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ABSTRACT 
We consider how relatively simple extensions of popular channel-
aware schedulers can be used to multicast scalable video streams 
in high speed radio access networks. To support the evaluation, 
we first describe a model of the channel distortion of scalable 
video coding and validate it using eight commonly used test 
sequences. We use the distortion model in a detailed simulation 
setup to compare the performance of six schedulers, among them 
the Max-Sum and Max-Prod schedulers, which aim to maximize 
the sum and the product of streaming utilities, respectively. We 
investigate how the traffic load, user mobility, layering structure, 
and users’ aversion of fluctuating distortion influence the 
streaming performance. Our results show that the Max-Sum 
scheduler performs better than other considered schemes in 
almost all scenarios. With the Max-Sum scheduler, the gain of 
scalable video coding compared to non-scalable coding is 
substantial, even when users do not tolerate frequent changes in 
video quality.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – wireless communication. 

General Terms 
Algorithms, Performance. 

Keywords 
Video streaming, multicast scheduling, scalable video, distortion 
model, wireless networks. 

1. INTRODUCTION 
With the proliferation of mobile TV services, video multicast is 
expected to increase its share in the traffic load of cellular 
networks [1, 2]. In future systems, a significant part of this load 
might be carried on shared channels [3] (e.g., on the Downlink 
Shared Channel of LTE) for several reasons: First, video traffic 
produced by H.264/AVC compliant coders remains bursty even 

after being smoothed over several consecutive frames. Therefore, 
a dedicated multicast transport channel might need to be 
provisioned at a level significantly higher than the average bit-
rate [4]. Multiplexing of multicast streams on a shared channel 
minimizes the over-provisioning of radio resources. Second, 
scheduling of the multiplexed streams on a time-slot basis—
which is only possible on shared channels—may exploit the 
diversity in the varying radio conditions of different users to 
maximize the spectral efficiency of the system. This, however, 
requires new and efficient multicast scheduling algorithms. 

The design and analysis of channel-aware schedulers for unicast 
have received significant interest within the research community. 
Channel-aware scheduling exploits the variations in the channel 
conditions (i.e., in the achievable throughputs) of the users to 
optimize the assignment of time-slots. If the satisfaction of each 
user is given by his utility curve, which defines the benefit of 
obtaining a time-slot to receive certain throughput, then the 
optimization problem is to maximize the overall utility under 
some fairness constraints. Maximum Carrier to Interference Ratio 
(Max-C/I) and Proportional Fair (PF) are examples of popular 
channel-aware scheduling schemes for unicast [5]. Both schemes 
are gradient-based: at each time slot, the schedulers aim to 
maximize the weighted sum of users’ achievable rates, where the 
weights are given by the gradients of users’ utility curves (Max-
C/I) or by the gradients normalized by the users’ average 
achieved throughputs (PF). For elastic applications it is often 
assumed that the utilities are given by the average achieved 
throughput and therefore the weights become equal to one (Max-
C/I) or reciprocals of the average achieved throughputs (PF). 
Numerous unicast channel-aware schedulers targeting non-
scalable video streaming have been proposed [6]-[11]. Typically, 
the users’ utilities in these schemes are designed as functions of 
the video distortion and the weights are modified to take into 
account the playout deadlines of video packets. Packets within a 
stream are prioritized based on their importance (a packet is 
considered more important if its loss would cause larger increase 
in the video distortion). Therefore, in addition to being channel 
aware, these schemes are often labeled as deadline-aware and 
content-aware.  

Unicast scheduling of scalable video streams has been recently 
addressed in [12, 13]. With scalable video coding, the video 
stream is encoded into a base layer and several enhancement 
layers. When a user has a bad radio channel and his achievable 
throughput is therefore low, he will receive the base layer only. 
When his radio conditions are favorable, he might be able to 
receive some additional enhancement layers. The main 
contribution of these works is in the proposed algorithms to 
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prioritize the video packets within a stream. Each packet is 
assigned a distortion gradient that measures its importance. 
Scalable video coders employ complex motion-compensated 
prediction algorithms, which makes it very difficult to calculate 
the expected distortion increase due to the loss of a particular 
packet. Besides, the importance of a packet depends on the 
history of losses among previously transmitted packets, which is 
not available at the base station. This makes the scheduling 
schemes based on explicit packet prioritization too complex to be 
practical.  

Scalable video coding is particularly suitable for multicast 
because it facilitates the delivery of streaming media to a set of 
receivers with heterogeneous channel capacities. When a non-
scalable video stream needs to be delivered to all users in a 
multicast group, it has to be streamed at the rate of the weakest 
user in the group. This significantly limits the utility of users with 
favorable radio conditions. With the appropriate scheduling 
algorithms, scalable coding would ensure that the users with good 
channels receive additional layers and achieve better playback 
quality. Therefore, it is important to extend the schedulers for 
scalable unicast streaming to handle multicast scenarios. 

In this paper, we address the problem of multicast scheduling of 
scalable video streams. To the best of our knowledge, this 
problem is addressed here for the first time. In our earlier wok 
[14], we studied the performance limits of multicast scheduling 
for a mix of non-scalable video streams and elastic flows. 
Multicast scheduling imposes a number of new challenges 
compared to unicast scheduling, especially in terms of fairness 
among different multicast groups and among users that belong to 
the same multicast group. On the one hand, the users’ utility 
curves depend on the video stream and its rate-distortion 
characteristics. Therefore, users in different multicast groups have 
different utility curves. On the other hand, users in the same group 
may have the same utility curve, but they have diverse radio 
conditions and therefore different achievable throughputs. We 
formulate the users’ utilities as functions of their average 
achieved throughputs for different layers. Hence, in the 
schedulers that we consider, the gradients of the utility are 
associated with layers, not with individual packets. Since the base 
station does not have to be aware of the utilities of the individual 
packets, the complexity of the schedulers is lower than that of 
content-aware schedulers. The tasks of the schedulers are to 
decide at each time-slot i) which multicast group should be 
served, ii) which layer of the stream should be transmitted, and 
iii) what the transmission rate should be. The choice of the 
transmission rate determines which subset of the users in the 
selected multicast group is able to receive the data. We compare 
the performance of six schedulers, and evaluate the effect of the 
layering structure on the scheduling performance. We explore the 
performance gains of scalable coding (compared to non-scalable 
coding) that can be achieved with the proposed scheduling 
schemes. We also consider how the gains are affected if end users 
are distortion variation averse.  

