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Multicast Throughput Order of Network Coding in
Wireless Ad-hoc Networks

Shirish S. Karande, Member, IEEE, Zheng Wang, Member, IEEE, Hamid R. Sadjadpour, Senior Member, IEEE,
and J.J. Garcia-Luna-Aceves, Fellow, IEEE

Abstract—We consider a network with n nodes distributed
uniformly in a unit square. We show that, under the protocol
model, when n, = Q (log(n)'™®) out of the n nodes, each
act as source of independent information for a multicast group
consisting of m randomly chosen destinations, the per-session
capacity in the presence of network coding (NC) has a tight

bound of 6( O( ) and O(;-)

when m = Q(ﬁ) In the case of the physical model, we
consider n; = n and show that the per-session capacity under
the physical model has a tight bound of © (ﬁ) when m =

o (W), and © (%) whenm = Q (m
shown that these same order bounds are achievable utilizing only
traditional store-and-forward methods. Consequently, our work
implies that the network coding gain is bounded by a constant
for all values of m. For the physical model we have an exception

to the above conclusion when m is bounded by O (m) and

when m = Toofmy
ns og(n)

). Prior work has

Q (ﬁ) In this range, the network coding gain is bounded
by O ((log(n))}).

Index Terms—Capacity, multicast, network coding.

I. INTRODUCTION

HE concept of network coding was first introduced by
Yeung and Zhang [1] and subsequently generalized by
Ahlswede et al. [2] for a single source multicast in arbitrary
directed graphs. Since then, many studies have investigated the
benefits of using network coding (NC) in wireless networks.
Recent work [3], [4] has shown that the throughput gain
due to the use of NC in a wireless network is bounded
by a constant when the traffic in the network consists of
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multiple unicast sessions. However, the original motivation
for the work by Ahlswede et. al [2] was the improvement in
network performance for multicasting, not unicasting. Further-
more, under conventional routing, several works [5]-[12] have
demonstrated that broadcasting and multicasting can signifi-
cantly alter the throughput order of wireless networks. Hence,
conclusions about the order gain for the unicast capacity
cannot be used to determin whether NC can provide any order
increase in the multicast capacity of wireless networks.

Recently, widely cited experiments [13], [14] have been
reported in which NC has been used successfully in com-
bination with other mechanisms to attain large throughput
gains compared to approaches based on conventional protocol
stacks. These empirical results have led many to believe that
the combination of NC with wireless broadcasting can lead
to significant improvements in the multicast throughput order
of wireless networks. However, the exact characterization of
the multicast order capacity of NC in wireless networks has
remained unresolved, with only limited results having been
reported to date on the subject.

In this work, under the same standard assumptions in the
literature, we undertake the characterization of the multicast
and broadcast throughput order of static wireless ad-hoc
networks in presence of network coding. Namely, we consider
a network consisting of n nodes distributed randomly in the
network space, with ng of the n nodes acting as a multicast
source each of a group of m randomly chosen nodes in the
network.

0090-6778/11$25.00 © 2011 IEEE
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The first contribution of this paper is to show that, under
the protocol model and with n, = Q (log(n)'™®) s.t. a > 0,
the per-session multicast capacity of random wireless ad hoc
network in the presence of arbitrary NC ! has a tight bound of

6 (n\/mi‘/l_”o—g(n) when m = O(p; ), and of ©(;-) when
m = Q(%) The second contribution of this paper is to

show that, under the physical model, the per-session multicast
capacity of random wireless ad hoc network with ng = n

and arbitrary NC has a tight bound of © (ﬁ) when m =

0] (ﬁ) and © (%) when m = &% .

It has already been established in the literature that the
above bounds are achievable using traditional store-and-
forward routing methods. Consequently, as described by Fig.
1, our analysis demonstrates conclusively that the throughput
gain due to NC for multicasting and broadcasting is bounded
by a constant factor! We have an exception to the above
conclusion for the physical model when m is bounded by
(@) (m) and (m) It is the subject of future work
to investigate whether this gap can be closed.

The remainder of this paper is organized as follows. Section
II surveys relevant prior work. Section III describes the
network models and other concepts used in proofs. Section
IV deduces the capacity results under the protocol model,
and Section V addresses the physical model. Section VI
summarizes our conclusions.

