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Abstract—We study the contribution of network coding (NC)
in improving the multicast capacity of random wireless ad hoc
networks. We consider a network with n nodes distributed
uniformly in a unit square, with each node acting as a source
for independent information to be sent to a multicast group
consisting of m randomly chosen destinations. We show that in
the presence of NC, the per-session capacity under the protocol

model has a tight bound ofΘ
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physical model, and show that the per-session capacity has a
tight bound of Θ
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. Prior work has shown that these same
order bounds are achievable on the basis of pure routing, which
utilizes only traditional store and forward methods.

I. I NTRODUCTION

The concept of network coding was first introduced by
Yeung et. al. [1] and subsequently generalized by Ahlswede et.
al. [2] for a single source multicast in arbitrary directed graphs.
Since then, the interest in network coding has increased
rapidly. A large number of studies have investigated the utility
of network coding (NC) for wireless networks, and widely
cited experiments [3], [4] have been reported in which NC has
been used successfully in combination with other mechanisms
to attain large throughput gains compared to approaches based
on conventional protocol stacks. These results have led many
to believe that a combination of NC with wireless broadcasting
can lead to significant improvements in the order throughputof
wireless networks. Understandably, there is significant interest
in identifying the true impact of NC on the throughput order
of wireless networks. However, the exact characterizationof
network capacity with NC in the presence of multiple access
interference is a very hard problem, even for simple networks,
and limited results have been reported to date on the subject.

Recent work [5]–[7] has shown that the throughput gain
due to the use of NC in a wireless network is bounded by a
constant when the traffic in the network consists of multiple
unicast sessions. However, the motivation for the originalwork
by Ahlswede et. al [2] was improving network performance for
multicasting, not unicasting. Furthermore, many commercial
and defense applications, such as video conferencing, require
multicasting of large amounts of information, and the study

of the multicast capacity of wireless ad hoc networks is an
important research topic in its own right.

Several works [8]–[15] have studied the multicast and
broadcast capacity of wireless networks under conventional
routing, and these results show that broadcasting and mul-
ticasting significantly alter the throughput order of wireless
networks. In light of these findings, the importance of mul-
ticasting and broadcasting, and recent practical results on
NC, it is natural to inquire whether the introduction of NC
can improve the throughput order capacity of multi-source
multicasting. In this work, we undertake the characterization
of the multicast and broadcast throughput order of wireless
ad-hoc networks in presence of network coding, which has
been an open problem for the past 10 years.

We consider a network consisting ofn nodes distributed
randomly in the network space, with each node acting as a
multicast source of a group ofm randomly chosen nodes in
the network.

The first contribution of this paper is to show that, under the
protocol model, the per-session multicast capacity of random
wireless ad hoc network in the presence of arbitrary NC1

has a tight bound ofΘ

(
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when m = O( n
log(n) )

and Θ( 1
n
) when m = Ω( n

log(n) ). The second contribution of
this paper is to show that, under the physical model, the per-
session multicast capacity of random wireless ad hoc network
with arbitrary NC has a tight bound ofΘ
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.
It has already been established in the literature that the

above bounds are achievable on the basis of traditional
store-and-forward routing methods. Consequently, our analysis
demonstrates that the throughout gain due to NC for mutlicas-
ting and broadcasting is bounded by a constant factor!

The remainder of this paper is organized as follows. Sec-
tion II surveys relevant prior work. Section III describes the
network models and other concepts used in proofs. Section
IV deduces the capacity results under the protocol model,
and Section V addresses the physical model. Section VI

1Arbitrary NC implies that an transmitted symbol can be an arbitrary
function (and not necessarily a linear function) of all the symbols recieved
and generated at a node
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summarizes our conclusions.

II. L ITERATURE REVIEW

Gupta and Kumar’s original work focused on the unicast
capacity of wireless networks [16], and many subsequent
contributions have been made on the capacity of wireless
networks subject to unicast traffic. However, the focus of this
paper is on the capacity of wireless networks under broadcast
and multicast traffic.

Tavli [8] was the first to show thatΘ
(

n−1
)

is a bound
on the per-node broadcast capacity of arbitrary networks.
Zheng [9] derived the broadcast capacity of power-constrained
networks, together with another quantity called ”information
diffusion rate.” The work by Keshavarz et al. [10] is perhaps
the most general work on the computation of the broadcast
capacity for any number of sources in the network.

