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Abstract—We study the contribution of network coding (NC) of the multicast capacity of wireless ad hoc networks is an
in improving the multicast capacity of random wireless ad h@  important research topic in its own right.
networks. We consider a network with n nodes distributed  geyerg works [8]-[15] have studied the multicast and
uniformly in a unit square, with each node acting as a source . . .
for independent information to be sent to a multicast group broa}dcast capacity of wireless networks under .converitlona
consisting of m randomly chosen destinations. We show that in routing, and these results show that broadcasting and mul-
the presence of NC, the per-session ca3acity under the pratol ticasting significantly alter the throughput order of wass

whenm = O(—~—) hetworks. In light of these findings, the importance of mul-

model has a tight bound of® ( L Toatn)

v/ mnlog(n)

and ©(%) when m = Q(2-). Furthermore, we consider the

log(n)

physical model, and show that the per-session capacity has a

ticasting and broadcasting, and recent practical results o
NC, it is natural to inquire whether the introduction of NC

. can improve the throughput order capacity of multi-source
tight bound of © (ﬁ) when m = O( ) and © () multicagting. In this Wogk,pwe undertakpe thg characterirat
when m = Q %) Prior work has shown that these same of the multicast and broadcast throughput order of wireless
order bounds are achievable on the basis of pure routing, with  ad-hoc networks in presence of network coding, which has
utilizes only traditional store and forward methods. been an open problem for the past 10 years.

We consider a network consisting af nodes distributed
randomly in the network space, with each node acting as a
The concept of network coding was first introduced bynulticast source of a group of. randomly chosen nodes in

Yeung et. al. [1] and subsequently generalized by Ahlswéde the network.

al. [2] for a single source multicast in arbitrary directedghs.  The first contribution of this paper is to show that, under the
Since then, the interest in network coding has increasgebtocol model, the per-session multicast capacity of oamd
rapidly. A large number of studies have investigated thityiti wireless ad hoc network in the presence of arbitrary NC
of network coding (NC) for wireless networks, and widely tight bound 0 ( 1 ) whenm = O(2)

(log(n))3

I. INTRODUCTION

cited experiments [3], [4] have been reported in which NC has \/mnlog(n)
been used successfully in combination with other mechaisand © (1) whenm = Q(%). The second contribution of

to attain large throughput gains compared to approachesibathis paper is to show that, under the physical model, the per-
on conventional protocol stacks. These results have led/ma@ssion multicast capacity of random wireless ad hoc né&twor

to believe that a combination of NC with wireless broadeasti with arbitrary NC has a tight bound @ (; whenm =
. . pe . . vmn

can lead to significant improvements in the order througbput " 46 (1) wh _qf_n

wireless networks. Understandably, there is significatgrast (log(n)z)' and® (5) whenm = log(n)? )°

in identifying the true impact of NC on the throughput order It has already been established in the literature that the
of wireless networks. However, the exact characterizatibn @P0ve bounds are achievable on the basis of traditional
network capacity with NC in the presence of multiple acces§ore-and-forward routing methods. Consequently, oulyars
interference is a very hard problem, even for simple netwprlgemonstrates that t.he t.hroughout gain due to NC for mutlicas
and limited results have been reported to date on the subjdtg and broadcasting is bounded by a constant factor!

Recent work [5]-[7] has shown that the throughput gain The remainder of this paper is organ_lzed as follqws. Sec-
due to the use of NC in a wireless network is bounded bytn Il surveys relevant prior work. Section ]II describdet _
constant when the traffic in the network consists of multipld&twork models and other concepts used in proofs. Section
unicast sessions. However, the motivation for the origvak |V deduces the capacity results under the protocol model,
by Ahlswede et. al [2] was improving network performance foRnd Section V' addresses the physical model. Section VI
multicasting, not unicasting. Furthermore, many comnadrci |, o _ _

Arbitrary NC implies that an transmitted symbol can be aniteaty

and .defe_nse apphcatlons, such as_ video qonferenc'nglreeq'ﬁmction (and not necessarily a linear function) of all thembols recieved
multicasting of large amounts of information, and the studynd generated at a node