II. RELATED WORK

Our literature review focuses on prior work addressing
the capacity of multicasting and broadcasting in wireless
networks, and the capacity of NC in wireless networks.

A. Prior Results Assuming Traditional Store-and-Forward

We first summarize prior results on the order capacity of
broadcasting and multicasting under conventional store-and-
forward routing.

Tavli [5] showed that the per-node broadcast capacity of
arbitrary networks is bounded by © (n~'), where n is the
number of network nodes. Zheng [6] derived the broadcast
capacity of power-constrained networks, together with another
quantity called "information diffusion rate." Lastly, Keshavarz
et al. [7] computed the broadcast capacity for any number of
sources in the network.

Several efforts have addressed the multicast capacity of
wireless networks, primarily under the protocol model. Jacquet
and Rodolakis [8] proved that the scaling of the multicast
capacity is decreased by a factor of O(y/m) compared to the
unicast capacity result by Gupta and Kumar [15]. This result
implies that the gain attained with multicasting compared to
transmitting the same information to each of the m multicast
receivers as unicasts is at least ©(y/m).

The work by Shakkottai et al. [9] assumes there are n°
multicast sources and n'~¢ destinations per flow for some
€ > 0. The results from this work are limited in scope, because
of its constraints on the number of sources and destinations.

! Arbitrary NC implies that a transmitted symbol can be an arbitrary
function of all the symbols received and generated at a node.
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Li et al. [10] compute the capacity of wireless ad hoc net-
works for unicast, multicast, and broadcast applications. Wang
et al. [11] independently generalized this work and introduced
(n, m, k)-casting as a framework for the characterization of all
types of information dissemination in wireless networks.

Keshavarz et al. [12] studied the multicast and broadcast
capacity of wireless networks, considered the physical model,
and generalized the work in [16] to the multicast regime.
Recently, Li et al. reported results on the multicast capacity
of wireless networks under a Gaussian Channel model [17].
For n sources, the throughput order reported for the Gaussian
Channel model [17] is identical to that attained under the
Physical model [10], [11].

B. Prior Results on Network Coding

Ahlswede et al. [2] showed that NC can achieve the min-
cut bound for a single source multicast on a directed graph.
Since then, a number of theoretical results have been reported
for NC. We mention a select few, which provide bounds on
the NC gain over routing or provide max-flow min-cut type
inequalities that can be used to provide outer-bounds on the
rate region under NC.

Li et. al [18], [19] have studied the benefits of NC in
undirected networks. The result shows that, for a single unicast
or broadcast session, there is no throughput improvement due
to NC. In the case of a single multicast session, such an
improvement is bounded by a factor of two.

Borade [20] used the classical multi-terminal cut-set bounds
[21] to derive edge-cut outer bounds on the rate region under
NC for multi-source unicast and multicast. Subsequent studies
[22], [23] have shown that the (vertex) cut-set bounds are not
tight and improved bounds can be obtained by employing more
sophisticated edge-cuts.

Studies such as those summarized above [20], [22], [23]
do not readily capture the geometric constraints of multi-hop
communication in wireless ad-hoc networks. Nevertheless,
there has been prior work to determine the unicast throughput
order in wireless networks under NC. Liu et al. [3] have shown
that the gain of NC for unicast traffic in a random network
(i.e., a network in which the nodes are distributed randomly in
an Euclidean space and the sources and destinations are also
placed randomly) is bounded by a constant factor. Keshavarz
et al. [4] extended these conclusions to arbitrary networks and
an arbitrary unicast traffic pattern.

Physical network coding (PNC) [24] and analog network
coding (ANC) [25] have been proposed recently, which com-
bine NC with advanced processing at the physical layer that
allow receivers to decode multiple concurrent transmissions.
ANC was shown [25] to provide throughput gains when
compared with digital network coding (i.e., receivers decode at
most one packet at a time) and traditional routing (i.e., no NC
and receivers decode at most one packet at a time) operating in
simple network topologies in which ideal scheduling (i.e., no
MAI) is assumed for channel access. Throughput gains have
also been reported for PNC in simple topologies [24].