Several efforts have addressed the multicast capacity of
wireless networks, primarily under the protocol model. Jacquet
and Rodolakis, [11] proved that the scaling of multicast capac-
ity is decreased by a factor ofO(

√
m) compared to the unicast

capacity result by Gupta and Kumar [16]. This result implies
that the gain attained with multicasting over transmittingthe
same information to each of them multicast receivers as
unicasts is at leastΘ(

√
m). The work by Shakkottai et al [12]

assumes there arenǫ multicast sources andn1−ǫ destinations
per flow for someǫ > 0. The results from this work are
limited in scope, because of its constraints on the number of
sources and destinations. Li et al. [13] compute the capacity of
wireless ad hoc networks for unicast, multicast, and broadcast
applications. Zheng et. al. [14] independently generalized this
work and introduced(n, m, k)-casting as a framework for the
characterization of all types of information dissemination in
wireless networks. Keshavarz et. al. [15] studied the multicast
and broadcast capacity of wireless networks, considered the
physical model, and generalized the work in [17] to the mul-
ticast regime. Recently Li et. al. reported results on multicast
capacity under a Gaussian Channel model [18]. Forn sources,
the throughput order reported for the Gaussian Channel model
[18] is identical to that of the Physical model [13], [14]. This
prior work has only addressed conventional store-and forward
routing for multicast and broadcast traffic.

Ahlswede et. al. [2] showed that NC can achieve the min-
cut bound for a single source multicast on a directed graph.
Since then, a number of theoretical results have been reported
for NC. We mention a select few, which provide bounds on
the NC gain over routing and/or provide max-flow min-cut
type inequalities that can be used to provide outer-bounds on
the rate region under NC. Li et. al [19], [20] have studied the
benefits of NC in undirected networks. The result shows that,
for a single unicast or broadcast session, there is no throughput
improvement due to NC. In the case of a single multicast
session, such an improvement is bounded by a factor of two.
S. Borade [21] used the classical multi-terminal cut-set bounds
[22] to derive edge-cut outer bounds on the rate region under
NC for multi-source unicast and multicast. Subsequent studies
[23], [24] have shown that the (vertex) cut-set bounds are not

tight and improved bounds can be obtained by employing more
sophisticated edge-cuts. Studies such as [21], [23], [24] do not
readily capture the geometric constraints of multi-hop com-
munication in wireless ad-hoc networks. Nevertheless, there
have been prior works on determining the unicast throughput
order in wireless networks under NC. Liu et. al. [5], [6] have
shown that the NC for unicast traffic in a random network
(i.e., a network in which the nodes are distributed randomly
in an Euclidean space and the sources and destinations are also
placed randomly) is bounded by a constant factor. Keshavarz
et. al. [7] extended these conclusions to arbitrary networks
and an arbitrary unicast traffic pattern. To the best of our
knowledge, with the exception of our own work [25], no
results have been reported on the multicast throughput order
of wireless ad-hoc networks in presence of network coding.

Physical network coding (PNC) [26] and analog network
coding (ANC) [27] have been proposed recently, which com-
bine NC with advanced processing at the physical layer that
allows receivers to decode multiple concurrent transmissions.
ANC was shown [27] to provide throughput gains when
compared with digital network coding (i.e., receivers decode at
most one packet at a time) and traditional routing (i.e., no NC
and receivers decode at most one packet at a time) operating
in simple network topologies in which ideal scheduling (i.e.,
no MAI) is assumed for channel access. Throughput gains
have also been reported for PNC in simple topologies [26].
However, we have shown that the order throughput of a
wireless network can be increased by embracing interference
at the physical layer through multi-packet transmission (MPT)
or reception (MPR), without the use of NC [28], [29]. Further-
more, we have also shown [25] that using NC together with
MPT and MPR does not increase the order throughput of a
wireless network for multicasting compared to what MPR and
MPT can provide by themsleves.

It is clear from the above that prior work has not determined
whether NC by itself can provide any gains on the multicast
throughput order in wireless networks. The work presented in
the rest of this paper differs from our own recent results [25]
in three important ways. In our previous work [25], the sinks
associated with each multicast source are bounded by a con-
stant, whereas in this paper the number of sinks is a function
of network sizen. In our previous work [25], the models
assume that a node is capable of MPT and MPR (i.e., recieving
or transmitting distinct information from multiple transmitters
to multiple recievers at the same time), whereas this paper
assumes single packet transmission/reception. Lastly, our pre-
vious work [25] does not present any results for an SINR
model, while this paper addresses the Physical Model.

III. PRELIMINARIES

For a continuous regionA, we use|A| to denote its area.
We denote the cardinality of a setS by |S|, and by‖Xi − Xj‖
the distance between nodesi andj. Whenever convenient, we
utilize the indicator function1{P}, which is equal to one ifP is
true and zero ifP is false.Pr(E) represents the probability of
eventE. We say that an eventE occurs with high probability
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(w.h.p.) if Pr(E) > (1 − (1/n)) asn → ∞. We employ the
standard order notationsO, Ω, andΘ.

We assume that the topology of a network is described by
a uniformly random distribution ofn nodes in a unit square.
Let V = 1, . . . , n represent the node-set and letXi be the
location of nodei ∈ V . To avoid boundary effects, it is
typical to assume that the network surface is placed upon a
toroid or sphere. However, for mathematical convenience, in
this work we ignore edge effects and thus assume that the
network is placed in a 2-D plane. Further, in our model, as
n goes to infinity, the density of the network also goes to
infinity. Therefore, our analysis is applicable only to dense
networks. We do not consider mobility of nodes and assume
a static stationary distribution of nodes. Our capacity analysis
is based on both the protocol model and the physical model
introduced by Gupta and Kumar [16].