summarizes our conclusions. tight and improved bounds can be obtained by employing more
sophisticated edge-cuts. Studies such as [21], [23], [24]at
readily capture the geometric constraints of multi-hop eom
Gupta and Kumar's original work focused on the unicashunication in wireless ad-hoc networks. Neverthelessiethe
capacity of wireless networks [16], and many subsequemdve been prior works on determining the unicast throughput
contributions have been made on the capacity of wireleseder in wireless networks under NC. Liu et. al. [5], [6] have
networks subject to unicast traffic. However, the focus @ thshown that the NC for unicast traffic in a random network
paper is on the capacity of wireless networks under broadcése., a network in which the nodes are distributed randomly
and multicast traffic. in an Euclidean space and the sources and destinationssare al
Tavli [8] was the first to show tha® (n*l) is a bound placed randomly) is bounded by a constant factor. Keshavarz
on the per-node broadcast capacity of arbitrary networkst. al. [7] extended these conclusions to arbitrary network
Zheng [9] derived the broadcast capacity of power-consd@i and an arbitrary unicast traffic pattern. To the best of our
networks, together with another quantity called "inforioat knowledge, with the exception of our own work [25], no
diffusion rate.” The work by Keshavarz et al. [10] is perhapsesults have been reported on the multicast throughputrorde
the most general work on the computation of the broadcastwireless ad-hoc networks in presence of network coding.
capacity for any number of sources in the network. Physical network coding (PNC) [26] and analog network
Several efforts have addressed the multicast capacity aafding (ANC) [27] have been proposed recently, which com-
wireless networks, primarily under the protocol model.glat bine NC with advanced processing at the physical layer that
and Rodolakis, [11] proved that the scaling of multicastacap allows receivers to decode multiple concurrent transmorssi
ity is decreased by a factor 6f(1/m) compared to the unicastANC was shown [27] to provide throughput gains when
capacity result by Gupta and Kumar [16]. This result impliesompared with digital network coding (i.e., receivers dieat
that the gain attained with multicasting over transmittthg most one packet at a time) and traditional routing (i.e., 1@ N
same information to each of thes multicast receivers as and receivers decode at most one packet at a time) operating
unicasts is at lead(,/m). The work by Shakkottai et al [12] in simple network topologies in which ideal scheduling.(i.e
assumes there arg¢ multicast sources and!~¢ destinations no MAI) is assumed for channel access. Throughput gains
per flow for somee > 0. The results from this work are have also been reported for PNC in simple topologies [26].
limited in scope, because of its constraints on the numberldbwever, we have shown that the order throughput of a
sources and destinations. Li et al. [13] compute the capatit wireless network can be increased by embracing interferenc
wireless ad hoc networks for unicast, multicast, and braaticat the physical layer through multi-packet transmissiorP{i
applications. Zheng et. al. [14] independently generdlidgs or reception (MPR), without the use of NC [28], [29]. Further
work and introducedn, m, k)-casting as a framework for themore, we have also shown [25] that using NC together with
characterization of all types of information dissemination MPT and MPR does not increase the order throughput of a
wireless networks. Keshavarz et. al. [15] studied the roadti wireless network for multicasting compared to what MPR and
and broadcast capacity of wireless networks, considered MPT can provide by themsleves.
physical model, and generalized the work in [17] to the mul- It is clear from the above that prior work has not determined
ticast regime. Recently Li et. al. reported results on roakt whether NC by itself can provide any gains on the multicast
capacity under a Gaussian Channel model [18].sFsources, throughput order in wireless networks. The work presented i
the throughput order reported for the Gaussian Channel mottee rest of this paper differs from our own recent results] [25
[18] is identical to that of the Physical model [13], [14].i$h in three important ways. In our previous work [25], the sinks
prior work has only addressed conventional store-and folwaassociated with each multicast source are bounded by a con-
routing for multicast and broadcast traffic. stant, whereas in this paper the number of sinks is a function
Ahlswede et. al. [2] showed that NC can achieve the mif network sizen. In our previous work [25], the models
cut bound for a single source multicast on a directed grapgssume that a node is capable of MPT and MPR (i.e., recieving
Since then, a number of theoretical results have been egordr transmitting distinct information from multiple trangers
for NC. We mention a select few, which provide bounds ot multiple recievers at the same time), whereas this paper
the NC gain over routing and/or provide max-flow min-cuassumes single packet transmission/reception. Lastlypi@i
type inequalities that can be used to provide outer-bounds vious work [25] does not present any results for an SINR
the rate region under NC. Li et. al [19], [20] have studied theodel, while this paper addresses the Physical Model.
benefits of NC in undirected networks. The result shows that,
for a single unicast or broadcast session, there is no thimuty . PRELIMINARIES
improvement due to NC. In the case of a single multicast For a continuous region, we use|A| to denote its area.
session, such an improvement is bounded by a factor of twilye denote the cardinality of a sBtby |S|, and by||X; — X;]||
S. Borade [21] used the classical multi-terminal cut-seirfats  the distance between nodeandj. Whenever convenient, we
[22] to derive edge-cut outer bounds on the rate region undeilize the indicator function ; py, which is equal to one if” is
NC for multi-source unicast and multicast. Subsequentistudtrue and zero ifP is false.Pr(E) represents the probability of
[23], [24] have shown that the (vertex) cut-set bounds ate neventE. We say that an everdf occurs with high probability
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(w.h.p.) if Pr(E) > (1 —(1/n)) asn — oco. We employ the recievers which satisfy the interference and attenuatad