Recently, we have shown that the order throughput of a
wireless network can be increased by embracing interference
at the physical layer through multi-packet transmission (MPT)
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or reception (MPR), without the use of NC [26], [27]. Fur-
thermore, we have also shown [28] that using NC together
with MPT and MPR does not increase the order throughput
of a wireless network for multicasting compared to what MPR
and MPT can provide by themselves! What these results imply
is that similar throughput gains to those observed with ANC
could be attained in practice by embracing concurrency at the
physical layer without the need for NC.

Hence, the question remains as to whether NC by itself
can provide any gains on the multicast throughput order in
wireless networks.

The work presented in the rest of this paper differs from
our own recent results [28] in three important ways. In our
previous work [28], the sinks associated with each multicast
source are bounded by a constant, whereas in this paper the
number of sinks is a function of the network size n. Our
previous work [28] assumes that a node is capable of MPT
and MPR (i.e., receiving or transmitting distinct information
from multiple transmitters to multiple receivers at the same
time), whereas this paper assumes single-packet transmission
and reception. Lastly, our previous work [28] does not present
any results for an SINR model, while this paper addresses the
physical model.

II1. PRELIMINARIES

For a continuous region A, we use | A| to denote its area. We
denote the cardinality of a set S by [S|, and by || X; — Xj||
the distance between nodes ¢ and j. Whenever convenient,
we utilize the indicator function 1{ P} which is equal to one
if P is true and zero if P is false. Pr(E) represents the
probability of event E. We say that an event E occurs with
high probability (w.h.p.) if Pr(E) > (1 —(1/n)) as n — oc.
We employ the standard order notations O, €2, and O.

We assume that the topology of a network is described by
a uniformly random distribution of n nodes in a unit square.
Let V = 1,...,n represent the node-set and let X; be the
location of node ¢ € V. To avoid boundary effects, it is
typical to assume that the network surface is placed upon a
toroid or sphere. However, for mathematical convenience, in
this work we ignore edge effects and thus assume that the
network is placed in a 2-D plane. Further, in our model, as
n goes to infinity, the density of the network also goes to
infinity. Therefore, our analysis is applicable only to dense
networks. We do not consider mobility of nodes and assume
a static stationary distribution of nodes. Our capacity analysis
is based on both the protocol model and the physical model
introduced by Gupta and Kumar [15].

Definition 3.1: The Protocol Model
We assume that all nodes use an identical transmission range
r(n) for all their communication. Node ¢ can successfully
transmit to node j if for any node k& # 4, that transmits at
the same time as ¢ it is true that |X; — X;| < r(n) and
| Xk — X5 > (1+ A)r(n).

We shall utilize the following well known property [29] in
our analysis

Lemma 3.2: Connectivity Criteria
For a random distribution of n nodes in a unit-square, the net-
work connectivity under the protocol model can be guaranteed

w.h.p if and only if (iff)

r(n) > re(n) = %g(n). (1)

Definition 3.3: The Physical Model
All transmissions at all nodes utilize an identical transmission
power P. Node ¢ can successfully transmit to node j iff the
signal-to-interference/noise ratio (SINR) satisfies

BN i - >4, ©)

0+ 2 pri k=1 Pl
where h;; is the channel attenuation factor between nodes i
and j, and BNy is the total ambient noise power. We assume
that the channel attenuation factors are completely determined
by the path loss model and hence h;; = || X; — X;||~®. We
assume that 5 > 1 in all our analysis.

We assume that the data rate for each successful transmis-
sion is W bits/second, which is a constant value and does not
depend on n. Given that W does not change the order capacity
of the network, we normalize its value to one.

We should emphasize that the above model allows the
broadcast of common information from a transmitter to all
neighboring receivers that satisfy the interference and at-
tenuation conditions for successful reception. However, we
do not consider the case of MPT (or MPR), which allows
transmission (or reception) of unique information to (from)
multiple nodes at the same time. Thus, our model is similar
to those used by Li er al. [3] and Gupta and Kumar [15].

To appropriately model NC, we assume that the information
transmitted by a node can be an arbitrary function of the
information previously received by the node. Hence, our
results apply to any type of NC.