Definition 3.1: The Protocol Model
We assume that all nodes use an identical transmission range
r(n) for all their communication. Nodei can successfully
transmit to nodej if for any nodek 6= i, that transmits at
the same time asi it is true that |Xi − Xj| ≤ r(n) and
|Xk − Xj | ≥ (1 + ∆)r(n).

We shall utilize the following well known property [30] in
our analysis

Lemma 3.2: Connectivity Criteria
For a random distribution ofn nodes in a unit-square, the net-
work connectivity under the protocol model can be guaranteed
w.h.p if and only if (iff)

r(n) ≥ rc(n) =

√

3log(n)

n
. (1)

Definition 3.3: The Physical Model
All transmissions at all nodes utilize an identical transmission
power P . Node i can successfully transmit to nodej iff the
signal-to-interference/noise ratio (SINR) satisfies

SINRi→j =
Phij

BN0 +
∑n

k 6=i,k=1 Phkj

≥ β, (2)

wherehij is the channel attenuation factor between nodesi
andj, andBN0 is the total ambient noise power. We assume
that the channel attenuation factors are completely determined
by the path loss model and hencehij = ‖Xi − Xj‖−α. We
assume thatβ ≥ 1 in all our analysis.

We assume that the data rate for each successful transmis-
sion is W bits/second, which is a constant value and does
not depend onn. Given thatW does not change the order
capacity of the network, we normalize its value to one. Thus,
we say that in a slott a nodei transmits a binary symbol
Yt,i ∈ (0, 1, ?), whereYt,i =? (an erasure) if the nodei is
silent. Each node recieves a symbolZt,i ∈ (0, 1, ?), where
Zt,i =? if the nodei does not satisfy the interference and/or
attenuation conditions for any transmitter. If the transmission
from nodej to nodei satisifes the constraints for succesful
reception thenZt,i = Yt,j .

We highlight that the above model allows the broadcast of
common information from a transmitter to all neighbouring

recievers which satisfy the interference and attenuation condi-
tions for successful reception. However we do not consider the
case of MPT (or MPR) which allows tranmission (or reception
) of unique information to (from) multiple nodes in a single
slot. Thus, our model is similar to that of citeLGT07 and
[16]. In order to appropriately model NC, we assume that the
information transmitted by a node can be an arbitrary function
of the information previously recieved by the node.

We focus on the traffic scenario in which each node of the
wireless network acts as a multicast source for a randomly
chosen set ofm destinations.

Definition 3.4: Feasible rate
In a wireless ad hoc network withn nodes in which each
source transmits its packets tom destinations, a throughput of
λm(n) bits per second for each multicast session is feasible if
there is a spatial and temporal scheme for scheduling network-
coded transmissions, such that, by operating the network in
a multi-hop fashion, coding and buffering at intermediate
nodes when awaiting transmission, every source node can send
λm(n) bits per second on average to itsm chosen destination
nodes. That is, there is aT < ∞ such that in every time
interval [(i − 1)T, iT ] every node can sendTλm(n) bits to
its corresponding destination nodes. LetCm(n) represent the
maximum feasible rate.

Definition 3.5: Throughput Order
Cm(n) is said to be of orderΘ(f(n)) bits/second if there exist
deterministic positive constantsc andc′ such that







lim
n→∞

Prob (Cm(n) = cf(n) is feasible) = 1

lim
n→∞

Prob (Cm(n) = c′f(n) is feasible) < 1.
(3)

Fig. 1. Generalized Sparsity Cut

Definition 3.6: Vertex Cut
Given a node setV , a cut is the separation of the vertex set
V into two disjoint and exhaustive subsets(S, SC). Here, a
vertex partition can be completely described by partitioning
the network-area into two region(A, Ac) as shown in Fig. 1,
thus we also refer to a closed regionA as a cut. The cut-
capacityC(A) is defined as the maximum number of packets
that can be transmitted fromAC to A in a single slot.

Definition 3.7: Multicast Cut-Demand
Given a cutA, a source node inAc is said to have demand
across the cut iff at least one of its destination lies inA.
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The multicast demandD(A) across the cut is defined as the
total number of sources inAc such that there is at least one
destination in the multicast group across the cut.

Definition 3.8: Sparsest Cut
We define the sparsityΓA of cut A as the ratio

ΓA =
C(A)

D(A)
(4)

Hence, the sparsest cut is given by

A∗ = arg min
A

ΓA (5)

whereA∗ has the least possible sparsity, denoted asΓA∗ .
The notion of sparsity cut has been utilized in a number of

studies related to NC. The definition of Sparsity cut used in
[31] is applicable only to unicast traffic [6]. We employ a more
generalized definition. Meanwhile studies such as [24] define
sparsity-cuts in terms of edge-cuts, i.e. in [24] a cut does not
lead to a graph (vertex) seperation. We shall use the sparsity
of a cut to provide an upper bound on the rate achievable
under NC. It is important that the reader understands that we
are employing a definition that is distinct from studies such
as [24], since [24] shows that under an alternate defintion NC
can exceed the bound provided by a sparsity cut.