The rest of the paper is organized as follows. In Section 2 we 
describe the test sequences, the distortion model for scalable 
video coding, and users’ utilities. In Section 3 we describe 
different scheduling algorithms. We describe our evaluation 
methodology in Section 4, and present performance results in 
Section 5. Section 6 concludes the paper. 

2. SYSTEM SETUP 
We consider a single base station, where M video streams need to 
be delivered to M multicast groups with Sm (m=1,…,M) 
subscribers in each group. The videos are encoded in L layers 
(one base layer and L-1 enhancement layers) using SNR 
scalability of the SVC coder. The encoding rate for layer i is 
denoted by i and it is controlled by the quantization parameter 
for that layer. The encoding process introduces source distortion 
which comes mainly from quantization artifacts. The source 
distortion is measured in terms of the mean square error (pixel by 
pixel) between the original raw sequence and the subsequently 
encoded and decoded version of the same sequence. The source 
distortion is a function of the encoding rates 1,..., L   of the 
layers, denoted as 1( ,..., )L LD   . In addition to the source 
distortion, a video stream can be distorted by packet losses in the 
transmission system, this is called channel distortion. The channel 
distortion is a function of the loss probabilities in the layers, 
denoted as 1( ,..., )C LD p p . The total distortion at the receiver is 
the sum of the source distortion and the channel distortion. By Di 
we denote the total distortion when only layers up to and 
including layer i are received and decoded. This distortion is the 
sum of the source distortion DL and the channel distortion i LD D  
(Figure 1). The SNR scalability ensures that the total distortion at 
the output of the decoder decreases with each successfully 
received and decoded enhancement layer. 

Our focus is on scheduling algorithms that can be implemented 
with low overhead. Therefore we consider schedulers that operate 
based on the distortion functions 1( ,..., )L LD    and 

1( ,..., )C LD p p . This mode of operation requires significantly less 
side information than the content aware schedulers considered in 
the literature [13] because the scheduler only needs to care about 
which layer the individual packets belong to. In the following we 
describe the test video sequences and the distortion model of 
scalable video coding used in the paper, following which we 
describe the utility functions of the individual users. 

2.1 Test Sequences 
We encoded eight commonly used test sequences into three layers 
using the SVC reference software [15]. Hierarchical B-frames 
with GOP size 8 and intra-period 32 are used at each layer. The 
quantization parameter for the AVC-compatible base layer is set 
to 38, while the corresponding parameters for the first and the 
second enhancement layer are 32 and 26. Adaptive inter-layer 
prediction is used in the enhancement layers (i.e., the prediction is 
handled by the rate-distortion optimization framework 
implemented in the reference codec). The obtained data rates i  
and the distortions Di for the layers are summarized in Table 1. 
The parameters  and  in the last two columns of the table will 
be explained in the next sub-section. 

2.2 Distortion Model 
The model we describe in the following was originally proposed 
in [16]. We made slight modifications to the original model and 
introduced new constraints to ensure the model’s validity for the 
range of encoding parameters and video sequences used in this 
study. 

We introduce the following notation: Let pi denote the packet loss 
probability in layer i. Let i denote the probability that a packet 
from layer i has not been decoded, either because it has been lost 



or because of missing dependencies from lower layers. E.g., for a 
video stream encoded in three layers, the i’s are given by 

1 1p   

2 1 2 1 2 1 2 1 2p p p p p p         (1) 

3 2 3 2 3 1 2 3 1 2 1 3 2 3 1 2 3p p p p p p p p p p p p p p             

The model of the channel distortion distinguishes between packet 
losses in the base layer, which are seen as more severe, and 
packet losses in the enhancement layers. It is commonly assumed 
that the distortion in the base layer increases linearly with the loss 
probability p1 [15]. Results shown in Figure 2 (left) indicate that 
this assumption is valid only for low loss probabilities (p1 < 0.1). 
The loss-distortion curves were obtained by inflicting random 
uniform packet losses on the test sequences (losses in a coded 
channel can be highly uncorrelated even when the fading process 
exhibits strong correlation). Lost frames were concealed by 
duplicating the previous frame in the sequence (“frame-copy”). In 
Figure 2 (right), we show that the slope of the increase in 
distortion depends on the quantization parameter used for the base 
layer. Therefore, the slope can be expressed as a function of D1. 
We propose the following model for the channel distortion in the 
base layer 

,1 1 1CD D p ,  (2) 

where  is a parameter that is constant for a particular sequence 
and D1 is the source distortion that depends on the quantization 
parameter. Figure 2 (right) shows a good agreement between the 
model and the results for the Foreman sequence. Our experiments 

with the other sequences (not shown in the paper) confirm the 
validity of (2). 

The model assumes fine-grain scalability in the enhancement 
layers. Consequently, the channel distortion in an enhancement 
layer is proportional to the portion of the layer that has not been 
decoded. If all packets from layer i are received and decoded, the 
channel distortion is decreased by 1 iiD D  (Figure 1). If i is the 
share of packets from layer i that cannot be decoded, the channel 
distortion is decreased by 1( )(1 )ii iD D     only. Hence, the 
channel distortion due to the undecoded packets is 1( )ii iD D   . 
Now, the total channel distortion can be written as 

1 1 1 2 2 2 3 3 1( ) ( ) ( )C L L LD D D D D D D D            , (3) 

where 10 0.1   and 10 1i   . Hence, the model is valid 
for loss rates in the base layer lower than 10%; this threshold is 
selected based on measurement results shown in Figure 2 (left). 
Based on (1), the model can also be written as 

1

1 1 2 1 1

1

1
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k i

p D D p p 



 

 
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 
 

   (4) 

where 1 1 LD D D    , 10 0.1p  , and 10 1ip   . The 
difference compared to the model in [16] is that we define the 

 

Figure 1. Encoding rates and distortions for 
scalable video. 
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Figure 2. Channel distortion in the base layer encoded with qp = 38 for test sequences (left) and for the base layer of the Foreman 
sequence encoded with various quantization parameters (right). Dashed lines are obtained by fitting the parameter  in (2). 