We focus on the traffic scenario in which each of ng nodes
of the wireless network acts as a multicast source for a
randomly chosen set of m destinations. > We assume that
ns = Q((log(n))**) for the protocol model, while we
restrict our attention to ny; = n for the physical model.

Definition 3.4: Feasible rate
In a wireless ad hoc network with n nodes in which each
source transmits its packets to m destinations, a throughput of
Am(n) bits per second for each multicast session is feasible
if there is a spatial and temporal scheme for scheduling
network-coded transmissions, such that every source node
can send A,,(n) bits per second on average to its m chosen
destination nodes, by operating the network in a multi-hop
fashion, and using coding and buffering at intermediate nodes
when awaiting transmission. That is, there is a 7' < oo such
that every node can send T'A,,(n) bits to its corresponding
destination nodes in every time interval [(i — 1)T,iT]. We
denote by C,(n) the maximum feasible rate.

Definition 3.5: Throughput Order
Cin(n) is said to be of order ©( f(n)) bits/second if there exist
deterministic positive constants ¢ and ¢’ such that

li_>m Prob (Cy,(n) = cf(n) is feasible) = 1
n o0
lim Prob (Cp,(n) = ¢ f(n) is feasible) < 1.
n—oo

SINR; ,; =

3)

2There exist (::L) distinct choices for node-sets of size m. Each of these
node-sets are chosen with equal probablity.
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Fig. 2. Generalized sparsity cut.

Definition 3.6: Vertex Cut
Given a node set V, a cut is the separation of the vertex set
V into two disjoint and exhaustive subsets (S, S). Here, a
vertex partition can be completely described by partitioning
the network-area into two region (A, A°) as shown in Fig. 2.
Thus, we also refer to a closed region A as a cut. The cut-
capacity C'(A) is defined as the maximum number of packets
that can be transmitted from A€ to A in a time unit.

Definition 3.7: Multicast Cut-Demand
Given a cut A, a source node in A€ is said to have demand
across the cut iff at least one of its destination lies in A.
The multicast demand D(A) across the cut is defined as the
total number of sources in A such that there is at least one
destination in the multicast group across the cut.

Definition 3.8: Sparsest Cut
We define the sparsity I'4 of cut A as the ratio

C(A)
Ta=—+= 4
47 D(A) X

Hence, the sparsest cut is given by
A" =arg II%DFA 5)

where A* has the least possible sparsity, denoted as I 4.

The notion of sparsity cut has been utilized in a number of
studies related to NC. The definition of Sparsity cut used by
Leighton and Rao [30] is applicable only to unicast traffic [3].
We employ a more generalized definition.

Studies such as that by Harvey et al. [23] define sparsity-
cuts in terms of edge-cuts, i.e., a cut does not lead to a graph
(vertex) separation [23]. We shall use the sparsity of a cut to
provide an upper bound on the rate achievable under NC. It
is important to understand that we are employing a definition
that is distinct from prior studies [23], because they [23] show
that, under an alternate definition, NC can exceed the bound
provided by a sparsity cut.

Finally we state the well-known Chernoff Bounds [31],
which shall be used repeatedly in the rest of this paper.

Lemma 3.9: Chernoff Bounds: Consider n i.i.d random
variables Y; € {0,1} withp =Pr(Y; =1). LetY =) " | ¥i.
Then, for any 1 > § > 0 and d > 0, we have

—5%np

Pr(Y <(1—61)np) <2 3

(6)
(N

—53np

Pr(Y > (14 d2)np) < 2e~ 5
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IV. BOUNDS FOR THE PROTOCOL MODEL

It is well-known that under its conventional definition, the
sparsity cut can be used to obtain an upper bound on the
unicast traffic flow in a wireless network [3], [30]. In a similar
way, our generalized definition provides an upper bound for
multicast flows. The following lemma is applicable to both
the protocol as well as the physical model.