standard order notation3, 2, and ©. tions for successful reception. However we do not consiaer t
We assume that the topology of a network is described lbgse of MPT (or MPR) which allows tranmission (or reception

a uniformly random distribution ofi nodes in a unit square.) of unique information to (from) multiple nodes in a single

Let V = 1,...,n represent the node-set and I& be the slot. Thus, our model is similar to that of citeLGT0O7 and

location of nodei € V. To avoid boundary effects, it is [16]. In order to appropriately model NC, we assume that the

typical to assume that the network surface is placed uporirdormation transmitted by a node can be an arbitrary fuoncti

toroid or sphere. However, for mathematical convenienge, of the information previously recieved by the node.

this work we ignore edge effects and thus assume that theMe focus on the traffic scenario in which each node of the

network is placed in a 2-D plane. Further, in our model, agireless network acts as a multicast source for a randomly

n goes to infinity, the density of the network also goes tohosen set ofn destinations.

infinity. Therefore, our analysis is applicable only to dens Definition 3.4: Feasible rate

networks. We do not consider mobility of nodes and assurhe a wireless ad hoc network with nodes in which each

a static stationary distribution of nodes. Our capacitylgsia source transmits its packetsto destinations, a throughput of

is based on both the protocol model and the physical mode),(n) bits per second for each multicast session is feasible if

introduced by Gupta and Kumar [16]. there is a spatial and temporal scheme for scheduling nktwor
Definition 3.1: The Protocol Model coded transmissions, such that, by operating the network in

We assume that all nodes use an identical transmission raagenulti-hop fashion, coding and buffering at intermediate

r(n) for all their communication. Node can successfully nodes when awaiting transmission, every source node cah sen

transmit to node;j if for any nodek # i, that transmits at A,,(n) bits per second on average to itschosen destination

the same time a$ it is true that|X; — X,;| < r(n) and nodes. That is, there is @ < oo such that in every time

| Xk — X > (14 A)r(n). interval [(i — 1)T,iT] every node can send@\,,(n) bits to
We shall utilize the following well known property [30] in its corresponding destination nodes. I&f,(n) represent the
our analysis maximum feasible rate.
Lemma 3.2: Connectivity Criteria Definition 3.5: Throughput Order

For a random distribution of nodes in a unit-square, the net-C,,(n) is said to be of orde®(f(n)) bits/second if there exist
work connectivity under the protocol model can be guarahtedeterministic positive constantsand ¢’ such that

w.h.p if and only if (iff) lim_ Prob (C(n) = cf (n) s feasiblg = 1
r(n) > ro(n) = ﬁ%ﬁl D Tim  Prob (C(n) = ¢ f(n) is feasiblg < 1. 3

Definition 3.3: The Physical Model
All transmissions at all nodes utilize an identical transsion
power P. Node: can successfully transmit to nodeiff the
signal-to-interference/noise ratiSINR satisfies

Ph;;
BNo + 3 ) zi w1 Phi; =0 @)
where h;; is the channel attenuation factor between nodes
andj, and BNy is the total ambient noise power. We assume
that the channel attenuation factors are completely détean
by the path loss model and hentg = || X; — X,||~*. We
assume that > 1 in all our analysis.

We assume that the data rate for each successful transmis-
sion is W bits/second, which is a constant value and does
not depend om. Given thatWW does not change the order Definition 3.6: Vertex Cut
capacity of the network, we normalize its value to one. Thu&iven a node set’ , a cut is the separation of the vertex set
we say that in a slot a nodei transmits a binary symbol V' into two disjoint and exhaustive subséts, S¢). Here, a
Y:, € (0,1,7), whereY;; =? (an erasure) if the nodéis vertex partition can be completely described by partitigni
silent. Each node recieves a symi%); € (0,1,7), where the network-area into two regiof¥, A¢) as shown in Fig. 1,
Zy; =17 if the nodei does not satisfy the interference and/othus we also refer to a closed regioh as a cut. The cut-
attenuation conditions for any transmitter. If the trarssion capacityC(A) is defined as the maximum number of packets
from node; to node: satisifes the constraints for succesfuthat can be transmitted from to A in a single slot.
reception thenz; ;, = Y; ;. Definition 3.7: Multicast Cut-Demand