Table 1. Parameters of the distortion model for the test sequences. 

qp=(38,32,26) 1 2 3 tot D1 D2 D3   
Crew 130.3 211.1 460.0 801.4 50.8 26.2 11.5 56.5 442.0

Foreman 88.5 167.3 339.0 594.9 48.0 23.4 10.0 83.1 614.0

Hall 45.4 104.7 236.6 386.7 34.2 18.0 8.8 21.5 150.9

Harbour 134.1 302.0 637.6 1073.7 95.9 45.1 19.8 58.0 644.1

Mobile 200.4 402.3 736.7 1339.4 124.7 52.2 21.3 146.8 1742.4

Mother 29.1 71.9 165.8 266.9 24.1 13.0 5.1 16.3 98.9 

News 60.2 120.1 238.1 418.4 36.3 17.0 6.3 33.6 232.8

Soccer 127.0 198.3 454.4 779.8 52.0 27.9 11.1 122.4 923.8
 



parameter  as a function of D1 rather than as a constant. This 
allows us to vary the thickness of the base layer in Section 5.2. 
The parameters  and  of the test sequences are shown in the last 
two columns of Table 1. The data in the table define the shapes of 
the utility curves for the test sequences, based on which the 
evaluation of different scheduling schemes is performed in 
Section 5. 

2.3 User Utility Model 
Our premise is that a scheduler should be concerned with 
minimizing the channel distortion, and should not explicitly 
consider the total distortion (source and channel distortion) of a 
sequence. Minimizing the total distortion would imply that the 
scheduler would give preference to sequences with low source 
distortion. Such behavior might be unwanted: different streaming 
applications have different quality requirements and different 
users have different perceptions of video quality. Furthermore, a 
scheduling scheme that is jointly optimized with the source and 
channel encoders in order to provide the best perceptual quality is 
likely too complex to be practical. Our approach to minimize the 
channel distortion does not imply that the scheduler is oblivious 
to the source distortion and the layering structure of the encoded 
streams. The channel distortion is in fact heavily influenced by 
these factors, and hence the problem is still the joint optimization 
of the end-to-end distortion, but in two nested loops. In the inner 
loop the scheduler minimizes the channel distortion. In the outer 
loop the encoder allocates the source distortion as a function of 
the channel distortion. Our focus in this paper is on the inner loop, 
i.e., the problem of minimizing the channel distortion—we briefly 
discuss its impact on the outer loop, i.e., the encoder optimization. 
Consequently, the objective of our schedulers is to minimize the 
channel distortion 1( ,..., )C LD p p , which is achieved when the 
following utility function is maximized 

1
1 1 1

1 2 ,

1 1 1

( ,..., )
1 , 0.9 ( 0.1)

( , ,..., )

0, 0.9 ( 0.1)

C L

L C MAX

D p p
r p

u r r r D

r p





    
  

, (5) 

where (1 )k k kr p    is the average throughput for layer i. The 
channel distortion is normalized by the maximum channel 
distortion that can be tolerated (DC,MAX) to obtain the utility 
function that takes values from the interval [0,1] for every 
sequence. Since we assume that a video stream is useless if the 
loss rate in the base layer is higher than 10%  

, 1 1(0.1, 1,..., 1) 0.1C MAX C LD D D D D     . (6) 

The gradients of the utility curve iu r   for 1,...,i L  determine 
the gains in the utility when different layers are chosen at the 
scheduler. Note that defining the utility as a function of the 
normalized channel distortion is common in the literature. For 
example, in [13] the utility gradient of a video packet is defined 
as the channel distortion caused by the loss of that packet 
normalized by the packet’s size. 

3. SCHEDULING ALGORITHMS 
We consider the following setup: Let *

,
( )

k n
R m  denote the 

transmission rate selected by the base station for layer k in group 
m at time-slot n, * ( )

n
m  denote a video layer that is transmitted if 

group m is scheduled, and *
n

J  denote a group that is scheduled for 

transmission at time-slot n. The moving average throughput for 
layer k of each user (m,s) is updated at the base station at each 
time-slot n as 

* * *
,

, , 1

*
, { } { ( ) } { ( ) ( , )}

( , ) (1 ) ( , )

( ) 1 1 1
n n k n n

k n k n

k n J m m k R m R m s

r m s r m s

R m






   

   

    
 (7) 

where   is an averaging window, *
, ( )k nR m R  is the 

transmission rate selected for layer k in group m at time n from a 
set of possible transmission rates R , and 1{} is an indicator that 
equals one if the condition in the curly brackets holds and zero 
otherwise. Hence, user (m,s) will receive the throughput *

, ( )k nR m  
for layer k only if the following three conditions are fulfilled: 

i) group m is scheduled for transmission ( *
nJ m ), 

ii) layer k is selected among the available layers ( * ( )n m ), 

iii) the achievable rate of user (m, s) is larger than the selected 
transmission rate ( *

, ( ) ( , )k n nR m R m s ).  

We assume that the base station knows the achievable rates 
Rn(m,s) of all users based on their channel quality feedbacks, 
which are readily available in modern systems (details are 
explained in Section 4.3). A user will be able to receive data with 
zero (or close to zero) loss probability if the selected transmission 
rate is lower than Rn(m,s). Otherwise, the user will not be able to 
receive the data, which will be taken into account by the base 
station when calculating his average throughput rk,n(m,s) in (7). 
His average loss probability in layer k is given by 

,1 ( , ) ( )k n kr m s m , where ( )k m  is the encoding rate of layer k 

in stream m. We also assume that the parameters that determine 
the shapes of utility curves (Table 1) are known at the base 
station. They may change between scenes and need to be updated 
accordingly. In the case of pre-coded video, the parameters can be 
estimated off-line. In our setup, they remain constant since each 
of the test sequences contains a single scene. 

In the following we consider six scheduling algorithms. The first 
two are opportunistic schemes, which we refer to as Max-Prod 
and Max-Sum. The objectives of these schemes are to maximize 
the product and the sum of users’ utilities, respectively. They can 
be seen as extensions of the well-known Proportional Fair and 
Max C/I schedulers. The second two schemes differ from the first 
two in that they select groups at round-robin. The last two 
schemes differ from the first two in that they prioritize the base 
layers of the streams when they select groups. 