Finally we state the well-known Chernoff Bounds [32],
which shall be repeatedly used in the rest of this paper.

Lemma 3.9: Chernoff Bounds:Considern i.i.d random
variablesYi ∈ {0, 1} with p = Pr(Yi = 1). Let Y =

∑n

i=1 Yi.
Then for any1 ≥ δ ≥ 0 andδ2 ≥ 0 we have

Pr(Y ≤ (1 − δ1)np) ≤ 2e
−δ2

1np

3 (6)

Pr(Y ≥ (1 + δ2)np) ≤ 2e
−δ2

2np

3 (7)

IV. BOUNDS FORPROTOCOLMODEL

It is well-known that under the conventional definition, the
sparsity cut can be used to obtain an upper bound on the
unicast traffic flow in a wireless network [6], [31]. In a similar
way, our generalized definition provides an upper bound for
multicast flows. Furthur note that the following lemma is
applicable to both the protocol as well as the phsyical model.

Lemma 4.1:Let Cm(n) be maximum multicast flow-rate in
a network and letA∗ be the sparsest cut with sparsityΓA∗ ,
then we have

Cm(n) ≤ ΓA∗ . (8)

Proof: Consider an arbitrary cutA and let S =
(

s1, . . . , s‖S‖
)

be the set of nodes inAc which act as a
multicast source for at least one destination node inA. For
each sourcesi ∈ S let Ti =

(

ti1, . . . , ti|Ti|
)

be the set of
its destinations inA. Now, lets construct a unicast problem
by choosing an arbitrary nodeti ∈ Ti as the destination for
sourcesi. Let R be the maximum rate that can be concurrently
achieved for all the unicast sources inS. The classical cut-set
bound [Thm 14.10.1 [22]] provides an outerbound on the sum-
rate in terms of conditional mutual information

|S| × R ≤ I
(

Yt(A
C); Zt(A)/Yt(A)

)

where Yt(A
c) and Zt(A) are the random vectors consist-

ing of transmission and reception random variables asso-
ciated with nodes inAc and A respectively. Note that,
I
(

Yt(A
C); Zt(A)/Yt(A)

)

≤ H (Zt(A)) and Zt(A) is com-
pletely determined by the succesful transmissions fromAc to
A. SinceYi and Zi are binary,H (Zt(A

c)) is less than the
maximum number of succesful transmission fromAc to A
in a single slot, i.e.H (Zt(A

c)) ≤ C(A) information bits.
Additionally Def. 3.7 implies that|S| = D(A) and hence we
have

D(A)R ≤ C(A)

Finally note that if a multicast rate from a source to multiple
destinations is feasible, then clearly it is feasible to achieve
the same rate to any one arbitrarily chosen node from this set
of destinations. HenceCm(n) ≤ R impying that

Cm(n) ≤ C(A)

D(A)
= ΓA (9)

for any arbitrary cutA.
It should be highlighted that the above deductions imply

that the maximum multicast flow-rate is less than the sparsity
of any arbitrary cut. Thus, to obtain an upper bound on the
network capacity, we are free to choose a regionA of any
arbitrary shape and size. In this work we shall utilize cuts of
square shape as shown in Fig.2, with lengthLA = 4lA, i.e.,
each side of the squareA has lengthlA. The parameterlA
plays a crucial role in deducing the required upper bounds. In
particular, we chooselA so as to guarantee that the demand
D(A) = Θ(n).

Fig. 2. Cut Capacity under Protocol Model

Lemma 4.2:In a random network withn nodes, each acting
as source form randomly chosen nodes, for everyǫ ≥ 0 if

lA =
1

√

(1 + ǫ)m
for m ≤ 1

4(1 + ǫ)r(n)2
(10)

lA = 2r(n) for m ≥ 1

4(1 + ǫ)r(n)2
(11)

then for any1 ≥ δ1 ≥ 0 andn such that n
log(2n) ≥ 3

δ2
1c1

, w.h.p
we have

D(A) ≥ (1 − δ1)nc1 (12)
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wherec1 =
(

1 − 1
1+ǫ

)

(

1 − 1

e
1

1+ǫ

)

.

Proof: Let q be the probability that a randomly chosen
nodei has demand across cutA. Thus,

q = Pr(i ∈ Ac) × Pr(at least one destination ofi ∈ A)

≥ (1 − ‖A‖)(1 − (1 − ‖A‖)m) =
(

1 − l2A
) (

1 −
(

1 − l2A
)m)

Now, note that 1√
1+ǫ

≥ lA ≥ 1√
(1+ǫ)m

for all m. Hence, we

have

q ≥
(

1 − 1

1 + ǫ

)(

1 −
(

1 − 1

(1 + ǫ)m

)m)

≥
(

1 − 1

1 + ǫ

)(

1 − 1

e
1

1+ǫ

)

= c1 (13)

where the second inequality follows from the well-known fact
that e−x ≥ (1 − x) for any 1 ≥ x ≥ 0.