We highlight that the above model allows the broadcast &fiven a cutA, a source node iM€ is said to have demand
common information from a transmitter to all neighbouringcross the cut iff at least one of its destination liesAn

SINR_,; =

Fig. 1. Generalized Sparsity Cut



The multicast demand(A) across the cut is defined as thevhere Y;(A¢) and Z;(A) are the random vectors consist-
total number of sources irl¢ such that there is at least ondng of transmission and reception random variables asso-

destination in the multicast group across the cut. ciated with nodes inA¢ and A respectively. Note that,
Definition 3.8: Sparsest Cut I (Yi(A%); Zy(A))Yi(A)) < H(Z(A)) and Z,(A) is com-
We define the sparsitl/ 4 of cut A as the ratio pletely determined by the succesful transmissions frdfrto
C(A) A. SinceY; and Z; are binary,H (Z;(A¢)) is less than the

Ta= DA (4) maximum number of succesful transmission froffi to A

in a single slot, i.e.H (Z;(A°)) < C(A) information bits.
Hence, the sparsest cut is given by Additionally Def. 3.7 implies thatS| = D(A) and hence we

* . have
A —argmjnFA (5) D(AVR < C(4)

. . .
WherZEA has t?e Ieas_t possfle Zparsny,_l_dego_ted‘ﬁs. b Finally note that if a multicast rate from a source to muéipl
The notion of sparsity cut has been utilized in a number festinations is feasible, then clearly it is feasible toiewd

stud!es relt_:lted to NC. Thg definitiop of Sparsity cut used e same rate to any one arbitrarily chosen node from this set
[31] is applicable only to unicast traffic [6]. We employ a r8Or o Jestinations. Hencé€,,(n) < R impying that
generalized definition. Meanwhile studies such as [24] defin -

sparsity-cuts in terms of edge-cuts, i.e. in [24] a cut do&s n Con(n) < C(4) —T, 9)
lead to a graph (vertex) seperation. We shall use the sparsit "= D(A)
of a cut to provide an upper bound on the rate achievalig any arbitrary cutA. -

under NC. It is important that the reader understands that wey; should be highlighted that the above deductions imply
are employing a definition that is distinct from studies sucihat the maximum multicast flow-rate is less than the sparsit
as [24], since [24] shows thqt under an alte_rnate defintion N any arbitrary cut. Thus, to obtain an upper bound on the
can exceed the bound provided by a sparsity cut. network capacity, we are free to choose a regibrof any
Finally we state the well-known Chernoff Bounds [32]gpitrary shape and size. In this work we shall utilize cufts o
which shall be repeatedly used in the rest of this paper. square shape as shown in Fig.2, with lendth = 414, i.e.,
L.emma 3.9 Chernpff Bounds:Considern i.i.d random ggch side of the squaré has lengthl4. The parametet 4
variablesy; € {0,1} with p = Pr(Y; = 1). LetY = >7" , Yi. pjays a crucial role in deducing the required upper bouns. |

Then for anyl > 4§ >0 andd; > 0 we have particular, we choosé, so as to guarantee that the demand
—62np D(A) = O(n).
Pr(Y < (1—d1)np) <2e @ PH=0w
—62n P o 5
Pr(Y > (1+ by)np) < 2e~ 5 @ . A°
IV. BOUNDS FORPROTOCOLMODEL
It is well-known that under the conventional definition, the P EP5ren A
sparsity cut can be used to obtain an upper bound on the
unicast traffic flow in a wireless network [6], [31]. In a siieil .
zed definiton provi ® -
way, our generalized definition provides an upper bound for . S . I
multicast flows. Furthur note that the following lemma is %% LI
applicable to both the protocol as well as the phsyical model ()]
Lemma 4.1:Let C,,,(n) be maximum multicast flow-rate in (1/2)Ar(n)
a network and letd* be the sparsest cut with sparsity-, )

then we have

Cn(n) <Ta-. (8)

. . Fig. 2. Cut Capacity under Protocol Model
Proof: Consider an arbitrary cutd and let S =

(Slv-_--’SHSH) be the set of nodes im® which act as a | emma 4.2:In a random network wit nodes, each acting
multicast source for at least one destination nodedinFor 5 squrce fom, randomly chosen nodes, for every> 0 if
each sources; € S let T; = (ti1,...,t;7,) be the set of ) )
its destinations inA. Now, lets construct a unicast problem la = ———form<——+ (10)
by choosing an arbitrary nodg € T; as the destination for (L+€e)m 4(1 + €)r(n)
sources;. Let R be the maximum rate that can be concurrently 1

o . : la = 2 form> —"—— 11
achieved for all the unicast sourcesSin The classical cut-set 4 r(n) form = 4(1 4 €)r(n)? (11)
bound [Thm 14.10.1 [22]] provides an outerbound on the sum- 3