3.1 Max-Prod Algorithm 
The Max-Prod scheduler is an extension of the Proportional Fair 
scheduler [5], which is proposed for HSDPA and LTE. The Max-
Prod scheduler is obtained when the product of utilities 

1 1
( , )mM S

m s
u m s

    is maximized, where M is the number of 

multicast groups (video streams), Sm is the number of subscribers 
in group m, and u(m,s) is the utility of user s in group m, which 
depends on his achieved throughputs rk(m, s) for layers k=1,…, L 
of stream m. This is equivalent to maximizing the objective 
function: 

1 1

log( ( , ))
mSM

m s

u m s
 

   .  (8) 



We assume that only users whose utilities are larger than zero 

1( 0.1)p  are considered in the objective function (8). Otherwise, 
we say that the user is in outage and it is excluded from the 
objective. The outage probability is one of the performance 
measures that we use to compare different scheduling schemes in 
Section 5. 

The implementation of the Max-Prod scheduler that we consider 
here is gradient-based: at each time-slot n, the scheduler aims to 
maximize ( ) ( 1)n n   . Hence, we are interested in finding 
what the next best step is, regardless of the scheduling decisions 
made in the past. The presented algorithm is a heuristic—its 
asymptotic optimality for 0   can be studied, but this issue is 
outside of the scope of this paper. In [17, 18], the author shows 
that similar gradient-based schemes for unicast may be 
asymptotically optimal even if the utility function is not strictly 
concave, which is the case in (5). 

Let ( ) ( , )k
nu m s  denote the derivative (slope) of the utility function 

with respect to the received throughput for layer k : 

,

( )

( , )
( , ) ( , )

k k n

k
n k r r m s

u m s u m s r


   . The gain in the objective 
function can be written as 

( )

,
1 1 1

( , )
( ) ( 1) ( , )

( , )

mS kM L
n

k n
m s k n

u m s
n n r m s

u m s  

       

where 

* * *
,

*
, , ,{ } { ( ) } { ( ) ( , )}

( , ) ( ( ) 1 1 1 ( , ))
n n k n n

k n k n k nJ m m k R m R m s
r m s R m r m s 

   
      .  

Following the same reasoning as in [14], the gain is maximized in 
the following three steps.  

In the first step, the optimal transmission rates for each layer of 
each group are selected so as to maximize the sum of the relative 
gains in the utilities of the users. The transmission rate for each 
group m and each layer k at time-slot n is selected from the set of 
available rates R  as 

,

( )
*
, { ( , )}

1

( , )
( ) arg max 1

( , )

m

k n

S k
n

k n R R m s
R s n

u s m
R m R

u s m 
 

     
  


R
. (9) 

In the second step, the layers that maximize the gain in each 
group are determined based on the selected transmission rates. 
The video layer for each group m at time-slot n is selected as 

*
, ,

( )
* *

, { ( ) ( , )}
1 1

( , )
( ) arg max ( ) 1

( , )

m

k n k n

S k
n

n k n R m R m s
k L s n

u m s
m R m

u m s 
  

      
  
 . (10) 

Finally, in the third step, a group that contributes the largest gain 
is chosen for transmission. The group is selected for transmission 
at time-slot n as  

*

* *
* ,( ),

( ( ))
* *

( ), { ( ) ( , )}
1 1

( , )
arg max ( ) 1

( , )

m n

n k nm nn

S m
n

n m n R m R m s
m M s n

u m s
J R m

u m s 



 
  

    
  
 . (11) 

The algorithm performs iterative searches in (9), (10), and (11) to 
determine, respectively, the transmission rate, layer, and group to 
be scheduled. The search space and, therefore, computational 
complexity of the algorithm increases linearly with the number of 
possible transmission rates, multicast groups, and layers. In 
practical scenarios, however, these numbers remain modest. 

3.2 Max-Sum Algorithm 
The objective function of the Max-Sum scheduler is given by  

1 1

max ( , )
mSM

m s

u m s
 

   .  (12) 

A gradient-based Max-Sum algorithm is obtained when the slope 
of the utility function in (9)-(11) is not normalized by the utility 

( , )nu m s .  

3.3 Max-Prod Round-Robin (Max-Prod-RR) 
Algorithm 

The Max-Prod-RR is based on the following criteria: 

 A transmission rate for the base layer is selected based on the 
achievable rate of the weakest user in the multicast group. 
This ensures that each user will be able to receive the base 
layer whenever it is scheduled. Transmission rates for the 
enhancement layers are selected so as to maximize the gain 
in objective (8), as in the case of the Max-Prod scheduler. 

 A video layer is selected based on the received throughput in 
the base layer: The base layer is chosen until the received 
throughput of all not-in-outage users in the multicast group 
becomes equal to the encoded rate of the base layer (then we 
say that the base layer is “saturated”). When the base layers 
of all users are saturated, one of the enhancement layers is 
selected so as to maximize the gain in objective (8), as in the 
case of the Max-Prod scheduler. 

 A multicast group is selected for transmission based on the 
round-robin principle.  

Table 2. Summary of the multicast scheduling algorithms considered in this work. 

Max-Prod Max-Prod-RR Max-Prod-BLP Max-Sum Max-Sum-RR Max-Sum-BLP 

What 
rate? 

Max-Prod 

 

BL: Weakest user 

ELs: Max-Prod 

Max-Prod 

 

Max-Sum 

 

BL: Weakest user 

ELs: Max-Sum 

Max-Sum 

 

Which 
layer? 

Max-Prod 
BL until all non-outage users are 

saturated, then Max-Prod  
Max-Sum 

BL until all non-outage users are 
saturated, then Max-Sum 

Which 
group? 

 

Max-Prod 

 

 

Round-Robin 

 

Groups with 
unsaturated BLs 
served round-

robin; if no such, 
Max-Prod 

 

Max-Sum 

 

 

Round-Robin 

 

Groups with 
unsaturated BLs 
served round-

robin; if no such, 
Max-Sum 



3.4 Max-Sum Round-Robin (Max-Sum-RR) 
Algorithm 

The Max-Sum-RR differs from the Max-Prod-RR in that the 
transmission rates for the enhancement layers are selected based 
on the Max-Sum instead of the Max-Prod criterion. The same 
holds for the selection of the enhancement layer when the base 
layers of all users are saturated. 