Lemma 4.1: Let Cy,(n) be the maximum multicast flow-
rate in a network and let A* be the sparsest cut with sparsity
I 4+, then we have

Cm,(n) S 1—‘A’“ . (8)

Proof: Let f be the total maximum feasible average rate
at which bits can be transmitted from A€ to A, where A is
any arbitrary cut. Then by Def. 3.6 we have

f<c4) ®

The total information flow across a cut has to be greater
than or equal to the sum of the data rates associated with
individual multicast sessions that communicate across the cut.
Hence,

v

n
g Cm (n)l{source 4 has demand across cut A}
=1

n

Crm (n) § ]-{source 4 has demand across cut A}

i=1

= Cun(n)D(A). (10)
Inserting the above equation in Eq. 9 we have
c4)
|

The above deductions imply that the maximum multicast
flow-rate is less than the sparsity of any arbitrary cut. Thus,
to obtain an upper bound on the network capacity, we are free
to choose a region A of any arbitrary shape and size. In this
section, we utilize cuts of square shape with length L4 = 4l 4,
i.e., each side of the square A has length [ 4. This is illustrated
in Fig. 3. The parameter [4 plays a crucial role in deducing
the required upper bounds. In particular, we choose [4 so as
to guarantee that the demand D(A) = O(n).

Lemma 4.2: In a random network with ng
Q ((log(n))***) of the n nodes act as source for groups
of m randomly chosen destination nodes, for every o > 0,
e>0and 1>6; >0 if

1 1
lfp = —— form< ———— 12
4 (1+¢e)m = 4(1+ €e)r(n)? (12
1
=9 f > 1
la =2r(n) or m > 05 ) (13)
then as n — oo, w.h.p we have
D(A) Z (1 - 61)7’1361 (14)

Whereq:(l— 1) 1-— L

1+e eTTe
Proof: Let g be the probability that a randomly chosen
node ¢ has demand across cut A. Thus,
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Fig. 3. Cut capacity under protocol model.
g = Pr(i € A°) x Pr(at least one destination of i € A)
> (L= AP =@ =[AD™)

(1-3) (1-(1-2)")

1 1
L > > - X
Now, note that Tite 2 la > o for all m. Hence,

15)

we have

¢> <1—1i6> <1‘<1‘(1+%>m>m>
= <1_1—1F6> <1_ellif>_01

where the second inequality follows from the well-known fact
that e=* > (1 — ) forany 0 <z < 1.

Let Y; be an indicator variable that is equal to one if the
node 4 has demand across cut A. Thus, Pr(Y; = 1) = ¢ and
D(A) =", .., Y:, and the Chernoff bound of Eq. (6) from
Lemma 3.9 further implies that

(16)

—82nsq

Pr(D(A) < (1—101)nsq) <2 3

Now % > 523(;1 guarantees that Pr(D(A) < (1 —
1

51)”8(]) < % n
L can be used in the above

A choice of lA = ﬁ
€1)m

lemma for all m, and such a condition would be sufficient to
prove the required result that demand D(A) > (1 — 01)nscy
w.h.p. However, in the following analysis we require
that {4 > 2r(n). Therefore, we introduce the condition
that {4 = 2r(n) for m > Note that if

1
L 4(1—&1-51)r(n)2 :
m Z W, then QT(TZ) Z m

a7)

We invoke the following important observation to obtain an
upper bound on the cut-capacity.

Remark 4.3: Gupta and Kumar [15] observed that, in any
time slot, a disk of radius ATT(") centered at each receiver in
that slot should be disjoint. However, this fact does not apply
to the case in which nodes exploit broadcast transmissions, as
is done when nodes are capable of employing NC. Indeed, as

Fig. 3 illustrates, the disks can overlap if the associated nodes
are receiving identical information from a common transmitter.
Nevertheless, as highlighted by Li et al. [3], even under the
NC assumption, the union of the disks centered at the receivers
of one transmission should be disjoint from the union of the
disks centered at the receivers of another transmission, given
that no MPR is assumed.

Lemma 4.4: Under the protocol model, if a square-shaped
cut A has side length [4 > 2r(n), then the cut capacity
satisfies 1614

C(A) <

~ wA?r(n) (18)

Proof: In the protocol model, the distance between a
transmitter and a receiver is bounded by r(n). Hence, any
node in A that receives a transmission from A€ should lie
within a distance r(n) from the boundary of the cut, i.e., all
the receivers must be placed within an annular region of area

1124 —(la— 27“(71))2 = 4lyr(n) — 47“(71)2

< 4lar(n) = Lar(n) (19)

where the length L4 of the cut is the perimeter of the region
A.