. " . : > > > .h.
rate in terms of conditional mutual information then for anyl > o, > 0 andn such thatze-s > 7o, weh.p

we have
IS| x R < I(Y:(A%);Z4(A)/Yi(A)) D(A) > (1 = 61)ney (12)



e e ) ithin a distance:(n) from the boundary of the cut, i.e., all
Proof: Let ¢ be the probability that a randomly choserme Ireceiv:ars mus(n) neaty e

node: has demand across cdt Thus,

wherec; = (1 _ ) 1 1 node in A that receives a transmission from°® should lie

t be placed within an annular region of area
13— (la = 2r(n))*

= 4lar(n) —4r(n)?

< dlyr(n) = Lar(n) a7

q = Pr(i € A°) x Pr(at least one destination efc A)
> (1= [ADA =@ =A™ = (1 -13) (- (1-13)")

Now, note thatﬁ >, > L for all m. Hence, we

have Y V(i+em where the length. 4 of the cut is the perimeter of the region

A.
m
> (1_ 1 ) (1_ (1_ #) ) We observe that each transmission across the cut will
N l+e (1+e)m not allow any more transmission within an area of at least

1 1y mAPr(n)” Additionally, at least! of this area has to fall within
> 1- l——— ) =a (13) 4 - 71
1+e€ the annular region near the cut boundary. Therefore,

el+s
where the second inequality follows from the well-knowntfac C(A) = max. no. of transmissions from® to A

thate™ > (1 — ) for any1 >z > 0. Area of annular region
Let Y; be an indicator variable that is equal to one if the < A2 (n)?
node: has demand across cdt Thus Pr(Y; = 1) = ¢ and 4x4
D(A) = 3,_,., Yi. Hence, the Cheroff bound of Eq. (6) __16L4 (18)

from Lemma 3.9 further implies that wA%r(n)

|
Theorem 4.5:Under the protocol model, the multicast ca-
guarantees that pacity of a random geometric network with NC has the
following upper bound w.h.p
(15) co - n(l+e)!

- Cm(n) = V/3(1 + €1)mnlog(n) tm = 12log(n)

i = % i 2 i 1 —1
A choice ofl 4 g can be used in the above lemma Cou(n) = 2¢2 i > n(l+e1)

for all m, and such a condition would be sufficient to prove n 12log(n)
the required result that demardd(A) > (1 — §1)nc; w.h.p.

However, in the following analysis we require that> 2r(n). When &0 > 5%1 wherecy =
Therefore, we introduce the condition thigf = 2r(n) for 51,61 >0

1 .

W' then Proof: On account of Lemma 4.1, we can obtain an upper
2r(n) > irom bound on the network capacity by just providing a bound for
We invoke the following important observation to obtain aithe sparsityl’ 4. Furthermore note that 4 = 414, and hence
upperbound on the cut-capacity. due to Lemma 4.4 we can say that for &ll> 2r(n) we have

Remark 4.3:In [16], it was observed that in any time 6414
slot, a disk of radiusATT(") centered at each receiver in that Cm(n) < A DA (20)
o : TA?r(n)D(A)
slot should be disjoint. However, this fact does not apply to
the case in which nodes exploit broadcast transmissions, a€onsiderm > W. If we choosd 4 = 2r(n), then
is done when nodes are capable of employing NC. Indedthm Lemma 4.2 we have that for ali such thatm >
as shown in Fig.2, the disks can overlap if the associat%gc_ w.h.p. we haveD(A) > (1 — &;)nc;. Therefore,
nodes are receiving identical information from a common'"
transmitter. Nevertheless, as highlighted in [5], evenaurtte Con(n) < 128 21)
NC assumption, the union of the disks centered at the reteive — wA2(1 = 01)ncy

of one transmission should be disjoint from the union of t

_62n
Pr(D(A) < (1 - 61)ng) < 2e— (14)

n 3

NOW r55tamy 2 &er

Pr(D(A) < (1 —061)nq) <

SRS

(19)

1
64(1+4€1)eltel

T and
mA2%e1(1—61)(etter —1)

h§imilarly, if we choosely, = L for all m <

disks centered at the receivers of another transmission. vV (1+e)m
Lemma 4.4:If a square-shaped cut has side-lengtthy > m, we have
2r(n), then the cut capacity satisfies 641
16L 4 C(n) < V(tte)m 22
CW) < Z5 i 16 nm) < SRS mner @2
under the protocol model. Note that, for allm < W, Cp(n) is maximized