3.5 Max-Prod with Base Layer Priority (Max-
Prod-BLP) Algorithm 

Max-Prod-BLP is based on the following criteria: 

 The transmission rates for the enhancement layers are 
selected so as to maximize the gain in objective (8), as in the 
case of the Max-Prod scheduler. 

 A video layer is selected in the same way as for Max-Prod-
RR. 

 Multicast groups with users whose base layer is not yet 
saturated are served based on the round-robin principle. 
When the base layer of all users is saturated, a multicast 
group is selected so as to maximize the gain in objective (8), 
as in the case of the Max-Prod scheduler. 

3.6 Max-Sum with Base Layer Priority (Max-
Sum-BLP) Algorithm 

The Max-Sum-BLP differs from the Max-Prod-BLP scheduler in 
that transmission rates for video layers are selected based on the 
Max-Sum instead of the Max-Prod criterion. The same holds for 
the selection of the enhancement layer and the multicast group 
when the base layer of all users is saturated. 

4. EVALUATION METHODOLOGY 
We used extensive simulations to evaluate the performance of the 
schedulers under diverse conditions. In the following we describe 
the simulation setup, the mobility and the channel models used in 
the simulations, and our performance metrics.  

4.1 Simulation Setup 
The eight video sequences described in Section 2.1 are delivered 
to a number of multicast groups in a single cell. Multiple groups 
may be subscribed to the same video sequence, yet they are 
considered to be distinct multicast groups, which receive separate 
streams of the same sequence. This enables us to consider more 
than eight multicast groups. Each sequence is streamed to equally 
many groups, hence the total number of multicast groups is 
always a multiple of eight. The number of users in each group is 
randomly chosen to be between one and ten. The traffic load in 
the cell is given by the sum of the total rates (tot in Table 1) of all 
streams. The load is changed by varying the number of multicast 
groups; it ranges from 5.6 Mb/s for 8 groups up to 34 Mb/s for 48 
groups. 

The achieved throughput for the base layer of each user is 
initialized to 1 1r  , where 1 is the bit rate of the base layer for 

the stream received by the user. Hence, the base layer for each 
user is assumed to be saturated initially. The video streams are 
scheduled according to one of the schemes described in Section 3. 

We calculate the achieved throughputs (r1, r2, and r3) for each 
user in every time-slot as described in (7). Based on the average 
throughput we calculate the distortion (4) and the utility (5). If the 
utility of a user drops to zero (user’s channel distortion increases 
to DC,MAX) due to the low achieved throughputs, the user is 
considered to be in outage. The outage might be temporary: if the 
user, for instance, moves closer to the base station, it might be 
able to achieve higher throughputs. Therefore, the scheduler tries 
to “re-connect” to the user every 30 seconds by resetting his base 
layer throughput r1 to the initial value. If a user was in outage 
during more than 50% of the simulated time, we say that this user 
was in outage during the simulation run. The results presented are 
obtained by averaging over 30 simulation runs. The simulated 
time in each run (after a warm-up period of 1 minute) was 10 
minutes (300,000 time-slots). 

4.2 Mobility Scenarios 
The performance of channel-aware schedulers depends on the rate 
and the range of channel fluctuations, which is, to a large extent, 
determined by the nodes’ mobility: their speeds and distances 
from the base station. Therefore, capturing the mobility of users is 
an important part of our study. We focus on urban scenarios and 
assume that nodes move on a topology that represents 10001000 
m2 of Chicago’s downtown area. We consider three different 
mobility scenarios.  

Manhattan: In this scenario nodes are restricted to travel along a 
grid of streets and intersections at a constant speed of 1 m/s. At 
street intersections, nodes proceed straight ahead (if possible) 
with probability 0.8, or turn to one of the adjoining streets with 
equal probabilities.  

Static: In this scenario nodes are assumed to be static. Their 
channel conditions and achievable rates are constant over time 
and are drawn from the steady state distribution obtained for the 
Manhattan mobility scenario. This scenario is used as a base line 
for comparison. 

UDel: In this scenario we distinguish between pedestrian (65%) 
and vehicular (35%) nodes. The nodes move on a map that 
represents a part of Chicago’s downtown area. Pedestrians move 
according to the UDel mobility model [19, 20], which was 
developed based on empirical data on human mobility. They 
initially appear at random residential locations, and move 
according to their activity models. The activity model can be that 
of a working or non-working person (e.g., a tourist). The working 
pedestrians commute between their homes and offices, and 
possibly between offices and other locations during lunch breaks. 
Their activity model is based on empirical data from the US 
department of labor statistics. A non-working person visits one or 
more random locations before returning home. In our simulations 
80% of the pedestrian nodes are working and 20% are non-
working persons. More details on the UDel mobility models are 
provided in [19, 20]. The walking speeds of pedestrian nodes are 
drawn from a uniform distribution in [0.7, 1.8] m/s. However, for 
most of the time pedestrian nodes are stationary (sitting in the 
office or at home). The vehicular nodes represent persons that are 
using their mobile devices while they are riding public 
transportation, for example. These nodes are restricted to move on 
a grid of streets, as described in the first mobility scenario. Their 
desired speeds are uniformly distributed in the interval [5, 20] 
m/s. They might have to slow down due to platooning (car-
following model) and to stop at traffic lights. 



4.3 Channel Model 
The channel model includes fast fading, shadowing, and 
propagation loss models. The fast fading model is 3GPP Typical 
Urban where the maximum Doppler shift is calculated based on 
the node’s speed obtained from the mobility model. The 
shadowing model assumes the correlation function described in 
[21], where the correlation between fading samples depends on a 
node’s speed as corV TTI da e  , where 40mcord   is the de-
correlation distance. The standard deviation of shadowing is set to 
6 dB, which is within the range of typical values for medium-
sized cells. Propagation loss is described by the Okamura-Hata 
reference model with the distance loss exponent 3.52. 