Let Yi be an indicator variable that is equal to one if the
nodei has demand across cutA. ThusPr(Yi = 1) = q and
D(A) =

∑

i=1:n Yi. Hence, the Chernoff bound of Eq. (6)
from Lemma 3.9 further implies that

Pr(D(A) ≤ (1 − δ1)nq) ≤ 2e
−δ2

1nq

3 (14)

Now n
log(2n) ≥ 3

δ2
1c1

guarantees that

Pr(D(A) ≤ (1 − δ1)nq) ≤ 1

n
(15)

A choice oflA = 1√
(1+ǫ1)m

can be used in the above lemma

for all m, and such a condition would be sufficient to prove
the required result that demandD(A) ≥ (1 − δ1)nc1 w.h.p.
However, in the following analysis we require thatlA ≥ 2r(n).
Therefore, we introduce the condition thatlA = 2r(n) for
m ≥ 1

4(1+ǫ1)r(n)2 . Note that if m ≥ 1
4(1+ǫ1)r(n)2 , then

2r(n) ≥ 1√
(1+ǫ1)m

.

We invoke the following important observation to obtain an
upperbound on the cut-capacity.

Remark 4.3:In [16], it was observed that in any time
slot, a disk of radius∆r(n)

2 centered at each receiver in that
slot should be disjoint. However, this fact does not apply to
the case in which nodes exploit broadcast transmissions, as
is done when nodes are capable of employing NC. Indeed,
as shown in Fig.2, the disks can overlap if the associated
nodes are receiving identical information from a common
transmitter. Nevertheless, as highlighted in [5], even under the
NC assumption, the union of the disks centered at the receivers
of one transmission should be disjoint from the union of the
disks centered at the receivers of another transmission.

Lemma 4.4:If a square-shaped cutA has side-lengthlA ≥
2r(n), then the cut capacity satisfies

C(A) ≤ 16LA

π∆2r(n)
(16)

under the protocol model.
Proof: In the protocol model, the distance between a

transmitter and a receiver is bounded byr(n). Hence, any

node in A that receives a transmission fromAc should lie
within a distancer(n) from the boundary of the cut, i.e., all
the receivers must be placed within an annular region of area

l2A − (lA − 2r(n))2

= 4lAr(n) − 4r(n)2

≤ 4lAr(n) = LAr(n) (17)

where the lengthLA of the cut is the perimeter of the region
A.

We observe that each transmission across the cut will
not allow any more transmission within an area of at least
π∆2r(n)2

4 . Additionally, at least14 of this area has to fall within
the annular region near the cut boundary. Therefore,

C(A) = max. no. of transmissions fromAc to A

≤ Area of annular region
π∆2r(n)2

4×4

=
16LA

π∆2r(n)
(18)

Theorem 4.5:Under the protocol model, the multicast ca-
pacity of a random geometric network with NC has the
following upper bound w.h.p

Cm(n) =
c2

√

3(1 + ǫ1)mnlog(n)
if m ≤ n(1 + ǫ1)

−1

12log(n)

Cm(n) =
2c2

n
if m ≥ n(1 + ǫ1)

−1

12log(n)
(19)

when n
log(2n) ≥ 3

δ2
1c1

, wherec2 = 64(1+ǫ1)e
1

1+ǫ1

π∆2ǫ1(1−δ1)(e
1

1+ǫ1 −1)
and

δ1, ǫ1 ≥ 0
Proof: On account of Lemma 4.1, we can obtain an upper

bound on the network capacity by just providing a bound for
the sparsityΓA. Furthermore note thatLA = 4lA, and hence
due to Lemma 4.4 we can say that for allla ≥ 2r(n) we have

Cm(n) ≤ 64lA
π∆2r(n)D(A)

. (20)

Considerm ≥ 1
4(1+ǫ1)r(n)2 . If we chooselA = 2r(n), then

from Lemma 4.2 we have that for alln such that n
log(2n) ≥

3
δ2
1c1

w.h.p. we haveD(A) ≥ (1 − δ1)nc1. Therefore,

Cm(n) ≤ 128

π∆2(1 − δ1)nc1
(21)

Similarly, if we choose lA = 1√
(1+ǫ)m

for all m ≤
1

4(1+ǫ1)r(n)2 , we have

Cm(n) ≤
64 1√

(1+ǫ1)m

π∆2(1 − δ1)r(n)nc1
. (22)

Note that, for allm ≤ 1
4(1+ǫ1)r(n)2 , Cm(n) is maximized

by choosing the smallest possible value ofr(n). Nevertheless
the Connectivity Criteria (Lemma 3.2) requires thatr(n) ≥
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√