Proof: In the protocol model, the distance between by choosing the smallest possible valuer6f). Nevertheless
transmitter and a receiver is bounded bf{n). Hence, any the Connectivity Criteria (Lemma 3.2) requires thdt) >



\/ 2es(n) The final result is obtained by substituting the value Lemma 5.1:Consider a circular cutd of radiusr, with

\/m . its center at poinOD. Let S; and S; be two nodes outsidd
of ¢ andr(n) = n I Egs. 21-22. transmitting across the cut in the same slot. We claim that th

The multicast capacity under pure routing has been char%q,é subtended by anglésS; 05, on cutA has a length of at
terized in [13], [14]. least

Theorem 4.6: [13], [14] Under the protocol model, the Ayramazx{Ly, Lo}
multicast capacity of a random geometric network with nogti ra + maz{Ly, Ly}
has a tight bound of

(27)

where A, = (8= —;2 and L; represents the (minimum)
_ 1 H _ n . .
Cn(n) =0© <7\/W> if m=0 (log(n)) (23) distance qf transmittes; from cut A.
. Proof: Without loss of generality we can assume that
Cn(n) =0(z) fm=0 (%) (24) S, are placed as shown in Fig. 3 aifid > L. In Fig. 3 the

_ . o . raysO.S; andO.S, intersect the cutl at I; andl, respectively.
Network coding (NC) is a generalization of routing andfherefore,Ll — |ISiL|| and Ly = [|Sas||. Furthermore,

thus any capacity achieved by routing is necessarily aeldievthe length of segment, I is less than the length of the arc

by NC. Hence, . subtended by S;05>. Hence, in order to prove the claim, it
Theorem 4.7:Under the protocol model, the multicast cas .
. ) ! ~“1s sufficient to show that
pacity of a random geometric network with NC has a tight
bound equal to LD > ArrallSiL|| (28)

ra+ ||S114]]

Cm(n) =06 <m> it m =0 (zoﬁn)) (25) Consider a receiveR; that lies insideA and can success-
fully decode a transmission froi; . It follows from Eq. 2 in

Cn(n) = (%) if m =€ (%) (26)  Definition 3.3 that
Finally, we can arrive at the following conclusion. P||S1R.|| 7 >4
Corollary 4.8: The multicast throughput order gain pro- BN, + P||SyRy ||~ =
vided by NC over routing in a random geometric network = ||SoR:| > 55H5131H = (14 A))||S1R1]|(29)

is O(1) under the protocol model.
Consider the triangle formed b§,, S> and Ry, as shown
in Fig. 3. Now draw a perpendicular froisi; to F', which is
In order to prove the upper bound under the physical modelpoint on segmen$z R;. Note that||FRy| < |S1R:]| and
we utilize a circular cut, instead of square shaped cut, witfence it is easy to show th@; F'|| > A;|S1R1|. Now draw
radiusr4 as shown in Fig. 3. Additionally, we utilize thea line throughS, parallel to segmenf; I, and drop a perpen-
following property of the physical model. A similar propgrt dicular Sy E; on this line. Since/S1S2FE; < Z515:Ry, we
of "straight-lined cut$ has also been utilized by Liu, et. al.have cos (£5152E1) > cos(£5152R1), which implies that
[6]. |SaE1| > |S2F|. Similarly draw a line throughS; parallel
to I1I>. Let this line intersect the raypS, at J,. Drop a
S perpendiculas; F, on line Sy Js. Since the triangleé; O J; is
isosceles/S;.J3S5 is acute and hencB; should lie within the
segmentS; Jo. Hence,||S1J2|| > [|S1Es||. Since SeE1S1 Es
forms a rectangle we getS: Jz|| > A1[S1R4|. Finally, we
note that||Si1R1|| > |[|Sil1]| becauseS;I; is the shortest
distance betweefs; and circleA. Hence,

V. BOUNDS FORPHYSICAL MODEL

1S1J2|| > Aq]]S114]] (30)

Consider the triangl€ S, .J.. The Basic Proportionality The-
orem implies that

[|S1J2|[|O11 |
|OS.|

Substituting Eqg. 30 in Eq. 31 proves the claim in Eq. 2R

Theorem 5.2:Under the physical model, the multicast ca-
pacity of a random geometric network with NC has the
following upper bound w.h.p

|12 = (31)

When [|S111]| > [|S2 1y

Arra|Sih]|
ra+[SiLi|

| 12| >

1
Fig. 3. Geometric property of transmissions across the cut Cm(n) =0 (W) ) (32)



whenm = O (W) andn — oo.
Proof: Consider a circular cufl with radiusr, = ﬁ.