We observe that each transmission across the cut does
not allow any more transmissions within an area of at least
Lz(”)z. Additionally, at least i of this area has to fall within
the annular region near the cut boundary. Therefore,

C(A) =

max. no. of transmissions from A° to A

Area of annular region 16L 4
< =
- wA2%r(n)? 7TA27“(’I’L) (20)
4x4
|

Theorem 4.5: Under the protocol model, as n — oo, the
multicast capacity of a random geometric network with NC
has the following upper bound w.h.p

~1

Chn(n) = cay/n ifm < M
nsy/15(1 + e1)mlog(n) 60log(n)

(2D

2co . n(1+61)71

m(n) = fm > ———F—
Com () Ng rm= 60log(n)

(22)

where n, = Q((log(n))'*®) st. o > 0, o =

64(14ey)e THeL
TA2e1(1-61)(e 1‘*'1"1 —1)

Proof: On account of Lemma 4.1, we can obtain an upper
bound on the network capacity by just providing a bound for
the sparsity I' 4. Furthermore, note that L 4 = 4l 4; hence, due
to Lemma 4.4 we can say that for all [, > 2r(n) we have

and (51,61 Z 0

64l 4
Cm <L ———— 23
Y 23)
Consider m > m. If we choose l4 = 2r(n),

then from Lemma 4.2 w.h.p we have D(A) > (1 — §1)nsc.
Therefore,
128

R
Cm(n) < 7A2(1 — §1)nseq

(24)
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1

Similarly, if we choose [4 for all m <

) (14e)m
m, we have
64——t—
Cm(n) < \/ €1)m (25)

7A2(1 — 61)r(n)nser

Note that C, (n) is maximized for all m < m by
choosing the smallest possible value of r(n). Nevertheless
the Connectivity Criteria (Lemma 3.2) requires that r(n) >

A/ %g("). The final result is obtained by substituting the

value of ¢; and r(n) = 4/ %‘f(”) in Eqgs. 24-25. [ |
The multicast capacity under pure store-and-forward routing
has been characterized by Li ef al. [10] and Wang et al. [11]
and it is stated in the following theorem for the sake of
completeness.
Theorem 4.6: [10], [11] Under the protocol model, the
multicast capacity of a random geometric network with store-

and-forward routing has a tight bound of

1 . _ n
Cm(n) = © ( mnlog(n)) ifm =0 (Zog(n)) (20)

= (5) i) @

Network coding (NC) is a generalization of store-and-
forward routing and thus any capacity achieved by routing
is necessarily achieved by NC. Hence,

Theorem 4.7: Under the protocol model, the multicast ca-
pacity of a random geometric network with NC has a tight
bound equal to

ifm—Q(

n

Cpa(n) = © <W> ifm=0 (%) (28)
if m=Q (—> (29)

et =0 ) Tog ()

Finally, we can arrive at the following conclusion.

Corollary 4.8: The multicast throughput order gain pro-
vided by NC over store-and-forward routing in a random
geometric network is O(1) under the protocol model.

V. BOUNDS FOR THE PHYSICAL MODEL

To prove the upper bound under the physical model we
utilize a circular cut, instead of square shaped cut, with
radius r4 as shown in Fig. 4. Additionally, we utilize the
following property of the physical model. A similar property
of "straight-lined cuts" has also been utilized by Liu ef al. [3].

Lemma 5.1: Consider a circular cut A of radius r4 with
its center at point O. Let S; and S be two nodes outside A
transmitting across the cut in the same slot. We claim that the
arc subtended by angle £/57055 on cut A has a length of at

least
Arramaz{Ly, Lo}

ra +max{Ly, Lo}

where Aj ﬁ% — 12 and L; represents the (minimum)
distance of transmitter .S; from cut A.

Proof: Without loss of generality we can assume that S7,
Sy are placed as shown in Fig. 5 and L; > Ls. In Fig. 5 the

(30)
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o

Fig. 4. Cut capacity under physical model.