3log(n)
n

. The final result is obtained by substituting the value

of c1 andr(n) =
√

3log(n)
n

in Eqs. 21-22.
The multicast capacity under pure routing has been charac-

terized in [13], [14].
Theorem 4.6: [13], [14] Under the protocol model, the

multicast capacity of a random geometric network with routing
has a tight bound of

Cm(n) = Θ

(

1√
mnlog(n)

)

if m = O
(

n
log(n)

)

(23)

Cm(n) = Θ
(

1
n

)

if m = Ω
(

n
log(n)

)

(24)

Network coding (NC) is a generalization of routing and
thus any capacity achieved by routing is necessarily achieved
by NC. Hence,

Theorem 4.7:Under the protocol model, the multicast ca-
pacity of a random geometric network with NC has a tight
bound equal to

Cm(n) = Θ

(

1√
mnlog(n)

)

if m = O
(

n
log(n)

)

(25)

Cm(n) = Θ
(

1
n

)

if m = Ω
(

n
log(n)

)

(26)

Finally, we can arrive at the following conclusion.
Corollary 4.8: The multicast throughput order gain pro-

vided by NC over routing in a random geometric network
is O(1) under the protocol model.

V. BOUNDS FORPHYSICAL MODEL

In order to prove the upper bound under the physical model
we utilize a circular cut, instead of square shaped cut, with
radius rA as shown in Fig. 3. Additionally, we utilize the
following property of the physical model. A similar property
of ”straight-lined cuts” has also been utilized by Liu, et. al.
[6].

rA
O

R1

S1

S2

E1

F

I2

I1

J2

E2

Fig. 3. Geometric property of transmissions across the cut

Lemma 5.1:Consider a circular cutA of radius rA with
its center at pointO. Let S1 andS2 be two nodes outsideA
transmitting across the cut in the same slot. We claim that the
arc subtended by angle∠S1OS2 on cutA has a length of at
least

∆1rAmax{L1, L2}
rA + max{L1, L2}

(27)

where ∆1 =
(

β
1
α − 1

)

and Li represents the (minimum)
distance of transmitterSi from cut A.

Proof: Without loss of generality we can assume thatS1,
S2 are placed as shown in Fig. 3 andL1 ≥ L2. In Fig. 3 the
raysOS1 andOS2 intersect the cutA atI1 andI2 respectively.
Therefore,L1 = ‖S1I1‖ and L2 = ‖S2I2‖. Furthermore,
the length of segmentI1I2 is less than the length of the arc
subtended by∠S1OS2. Hence, in order to prove the claim, it
is sufficient to show that

‖I1I2‖ ≥ ∆1rA‖S1I1‖
rA + ‖S1I1‖

(28)

Consider a receiverR1 that lies insideA and can success-
fully decode a transmission fromS1. It follows from Eq. 2 in
Definition 3.3 that

P‖S1R1‖−α

BNo + P‖S2R1‖−α
≥ β

=⇒ ‖S2R1‖ ≥ β
1
α ‖S1R1‖ = (1 + ∆1)‖S1R1‖(29)

Consider the triangle formed byS1, S2 andR1, as shown
in Fig. 3. Now draw a perpendicular fromS1 to F , which is
a point on segmentS2R1. Note that‖FR1‖ ≤ ‖S1R1‖ and
hence it is easy to show that‖S2F‖ ≥ ∆1|S1R1|. Now draw
a line throughS2 parallel to segmentI1I2 and drop a perpen-
dicular S1E1 on this line. Since∠S1S2E1 ≤ ∠S1S2R1, we
have cos (∠S1S2E1) ≥ cos (∠S1S2R1), which implies that
|S2E1| ≥ |S2F |. Similarly draw a line throughS1 parallel
to I1I2. Let this line intersect the rayOS2 at J2. Drop a
perpendicularS2E2 on lineS1J2. Since the triangleS1OJ2 is
isosceles,∠S1J2S2 is acute and henceE2 should lie within the
segmentS1J2. Hence,‖S1J2‖ ≥ ‖S1E2‖. SinceS2E1S1E2

forms a rectangle we get‖S1J2‖ ≥ ∆1|S1R1|. Finally, we
note that‖S1R1‖ ≥ ‖S1I1‖ becauseS1I1 is the shortest
distance betweenS1 and circleA. Hence,

‖S1J2‖ ≥ ∆1‖S1I1‖ (30)

Consider the triangleOS1J2. The Basic Proportionality The-
orem implies that

‖I1I2‖ =
‖S1J2‖‖OI1‖

‖OS1‖
(31)

Substituting Eq. 30 in Eq. 31 proves the claim in Eq. 28
Theorem 5.2:Under the physical model, the multicast ca-

pacity of a random geometric network with NC has the
following upper bound w.h.p

Cm(n) = O

(

1√
mn

)

, (32)
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whenm = O
(

n
log(n)2

)

andn → ∞.