We assume that the signal-to-noise ratio (SNR) is estimated for 
each node and reported back to the base station. The estimation is 
perfect and the reporting delay is negligible. Therefore, the base 
station has the perfect channel state information based on which it 
may determine the achievable data rate of each node. This is a 
reasonable assumption at low speeds. The achievable rate is the 
rate at which the expected block error probability Pb is lower than 
certain value (10-6 in our setup). The set of possible data rates—
which is determined by the set of possible modulation and 
channel coding schemes—is given in the fourth column of Table 
3 (values are taken from the HSDPA specification). Threshold 
SNRs required to receive data at the respective data rates with Pb 

≤ 10-6 are provided in the fifth column. They are calculated based 
on an empirical model described in [13]: 

0.7  0.5( 3 log( )) log( 1) 1.03 17.3bSNR CQI P CQI       , 

where CQI is the Channel Quality Index from Table 3. Nodes 
whose SNRs are above the threshold required for the selected 
transmission rate will receive the transmitted data with probability 
1 − Pb ≈ 1. Nodes whose SNRs are below the threshold will not 
be able to receive the transmitted data—their achievable rates are 
lower than the selected transmission rate. The transmission power 
at the base station is constant over time (no power control). It is 
selected so that the probability that the SNR of a node is lower 
than the lowest of the SNR thresholds is below 1%. The 
cumulative distribution functions of the SNRs and the achievable 
rates of 600 nodes aggregated over a one-hour period are shown 
in Figure 3. 

4.4 Performance Metrics 
We use seven metrics to measure the different aspects of the 
performance of the streaming system: 

 The outage probability: measures the proportion of users 
whose streaming performance is considered to be 
unacceptable due to the high channel distortion. 

The following three utility-based metrics are used to measure the 
efficiency of the scheduling algorithms: 

 The average utility of users that were not in outage: 
measures the channel distortion experienced by users whose 
streaming performance is considered to be acceptable. 

 The average utility of all users: measures the trade-off 
between the outage probability and the utility of the users 
that are not in outage. A scheduler may, for instance, 
maximize the utilities of a small number of users and starve 
the rest, which will be reflected in the overall average. 

 The coefficient of variation (CoV) of utilities of users that 
were not in outage: measures the variability of the channel 
distortion within a stream. 

The following three PSNR-based metrics are defined in a similar 
way to measure the end-user performance, e.g., when comparing 
different encoding schemes: 

 The average PSNR of users that were not in outage 

 The average PSNR of all users 

 The coefficient of variation (CoV) of PSNRs of users that 
were not in outage 

5. PERFORMANCE EVALUATION 
In this section we show simulation results for the six scheduling 
algorithms under various traffic loads and mobility models.  

5.1 Scheduler Performance 
We start the evaluation with the comparison of the six scheduling 
algorithms in terms of achieved utilities. The results for the first 
four performance measures are shown in the four rows of Figure 
4. The first column of the figure shows the results for the static 
scenario. The Max-Prod scheduler provides very good 
performance at low traffic loads: the outage probability is 
negligible and the average utility tops the rest of the schemes 
together with the Max-Sum. However, as the load increases, the 
performance of the Max-Prod scheme in terms of the average 
utility and its variance worsens abruptly. Max-Prod gives 
preference to the users/groups with low utilities, which is obvious 
from (9)-(11). As the load increases, this approach leads to low 

Table 3. Transmission rates in HSDPA. 

CQI k/n Mod. R (kb/s) SNR (dB) 

1 0.17 1028 -12.63 

2 0.21 1298 -12.23 

... ... ... ... 

14 0.68 4843 -1.65 

15 0.70 

Q
P

S
K

 

4979 -0.68 

16 0.37 5348 0.29 

17 0.44 6284 1.26 

... ... ... ... 

29 0.84 12111 13.14 

30 0.89 
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Figure 3. Aggregated cumulative distribution functions of SNR’s (left) and 
achievable rates (right). The static scenario assumes the same distributions as 

obtained for the Manhattan mobility. 



average utilities for everyone, although the outage probability is 
relatively well controlled. The high coefficient of variation, which 
reflects the high variability in the channel distortion, is due to the 
variation in base-layer throughputs, as the scheduler struggles to 
keep the utilities of as many as possible users above zero.  

The Max-Sum scheduler, on the other hand, provides consistently 
good performance (in terms of all metrics) as the load increases. It 
is interesting to notice that Max-Sum also provides the lowest 
outage probability. Max-Sum-types of algorithms have been often 
criticized for being extremely unfair when the utility is a linear 
function of the throughput. In that case, the sum of the utilities 

can be maximized by serving only a small number of users with 
favorable conditions and starving the rest. In the case of video 
streaming, the utility is a concave function of the received 
throughput and it is limited from above due to the finite encoding 
rate, which alleviates the fairness problem of the Max-Sum 
scheduler to a large extent.  

The two round-robin schemes (Max-Prod-RR and Max-Sum-RR) 
aim to share the time-slots equally among the groups that have at 
least one user that is currently not in outage. This leads to a very 
high outage probability as the load (number of groups) increases 
because the “fair share” of time-slots becomes insufficient for 
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Figure 4. Scheduling performance for different mobility scenarios: static (left), UDel (middle), and Manhattan (right). 



many. Although they are fair in terms of resources, the round-
robin schemes are unfair in terms of channel distortion. For 
example, the “fair share” of time-slots could be sufficient to 
receive all three layers of a low bit-rate sequence, such as Mother, 
but not sufficient to receive the base layer of a high bit-rate 
sequence, such as Mobile. Giving priority to the base layer 
alleviates this problem: the two base layer priority (BLP) 
schedulers performed quite well, yet slightly worse than the Max-
Sum.  

The results for the UDel and the Manhattan mobility scenarios, 
shown in the middle and the right column of Figure 4, do not 
reveal any qualitative differences in the performances compared 
to the static scenario. All considered schemes, to a larger or lesser 
extent, attempt to exploit the variations in channel quality. 
Therefore, we would expect that the performance of the schemes 
improves with the level of user mobility (the static, followed by 
the UDel, and finally the Manhattan scenario). Our results 
confirm this assumption with one exception, the Max-Prod 
scheduler, which performs best in the static scenario, when the 
channel qualities are constant over time. This makes it easier for 
the Max-Prod scheduler to “identify” the users that should not be 
served when the load increases (to increase the product of utilities 
for the remaining users). Therefore, the gain in the utility is 
achieved at the expense of slightly higher outage probability. 

5.2 Effects of the Layering Structure 
In this section, we study how different layering structures fare in 
terms of distortion for the six scheduling algorithms. The purpose 
of this study is twofold: to show how the performance of the 
algorithms changes when the distribution of bit rates between the 
base and the enhancement layers varies and to provide an 
intuition on how the layering structure should be chosen to 
minimize the total distortion.  