\ When |84 = ||Salo|

\
: ArralSili]| '
ra+lSiil

|h || >

Fig. 5. Geometric property of transmissions across the cut.

rays OS7 and OS5 intersect the cut A at I; and I5 respectively.
Therefore, Ly = ||S111|| and Lg = ||S212||. Furthermore, the
length of segment I;I5 is smaller than the length of the arc
subtended by £S70.S5. Hence, in order to prove the claim, it
is sufficient to show that

AgrallSily|

L ]| >
1112 > PV

€19

Consider a receiver R; that lies inside A and can success-
fully decode a transmission from S;. It follows from Eq. 2 in
Definition 3.3 that

P||S1R1||~ >3
BN, + P||52R1||7a
[S2R|| = B= Sy Rul| = (1 + A1)]|S1R1[[(32)

=

Consider the triangle formed by S, So and R;, as shown
in Fig. 5. Now draw a perpendicular from S; to F, which is
a point on segment S2R;. Note that |FRy|| < ||S1R:|| and
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hence it is easy to show that ||SoF|| > A;|S1R1|. Now draw
a line through S5 parallel to segment I;I5 and drop a per-
pendicular S1E7 on this line. Since £S1S2F, < £5152R;,
we have cos (£S5152E1) > cos(£51S2R1), which implies
that |SeE1| |SoF|. Similarly, draw a line through S
parallel to I11>. Let this line intersect the ray OSs at Js.
Drop a perpendicular So F» on line S;.J5. Because the triangle
S10Js is isosceles, £S1.J9S5 is acute and hence E5 should lie
within the segment S;.J;. Hence, ||S1J2]| > ||:S1E2||. Because
SoF151Ey forms a rectangle we get ||S1J2|| > Aq|S1Ri|-
Finally, we note that ||S1R1| > ||S111| because SiI; is the
shortest distance between S; and circle A. Hence,

[S1dall > Aq||Si| (33)

Consider the triangle OS;J5. The Basic Proportionality The-
orem implies that

151 J2[[[|OL |
105, ]|

Substituting Eq. 33 in Eq. 34 proves the claim in Eq. 31 ®

[ 1112]] = (34)

Theorem 5.2: Under the physical model, the multicast ca-
pacity of a random geometric network with NC has the

:0(1

following upper bound w.h.p C,,(n) o

) , when

m =0 (log(n) ) and n — oo.

Proof: Consider a circular cut A with radius r4 = ﬁ.
Divide the region A€, as shown in Fig. 4, into sub-region B
and A — B, where the B is an annular region of width —=
Let np and n 4c_ g be the maximum number of nodes, from
region B and region A¢ — B respectively,that can transmit to
region A in a single time slot. Hence,

C(A) <np+nae_p (35)

A transmission from any node in region A¢— B to any node
in region A has a minimum hop length of \/Lﬁ Consequently,
Lemma 5.1 implies that any two transmitters in A° — B that
transmit in the same slot have to be separated such that they

Given that

Aira 1
subtend an arc on A of length at least ———*.
the circumference of A is 27r 4, we have

271’7’,4 X

27r Vn 41 57r\/_

4\/_ - 2A \/_
To obtain a bound on np, observe that the area of region B
is given by

Nac—_B <

(36)

|B] =

- *2\/_ \/_ *2\/_ Gn

) Ifm=0 ((log?n))Q)’ there exists a constant ¢z > 0 such
that

(38)

.. //’ ™ .
F/ _‘\\,,,,}\:\, "."".'37 F
R\ Ils 2rp| 2rg
PN S | 8 P -
. ) \\‘ 1_7_,_,/// .
log(n) Ly __ 8,
19 3 n 9 T, \/—5, B B

Fig. 6. Clustering of nodes.

The total number of nodes in B is necessarily greater than
np. Therefore, the Chernoff bound of Eq. 6 implies that, for
any J2 > 0, we have

3r(1 + & —53n|B|
pr(ntM> < g
2y/m
—831log(n) 2
S 26 3c3 —=

P)
%5
n s

Consequently, if we choose d2 > 3cs, then as n — co w.h.p
we have

C(4) < 3r(1+d2)y/n | 5myn
2y/m 2A1y/m

_ m(3(1+02)A1 +5)v/n (39)

N 2A1/m

In the previous section, we have already shown that w.h.p
the demand across a square shaped cut with area O(%) is of
order ©(n). Such a property is valid for circular cuts also. Let
q1 be probability that a source node in A° has at least one of
its m destinations in the circle A. We can show that

1 m
1—-—= ) (1-(1- 1
16 16m
15 (1~ e7)
TR
The Chernoff Bound of Eq. 7 implies that there exists a
1 > 1 > 0 such that as n — oo wh.p. D(4) > (1 — §1)can.