Proof: Consider a circular cutA with radiusrA = 1
4
√

m
.

Divide the regionAc, as shown in Fig. 4, into sub-regionB
andAc − B, where theB is an annular region of width1√

n
.

Let nB andnAC−B be the maximum number of nodes, from
regionB and regionAc − B respectively,that can transmit to
regionA in a single time slot. Hence,

C(A) ≤ nB + nAc−B (33)

Fig. 4. Cut Capacity under Physical Model

A transmission from any node in regionAc−B to any node
in regionA has a minimum hop-length of1√

n
. Consequently,

Lemma 5.1 implies that any two transmitters inAc − B, that
transmit in the same slot, have to be separated such that they

subtend an arc onA of length at least
∆1rA

1√
n

rA+ 1√
n

. Since the

circumference ofA is 2πrA we have

nAc−B ≤ 2πrA ×
rA + 1√

n

∆1rA
1√
n

=
2π

∆1

( √
n

4
√

m
+ 1

)

≤ 5π
√

n

2∆1
√

m
(34)

To obtain a bound onnB, observe that the area of regionB
is given by

|B| = π

(

rA +
1√
n

)2

− πr2
A

=
2πrA√

n
+

π

n
≤ π

2
√

mn
+

π√
mn

≤ 3π

2
√

mn
(35)

If m = O
(

n
(log(n))2

)

, there exists a constantc3 ≥ 0 such that

|B| ≤ c3log(n)

n
(36)

The total number of nodes inB is necessarily greater than
nB. Therefore, the Chernoff Bound of Eq. 6 implies that, for

any δ2 ≥ 0, we have

Pr

(

nB ≤ 3π(1 + δ2)
√

n

2
√

m

)

≤ 2e
−δ2

2n|B|
3

≤ 2e
−δ2

2log(n)

3c3 =
2

n
δ2
2

3c3

. (37)

Consequently, if we chooseδ2 ≥ 3c3, then asn → ∞ w.h.p
we have

C(A) ≤ 3π(1 + δ2)
√

n

2
√

m
+

5π
√

n

2∆1
√

m

=
π(3(1 + δ2)∆1 + 5)

√
n

2∆1
√

m
(38)

In the previous section, we have already shown that w.h.p
the demand across square shaped cut with areaO( 1

m
) is of

the order ofΘ(n). Such a property is valid for circular cuts
also. Letq1 be probablity that a source node inAc has at least
one of itsm destinations in the circleA. We can show that

q1 ≥
(

1 − 1

16

)(

1 −
(

1 − 1

16m

)m)

=
15
(

1 − e
1
16

)

16
= c4 (39)

The Chernoff Bound of Eq. 7 implies that there exists a1 ≥
δ1 ≥ 0 such that asn → ∞ w.h.p. D(A) ≥ (1 − δ1)c4n.
Therefore, the Sparsity bound from Lemma 4.1, along with
Eqs. 38 and 39 implies that w.h.p.

Cm(n) ≤
(

π(3(1 + δ2)∆1 + 5)

2∆1(1 − δ1)c4

)

1√
mn

(40)

The mathematical techniques used in the above proof cannot
be utilized to obtain a upper bound on multicast capacity of
NC for all values ofm. In particular note that Eq. 36 and
hence the convergence condition in Eq. 37 requires thatm =

O
(

n
(log(n))2

)

. Therefore, we consider an alternative approach
to obtain upperbounds. This approach shall give us a tighter
upper bound form = Ω

(

n
log(n)

)

.
Theorem 5.3:Under the physical model, the multicast ca-

pacity in a random geometric network with NC has the
following upper bound w.h.p.

Cm(n) = O

(

1

mlog(n)

)

if m ≤ n

log(n)
(41)

Cm(n) = O

(

1

n

)

if m ≥ n

log(n)
(42)

Proof: Decompose the network into squarelets of side-

length
√

log(n)
9n

. Let J be an event that there exists a squarelet

containingat least (1−δ3)log(n)
9n

nodes, where1 ≥ δ3 ≥ 0,
with all its eight adjoining squarelets empty. The eventJ is
illustrated in Fig. 5. We are interested in showing that the event
J occurs w.h.p. Letη represent the total number of nodes in a
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squarelet,p1 = Pr(η = 0) andp2 = Pr
(

η ≤ (1−δ3)log(n)
9n

)

,
where1 ≥ δ3 ≥ 0. p1 can be computed as

p1 =

(

1 − log(n)

9n

)n

= e
−log(n)

9 = n
−1
9 . (43)

We used the fact thatlimn→∞
(

1 − a
n

)n
= e−a.

s A B

Fig. 5. Clustering of nodes

In addition, Eq. 6 implies that

p2 = Pr
(

η ≤ (1−δ3)log(n)
9n

)

≤ 2e
−δ2

3log(n)

27 = 2n
−δ2

3
27 . (44)