5.2.1 Extension of the Distortion Model 
We consider the case where the total bit rate budget of the 
encoded video tot  is fixed, but the “thickness” of the base layer 

1 tot    varies ( 1   represents a non-scalable single-layer 
video) (Figure 5). In the following we describe how the 
distortions Di in the channel distortion model (4) change with  . 
A commonly accepted model for the source distortion of a non-
scalable video is a decaying exponential function of the encoding 
rate [23]. This model also applies to the AVC-compatible base 
layer of a scalable video. Based on it, D1 can be written as 

1 1 1( )D   ,  (13) 

where  and  are sequence dependent parameters. 

It is well known that single-layer video coding results in lower 
source distortion than scalable video coding for the same total bit-
rate. Therefore, it is reasonable to assume that the source 
distortion 1( ,..., )L LD   , decreases as the thickness of the base 
layer increases. 1( ,..., )L LD    is minimized when 1 tot   (i.e. 

1  ), hence 

, ( ) ( ,0,...,0)L MIN Ltot totD D  .  (14) 

We assume that DL increases linearly with slope  as the thickness 
of the base layer decreases 

1 , 1

,

( ,..., ) ( ) ( )

( ) (1 ).

L L L MIN

L MIN

tot tot

tot tot

D D

D

     
   

    
    

 (15) 

The distortion penalty for not being able to decode any of the 
enhancement layers is 1LD D , while the penalty for the 
enhancement layer i is 1i iD D  . If we keep the distribution of 

1tot   among the enhancement layers constant when 1  varies, 
(i.e., 1( ) const.i tot    ) it is reasonable to assume that the 
following holds 

1

1

const.
L

i iD D

D D
 




,  2 i L  .  (16) 

Hence, we assume that the relative penalties for the enhancement 
layers remain constant when   changes. 

We encoded the test sequences using different bit rates for the 
base layer to determine the parameters (, , and ) of the model 
(13)-(16). The total bit rate tot and the distribution of the bit-rates 
among the enhancement layers are assumed to be the same as 
shown in Table 1. Results are summarized in Table 4. We do not 
consider extremely low values of   because the base layer has to 
contain essential information such as headers, motion vectors, and 
low-frequency DCT coefficients. Therefore, we restrict the 
validity of the model to 0.1  . The model allows us to calculate 
the distortions Di in (4) when the thickness of the base layer   
varies. 

5.2.2 Performance Results 
We performed simulations to evaluate how users’ utilities change 
with the thickness of the base layer  . The traffic load in the cell 

Figure 5. Illustration of how the data rates i and the distortions Di change with the 
thickness of the base layer η. 

Table 4. Parameters of the distortion model 
(13)-(16) for the test sequences. 

 tot D3,MIN    
Crew 801.4 8.70 0.0042 5784.3 -0.972

Foreman 594.9 6.33 0.0073 5644.2 -1.063

Hall 386.7 6.73 0.0060 619.2 -0.759

Harbour 1073.7 15.76 0.0043 6722.4 -0.868

Mobile 1339.4 14.65 0.0058 49052.5 -1.127

Mother 266.9 2.75 0.0097 655.7 -0.980

News 418.4 2.90 0.0094 7568.9 -1.303

Soccer 779.8 7.34 0.0057 9699.6 -1.079

 



is 16.8 Mb/s (24 multicast groups in total, 3 groups per sequence) 
and it does not change with  . Results for the UDel mobility 
scenario are shown in Figure 6. Note that the average utility 
measures the channel distortion only and, therefore, any increase 
in coding efficiency is not reflected in it. The average utility for 
users that were not in outage, shown in Figure 6 (left), increases 
with the thickness of the base layer, except for very small values 
of  . However, the average calculated over all users, shown in 
Figure 6 (right) decreases due to the increasing number of users 
that are in outage. To explain this behavior we plotted the utility 
curves for 0.1  , 0.2  , and 0.5   for some of the test 
sequences (Figure 8). Not all sequences are shown to make the 
figures as legible as possible. The utility curves, as defined in (5), 
are functions of the achieved throughputs in the base layer (r1) 
and in the enhancement layers (r2 and r3). To be able to plot them, 
we assume that the layers are served sequentially (the base layer, 
the first enhancement, and finally the second enhancement layer). 
Then we can plot the utilities as functions of the total achieved 
throughput 1 2 3r r r r   . The utilities are piecewise linear 
functions with three slopes, which correspond to the three layers. 
The tips of the arrows in Figure 7 indicate the average utility 
achieved by the user receiving a particular sequence. As shown in 
Figure 7 (left), for 0.1   users are able to receive (on average) 
the base layer and some parts of the enhancement layers. 
Exceptions are the users subscribed to the high bit-rate Mobile 
video, which receive the base layer only. When the base layer 
thickness increases to 0.2  , the enhancement layers have to be 
dropped to accommodate for bit rates in the base layers, as shown 
in Figure 7 (middle). Also, some of the users, mostly those 
subscribed to the high bit-rate videos Mobile and Harbour, will 
not be able to receive the streams: the outage probability increases 
slightly. Although the utility of receiving the base layer increases 

with its thickness, this is not enough to compensate for the loss of 
the enhancement layers, and therefore we see a dip in the average 
utility of served users for 0.2   (Figure 6, left). Once all the 
enhancement layers are dropped, any further increase in the rate 
of the base layers has to be accommodated by dropping users (to 
be able to transmit at higher rates). Therefore, we see a sharp 
increase in outage probability for 0.2  . The utilities of the 
users that are able to receive the thicker base layers increases, as 
indicated in Figures 6 (left) and 7 (right). However, the overall 
utility decreases due to the high outage probability (Figure 6, 
right). By far the most graceful decrease in the utility is achieved 
by the Max-Sum scheduler. The Max-Prod scheduler performed 
the worst in this respect, which is consistent with our previous 
observations. The results presented in this section show that from 
the common-good perspective it is preferred that all content 
providers encode the streams with “lean” base layers.  