Divide the regionA¢, as shown in Fig. 4, into sub-regia
and A° — B, where theB is an annular region of width.

n
Let ng andn 4c_p be the maximum number of nodes, from
— B respectively,that can transmit to

region B and regionA°
region A in a single time slot. Hence,

C(A)S’IIB—FTLAC,B (33)

Fig. 4. Cut Capacity under Physical Model

A transmission from any node in regioff — B to any node
in region A has a minimum hop-length o\}f—ﬁ Consequently,
Lemma 5.1 implies that any two transmittersAfi — B, that

transmit in the same slot, have to be separated such that they

subtend an arc oM of length at Ieast — f . Since the
f
circumference ofd is 27r4 we have
rA+ 1
Nac_p < 27Wra X ‘/f
A17",4\/—5
2 )
_ (V) L TV (g
Ay \4y/m 2A1/m

To obtain a bound om g, observe that the area of regidh
is given by

2
1
|B| = 7T(TA+%) —WT%
_27ra n T < T n T
Vo on T 2ymn Jmn
3T
2/mn (35)
If m=0 (W) there exists a constanj > 0 such that

|B| <

anyd. > 0, we have

—53n|B|
Pr (nB < 737((1 ha 52)\/ﬁ) < 2e Pl
2/m
75§log(n) 2

3c3

< 2e = (37)

5.
53
n 3¢3

Consequently, if we choos& > 3cs, then asn — oo w.h.p
we have

3m(14 d2)vn n 5my/n
2y/m 2A1y/m
7(3(14 62)A1 +5)v/n
2A1\/ﬁ
In the previous section, we have already shown that w.h.p
the demand across square shaped cut with éke;%) is of
the order of©(n). Such a property is valid for circular cuts

also. Letg; be probablity that a source node tf has at least
one of itsm destinations in the circlel. We can show that

1 1 \"
()6 ()
15 (1 - e%)

16
The Chernoff Bound of Eq. 7 implies that there exist$ a
d1 > 0 such that as» — oo w.h.p. D(A) > (1 — d§1)can.

Therefore, the Sparsity bound from Lemma 4.1, along with
Egs. 38 and 39 implies that w.h.p.

m(3(1+02)A1 +5) 1
Cm(n) < ( 28001 — 1) ) NG

C(A) <

(38)

q1

(39)

IC4

(40)

]

The mathematical techniques used in the above proof cannot
be utilized to obtain a upper bound on multicast capacity of
NC for all values ofm. In particular note that Eq. 36 and
hence the convergence condition in Eq. 37 requiresqthat
0] (W) Therefore, we consider an alternative approach
to obtain upperbounds. This approach shall give us a tighter
upper bound forn = Q log(n)

Theorem 5.3:Under the physmal model, the multicast ca-
pacity in a random geometric network with NC has the
following upper bound w.h.p.

en) = 0 () TS iy @D
Cn(n) = 0(%) if m > logrzn) (42)

Proof: Decompose the network into squarelets of side-
length lo" . Let J be an event that there exists a squarelet

contalnlngat Ieast% nodes, wherel > 463 > 0,

eslog(n) (36)
n with all its eight adjoining squarelets empty. The evénis
The total number of nodes iB is necessarily greater thanillustrated in Fig. 5. We are interested in showing that theng

npg. Therefore, the Chernoff Bound of Eq. 6 implies that, for occurs w.h.p. Let) represent the total number of nodes in a



squareletp; = Pr(n =0) andpy = Pr (77 < “_‘53’3%(”)) are within the middle squarelet. Hence the Chernoff Bound

wherel > 63 > 0. p; can be computed as can be used to show that as— oo w.h.p the total number of
] " nodes outside the circld are at leastr — M where
P = <1 _ Og(")> — e _ (43) 01 > 0. Therefore, as: — oo w.h.p.,
n
' . _(1_ (14 64)log(9n) (1 (1 —d3)log(n)\™
We used the fact thadim, . (1 —£)" =e p3 = - — on
_ (1 _ efm(lfgg)log(n)) (47)
BT T PRt I In the above equation we hayg = O(1) whenm =
. Q (%) while whenm = O (%) we have that
Tl ls | 2ral 2r -
J < ... >: .. I s A B s> m(1 gg)log(n) (48)
e . n
> — B Therefore, an application of Eq. 7 allows us to show that
P N I I B D(A) = Q(mlog(n)) whenm = o(%), while D(A) =
=1 [log(n) g — N - 31, Q(n) whenm = Q(%) We get the final result by
s 3 no 7 V2’ 2 calculating the sparsity' 4 = % which, as established by

Lemma 4.1 provides an upperbound for the capa€lity(n).