Therefore, asn → ∞, in the limit we have

Pr(J) ≥ 1 − (1 − (1 − p2)p
8
1)

9n
log(n)

≥ 1 − (1 − (1 − 2n
−δ2

3
27 )n

−8
9 )

9n
log(n)

≥ 1 −
((

1 − n
1
9 (1 − 2n

−1
27 )

n

)n)
9

log(n)

= 1 − e−9 n
1
9 (1−2n

−1
27 )

log(n) = 1. (45)

Note that e−9 n
1
9 (1−2n

−1
27 )

log(n) approaches zero faster than1
n

whenn → ∞.
Let us choose a circular cutA of radiusrA = ls√

2
such that

A circumscribes a squarelet satisfying propertyJ . Observe that
we can draw another circleB of radiusrB = 3ls

2 concentric
to A, such that all nodes that transmit across the cutA are
placed outsideB. Therefore the minimum hop-length of any
transmission across the cutA is atleastrB − rA. Therefore
Lemma 5.1 implies that

C(A) ≤ 2πrA × rA + (rB − rA)

∆1rA(rB − rA)
=

2πrA

∆1(rB − rA)

=
2π ls√

2

∆1

(

3ls
2 − ls√

2

) =
π2

√
2

∆1(3 −
√

2)
= c5 (46)

Now let p3 be the probability that a source has demand
across cutA. Observe that all the nodes inside the circleA

are within the middle squarelet. Hence the Chernoff Bound
can be used to show that asn → ∞ w.h.p the total number of
nodes outside the circleA are at leastn− (1+δ4)log(n)

9 , where
δ4 ≥ 0. Therefore, asn → ∞ w.h.p.,

p3 =

(

1 − (1 + δ4)log(9n)

n

)(

1 −
(

1 − (1 − δ3)log(n)

9n

)m)

=
(

1 − e
−m(1−δ3)log(n)

9n

)

(47)

In the above equation we havep3 = Θ(1) when m =

Ω
(

n
log(n)

)

, while whenm = O
(

n
log(n)

)

we have that

p3 ≥ m(1 − δ3)log(n)

9n
(48)

Therefore, an application of Eq. 7 allows us to show that
D(A) = Ω(mlog(n)) whenm = O

(

n
log(n)

)

, while D(A) =

Ω(n) when m = Ω
(

n
log(n)

)

. We get the final result by

calculating the sparsityΓA = C(A)
D(A) which, as established by

Lemma 4.1 provides an upperbound for the capacityCm(n).

The upper bounds stated in the above theorem are identical
to those of Theorem 2 in [15] and the initial steps in our
proof are similar to those in [15]. However, we highlight that
our eventual argument utilizes the geometric properties ofthe
cut and hence is distinct from [15]. In particular, the claims
and the proof in [15] is applicable only to routing, while our
bounds apply to NC.

Keshavarz et. al. [15] have established the following lower
bound on the multicast capacity under routing.

Theorem 5.4:Under the physical model, the multicast ca-
pacity of a random geometric network with routing has the
following lower bound w.h.p.

Cm(n) = Ω
(

1√
mn

)

if m ≤ n

log(n)3
(49)

Cm(n) = Ω

(

1

m
√

log(n)3

)

if
n

log(n)3
≤ m ≤ n

log(n)2
(50)

Cm(n) = Ω

(

1√
mnlog(n)

)

if
n

log(n)2
≤ m ≤ n

log(n)
(51)

Cm(n) = Ω
(

1
n

)

if
n

log(n)
≤ m (52)

Given that any capacity achieved by routing is necessarily
achievable by NC, putting together the deductions up to this
point, we arrive at the following result.

Theorem 5.5:Under the physical model, the multicast ca-
pacity in a random geometric network with NC has a tight
bound w.h.p. of

Cm(n) = Θ
(

1√
mn

)

if m ≤ n
log(n)3 (53)

Cm(n) = Θ
(

1
n

)

if n
log(n) ≤ m. (54)

Consequently,
Corollary 5.6: In a random geometric network withn

nodes and for values ofm ≤ n
log(n)3 and n

log(n) ≤ m, the
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multicast throughput order gain provided by NC over routing
is O(1) under the physical model.

VI. CONCLUSION

Network coding (NC) has received considerable attention,
and recent results for specific instantiations of NC have led
many to infer that NC could lead to order throughput gains
for multicasting in wireless networks. In this work, we usedthe
protocol and physical models to show that the order throughput
gain derived from NC for multicasting and broadcasting in
wireless networks is bounded by a constant. That is, as the
network size increases, NC renders the same order throughput
as traditional store-and-forward routing. However for values
of n

log(n)3 ≤ m ≤ n
log(n) , there is a gap between NC and

traditional routing. It is the subject of future work to investigate
whether this gap can be closed (see Fig. 6).

Despite this negative result on order throughput for NC,
constant-factor gains should not be ignored in practice, and
NC may still prove to have much utility in wireless networks.

Fig. 6. Throughput Order of Network Coding
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