5.3 Scalable vs. Non-Scalable Coding 
In this section we evaluate the end-to-end performance for 
scalable and non-scalable video streams. We measure the 
performance in terms of the PSNR, which reflects both the source 
distortion (the coding efficiency) and the channel distortion (the 
performance of the scheduler). We consider three scenarios: In the 
first scenario, the scalable (multi-layer) streams described in 
Section 2.1 are transmitted to the users. In the second scenario, 
non-scalable (single-layer) streams encoded at the same total rate 
as their scalable counterparts (tot in Table 1) are transmitted. In 
the third scenario, only the base-layers of the scalable streams are 
transmitted (the enhancement layers are dropped at the base 
station). The third scenario helps us to evaluate how much of the 
PSNR gain can be attributed to the enhancement layers. Results 
for the Max-Sum scheduler are shown in Figure 8. 
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Figure 6. Performances of the scheduling algorithms vs. the thickness of the base layer (UDel mobility). 
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Figure 7. Utilities for different video sequences and η=0.1 (left), η=0.2 (middle), and η=0.5 (right). The tips of the arrows indicate the 
average utility achieved by users subscribed to a particular sequence under the Max-Sum scheduling policy.  



The results indicate that the PSNR of the scalable streams is on 
average 4 dB (low load) and up to 8 dB (high load) lower than the 
PSNR of the non-scalable streams. However, the better quality of 
the non-scalable streams is achieved at the price of very high 
outage probabilities. The average PSNR calculated over all users 
is shown in Figure 8 (right). The figure shows a significant gain 
for the scalable streams, which increases with the traffic load. The 
gain is mainly due to the high outage probability among the non-
scalable streams. It starts to decrease at very high loads when 
scalable streams start to be dropped as well. The results for the 
base-layer indicate that, at low loads, up to 4 dB of the gain can 
be attributed to the enhancement layers. At high loads, the 
enhancement layers have to be dropped, so only the base layer of 
the scalable streams is received anyway.  

5.4 Fluctuations in Video Quality 
We are not aware of a simple and good model of the impact of the 
variations of the distortion on the user perceived quality, but it is 
generally accepted that the rapid fluctuation of the distortion is 
annoying. Hence, one of the concerns with streaming scalable 
video is the fluctuations in video quality it introduces if the 
number of decoded enhancement layers changes often. The 
fluctuations can be reduced by dropping some of the enhancement 
packets at the decoder, which increases the distortion. In this 
section our goal is to explore the trade-off between the variance of 
the PSNR and average PSNR due to scalable coding.  

The enhancement layers typically have several “extraction points” 
that decoders may use to determine which frames should be 
decoded and which should be dropped. For example, the 
enhancement layers of the sequences considered in this paper 
contain four temporal layers (T0 contains I and P frames, while B 
frames are hierarchically organized in T1–T3) and each temporal 
layer is a potential extraction point. The problem of minimizing 
the fluctuations in quality while preserving the most of the 
enhancement gain is the problem of choosing the optimal 

extraction point. We consider a simple trimming scheme to 
decrease the fluctuations at the decoder. Clients monitor the 
packet loss rates in the enhancement layers and every 60 seconds 
they make decisions which enhancement layers to decode: If the 
loss rate in an enhancement layer was above 10% during the 
previous 60-seconds interval, all packets from that layer are 
discarded in the subsequent 60-seconds interval. Hence, no 
extraction points within the enhancement layers are used. In a 
worst case scenario the enhancement layers will be added and 
dropped every 60 seconds, which we assume to be acceptable 
annoyance for a typical viewer. This simple scheme provides a 
worst-case estimate of the loss in the average PSNR. 

We show in Table 5 the average of the PSNRs and of the 
coefficient of variation (CoV) of the PSNRs calculated over 60-
seconds intervals. The table contains the results for three 
scenarios: SVC without trimming, SVC with trimming and the 
case when only the base layer is decoded at the clients. The Max-
Sum scheduler is employed at the base station. We considered 
different traffic loads and mobility scenarios. The results for the 
original streams indicate that the fluctuations in the video quality 
can be non-negligible: For the Manhattan mobility and low traffic 
load the CoV was 0.02 with the average PSNR of 35.66 dB, 
which correspond to the standard deviation of 0.7 dB over 60 
second intervals. The CoV might be significantly higher at 
vehicular speeds. The simple trimming scheme reduces the CoV 
close to that of decoding the base layer only, while it keeps most 
of the gains of the enhancement layers in terms of mean PSNR. 
Based on this result we expect that a more sophisticated scheme 
would be able to efficiently control the fluctuations with a 
minimal loss in mean PSNR. Note that, at high traffic loads most 
of the enhancement packets are dropped at the scheduler and the 
fluctuations in PSNR are mostly due to the losses in the base 
layer. The fluctuations in the base layer are not addressed here 
and can not be eliminated by the trimming scheme. 
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Figure 8. PSNRs and outage probabilities of different encoding schemes for Max-Sum scheduling and UDel mobility. 

Table 5. PSNR and the CoV of PSNR for the Max-Sum scheduler and the “trimming” scheme. 

Static UDel Manhattan                     Mobility 

      Traffic load CoV (103) PSNR CoV (103) PSNR CoV (103) PSNR 

original 7.25 36.07 16.86 35.94 20.67 35.66 

trimmed 0.17 34.71 3.94 34.20 4.62 33.67 Low (5.6 Mb/s) 

base layer 0.10 31.05 1.67 31.03 2.01 31.04 

original 1.12 31.24 7.44 31.18 12.11 31.19 

trimmed 0.47 31.19 6.42 31.13 10.01 31.06 High (28 Mb/s) 

base layer 0.44 31.16 6.36 31.09 9.93 31.04 
 



6. CONCLUSIONS 
This work shows how low-complexity multicast scheduling can 
be combined with scalable video coding to improve the streaming 
performance in high speed mobile wireless networks. Our results 
indicate that the Max-Sum scheduler may provide good 
performance both in terms of the channel distortion and the 
fairness measured by the outage probability. We showed that thin 
base layers fare best in terms of system performance and outage 
probability. We quantified the benefits of scalable streaming 
compared to non-scalable streaming, and showed that the gains 
can be up to several dB under light load conditions. The gains are 
significant even if users employ a simple trimming scheme to 
decrease the quality fluctuations due to layering. We believe that 
the performance gains of scalable video multicast justify the 
additional scheduling complexity. 
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