Fig. 5. Clustering of nodes n
The upper bounds stated in the above theorem are identical
In addition, Eqg. 6 implies that to those of Theorem 2 in [15] and the initial steps in our
(1-6)log(n) proof are similar to those_ i_n [15]. However,_we highlightttha
p2 =Pr (77 < T) our eventual argument utilizes the geometric propertiethef
—6210g(n) 63 cut and hence is distinct from [15]. In particular, the claim
<2 2@  =2n77 . (44)

and the proof in [15] is applicable only to routing, while our
Therefore, asy — oo, in the limit we have bounds apply to NC. _ _

Keshavarz et. al. [15] have established the following lower
bound on the multicast capacity under routing.

Pr(J) > 1—(1—(1—po)p})tm Theorem 5.4:Under the physical model, the multicast ca-
> 1-(1-(1- 27172_?%)”%8)% pacity_ of a random geometric network with routing has the
= o following lower bound w.h.p.
ns (1-— 2n%71) ™\ Tos(n) . n
> 1- - = 7 = i <
> 1 1 — Con(n) Q ( W) s s (49)
_gnB(-2n77) Cp(n) =Q( —~A if " < _"%0)
= l-e log(m) = 1. (45) my/log(n)? log(n)? = ~ log(n)

1 =1 1 . n
_gn9(i=2n 1 <m< —H
Note thate 9= (Llog(zn)w : approaches zero faster thajﬂ Cm (n) @ (\/mnlog(n)) if log(n)2 =m= log(n)Sl)
whenn — oo. .
. . 'm =Q (L) if 52
Let us choose a circular cut of radiusr4, = ‘= such that Cm(n) (") ! (52)
A circumscribes a squarelet satisfying propeftyObserve that

"<
—_— m
log(n) ~
Given that any capacity achieved by routing is necessarily

we can draw another circl® of radiusr = 5+ concentric 5 pievable by NC, putting together the deductions up to this
to A, such that all nodes that transmit across the Aguare point, we arrive at the following result.

placed outside5. Therefore the minimum hop-length of any’ t4rem 5 5:Under the physical model, the multicast ca-

transm|SS|on_ acrloss the cut is atleastrp — 4. Therefore pacity in a random geometric network with NC has a tight
Lemma 5.1 implies that bound w.h.p. of

C(A) < 2mrax AT ETB :TA% - A
. 1ralrg —ra 1(rg —ra Cpn(n) = @( —im) if m < ot (53)
277\/5 T24/2 s "
= =c¢5; (46) Cnm(n) =06(3)if 5 oy S m. (54)
Ay (Ble — Lo A1(3-V2) g
1\
V2 Consequently,

Now let p; be the probability that a source has demand Corollary 5.6: In a random geometric network with

across cutd. Observe that all the nodes inside the cirele nodes and for values ofi < =t and ;& < m, the




multicast throughput order gain provided by NC over routings]
is O(1) under the physical model. o]

V1. CONCLUSION

Network coding (NC) has received considerable attentionp]
and recent results for specific instantiations of NC have led
many to infer that NC could lead to order throughput gairﬁl]
for multicasting in wireless networks. In this work, we uskd
protocol and physical models to show that the order throughp
gain derived from NC for multicasting and broadcasting ift 2]
wireless networks is bounded by a constant. That is, as the
network size increases, NC renders the same order throtighp@l
as traditional store-and-forward routing. However foruesd
of lo(Ln)?’ <m < ﬁ there is a gap between NC andi4]
traditional routing. It is the subject of future work to irst@ate
whether this gap can be closed (see Fig. 6). [15]

Despite this negative result on order throughput for NC,
constant-factor gains should not be ignored in practice, an
NC may still prove to have much utility in wireless networks:

[17]
Capacity Physical Model NC:
Physical Model Routing:
Protocol Model NC and/or Routing: = = = -
Q[L] 9 (18]
Jn
o a
o ——|x Nmn [19]
Jrlog(n) ||~ A
~ |

[20]

Unresolved for

~
N Physical Model

S ~
'
1

8| —— Ts
anlog(n) \\

[21]

NC [22]

Routing

A

NC

= ~
i

Routing [23]

[24]

ol —2 _|e
[(hg(y,))"]

Fig. 6. Throughput Order of Network Coding

# sinks

m=6(1) (mg?nn‘] O[T()]

[25]

[26]
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