

low variance of their receive SINR. On the contrary, SR
achieves very high rates but also drives some users to the

unavailability region. A 5% outage probability is noted for
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this precoding scheme. This is not the case for the SRA and

SRM problems, which guarantee at least 0.3 Gbps to all

users.
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Fig. 7. Per-user throughput CDF, for 2 users per frame.

An important issue is the performance of the developed

methods with respect to an increasing number of users per

frame. As presented in Fig. 8, SRM manages to provide

more than 30% of gains for ρ = 3 users per frame. Both

the conventional and the proposed systems suffer from an

increase in the number of users per frame, since the worst

user defines the MODCOD for all users. For conventional

systems, this degradation is negligible when compared to the

frame based precoding systems. The performance degradation

when a precoding vector is matched to more than one channels

is expected. As initially proven in [11], when advancing

from unicasting to multicasting, the precoding problem be-

comes NP-hard. Added to that, when more users are grouped

together, then the chances are that one of them will be

compromised and thus constrain the performance of all other

users. This observation further justifies the results of Fig.

8. Nevertheless, in the same figure, positive gains over the

conventional systems are reported even for 6 users per frame

unlike all other state of the art techniques. These results are

given for a nominal on board available power of 50 Watts.

It should be noted that performance in the results presented

hitherto is compromised by the random user scheduling since

users with very different SINRs are co-scheduled and thus

constrained by the performance of the worst user.

B. Example

To the end of gaining insights on the maxSR optimization,

a small scale example is presented. Let us assume 2 users per

frame (i.e. ρ = 2). The individual throughput of each user

is plotted in Fig. 9 for the discussed methods. The per beam

average throughput is given in the legend of the figure for

each method respectively. In the conventional system, variance

in the rates between the groups is noted. This results to an

average user throughput equal to 1.06 Gbps/beam. By the fair

optimization of [13] 1.26 Gbps/beam of are attained, while

the minimum rates are balanced among the groups. More

importantly, the sum rate maximizing optimization reduces the

rate allocated to the users in beam 5 and increases all other
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Fig. 8. Average user throughput versus the number of users per frame.

users. Thus, the system throughput is increased to just over 1.6
Gbps/beam. Finally, the modulation aware optimization builds

upon the sum rate maximization, adapts the power allocation

to the modulation constrained performances and allocates to

each user equal or better rates. Consequently, it outperforms

all other techniques leading to Ravg = 1.72 Gbps/beam.
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Fig. 9. Per-user achievable rate in each beam, for different designs.

C. User scheduling

The present section presents results when the multicast-

aware user scheduling algorithm is employed. In Fig. 10, the

performance of the algorithm for ρ = 2 users per group

is given versus an increasing on-board power budget. In

this figure, approximately 25% of improvement the random

scheduling of Sec. VI-A is noted. Furthermore, in Fig. 11,

results for an increasing number of users per frame and for a

nominal on board available power of 50 Watts, are given. The

performance of SRM without scheduling as presented in Fig.

8, is also given for comparison. From the results of Fig. 11, it

is clear that by employing user scheduling, the degradation of

the system performance with respect to an increasing number

of users per group is significantly improved. The same initial

group of users as before is employed regardless of the frame



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TWC.2015.2424961, IEEE Transactions on Wireless Communications

12

size, excluding a small rounding error cut off4. The most

important result is that by employing multicast-aware user

scheduling methods, more than 30% of gains can be gleaned

over conventional systems for as much as 7 users per frame.

Also, even 13 users per frame can be accommodated in a

frame with positive gains over conventional frequency reuse

payload configurations. Finally, to exhibit the dependence of
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Fig. 10. Average user throughput versus on board available transmit power,
for 2 users per frame, when scheduling is employed.
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Fig. 11. Per beam throughput with respect to an increasing number of users
per frame.

the performance with respect to the available for selection user

pool, in Fig. 12, the average user throughput for three users

per frame with respect to an increasing user pool is plotted.

Almost 20% gains are noticed when doubling the user pool.

Clearly, the potential of user scheduling is even higher in larger

multiuser settings.

VII. CONCLUSIONS

In the present work, full frequency reuse configurations

enabled by frame-based linear precoding are proposed for

the throughput optimization of broadband multibeam satellite

systems. In this direction, sum rate optimal, frame-based

precoding under per-antenna power constraints is proposed. To

satisfy highly demanding in terms of availability requirements,

4For instance, when 3 users per frame are assumed, the total number of
users served is reduced to 891. This does not affect the presented results,
since they are averaged over the total number of users served.
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Fig. 12. Average throughput with respect to an increasing number of available
for selection users, for 3 users per frame, when scheduling is employed.

while maintaining high gains over conventional systems, the

optimization is extended to account for minimum rate and

modulation constraints. Finally, to glean the satellite mul-

tiuser diversity gains, user scheduling methods adapted to

the novel system design are derived. In a nutshell, the gains

from frame-based precoding combined with multicast-aware

user scheduling are more than 30% in terms of throughput

performance, for 7 users per frame, over conventional system

configurations. These gains are achieved without loss in the

outage performance of the system. Also, up to 13 users per

frame can be accommodated with throughput performance

similar to that of the conventional systems.

Future extensions of this work include a robust frame-based

precoding design to cope with CSI imperfections as well as

studies to counteract the non-linearities of the satellite channel.
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Sweden, in 1986 and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 1989.
Dr. Ottersten has held research positions at the De-
partment of Electrical Engineering, Linköping Uni-
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