Therefore, the Sparsity bound from Lemma 4.1, along with
Eqgs. 39 and 40 implies that w.h.p.

(3(1 4 92)A1 +5) 1
Cm(n) = ( 285 (1 — 01)es ) i

vV

q1

(40)

(41)

|

The mathematical techniques used in the above proof cannot
be used to obtain an upper bound on multicast capacity of
NC for all values of m. In particular, note that Eq. 38 and
hence the convergence condition in Eq. 39 requires that m =
0] (m) Therefore, we consider an alternative approach
to obtain upper bounds. This approach shall give us a tighter
upper bound for m = ) (log(n)g
Theorem 5.3: Under the physical model, the multicast ca-
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pacity in a random geometric network with NC has the
following upper bound w.h.p.
ifm< "

Con(n) =0 (W) = log(n)
if m >

et =0 () Toai)

Proof: Decompose the network into square-lets of side-
log(n)

(42)

(43)

length . Let J be the event that there exists a square-

let contamlng at least % nodes, where 1 > 3 > 0,
with all its eight adjoining square-lets empty. The event J is
illustrated in Fig. 6. We are interested in showing that the event
J occurs w.h.p. Let n represent the total number of nodes in a

Pr(n=0) and ps = Pr (7] < (=9s)log(n)

In ’
where 1 > 63 > 0. Using the fact that limg, o (1 — 5)" =
e~ %, p1 can be computed as

square-let, p; =

log(n)\"  —tes(m -1
=(1- =e 9 =n>vI. (44)
In
In addition, Eq. 6 implies that
py = Pr (77 < (17639>Tllog<n>)
—6210g(n) —5%
<2e 7 =2n727 . (45)
Therefore, as n — oo, in the limit we have
Pr(J) > 1-(1-(1-po)p})™io
-3 -8 9n
> 1-(1-(1-2n77 )n™d )lsm
9
1 N Tog(n)
ns(1—2n3r
n
1 -1
_gn9(1-2n37)
= l-—e log(n) =1. (46)
—1
"3 (1—2n27) 1
because e Tog(n) approaches zero faster than - when
n — Q.
Let us choose a circular cut A of radius r4 = such that
A circumscribes a square-let satisfying event J. &)serve that
we can draw another circle B of radius rg = 3ls concentric

2
to A, such that all nodes that transmit across the cut A are

placed outside B. Therefore, the minimum hop-length of any
transmission across the cut A is at least rg —r 4. Accordingly,
Lemma 5.1 implies that

ra+ (rg —ra) 271 4
C(A) < 2mra X —
S A Ayra(rg —ra)  Ai(rp—ra)
oL
vz V2w

Ay (% - L) T AGB—VR)

Now let ps be the probability that a source has demand
across cut A. Observe that all the nodes inside the circle A
are within the middle square-let. Hence, the Chernoff Bound
can be used to show that, as n — oo, w.h.p the total number
of nodes outside the circle A are at least n — (H‘s‘%w,
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where 64 > 0. Therefore, as n — co w.h.p.,

p3 =
(1 Lo blooon) (,_ (,_ (odog")
n In
_ (1 3 e*""“*gg)’““")) 48)
In the above equation we have p3 = ©(1) when m =
Q (% , while when m = O lo;zn) we have that
p3 > M (49)

In
Therefore, an application of Eq. 7 allows us to show that
D(A) = Q(mlog(n)) when m = O (%), while D(A) =

Q(n) when m = Q (W) We get the final result by

calculating the sparsity I'y = % which, as established by
Lemma 4.1 provides an upper bound for the capacity C,,(n).
|
The upper bounds stated in the above theorem are identical
to those of Theorem 2 in the work by Keshavarz-Haddad and
Riedi [12] and the initial steps in our proof are similar to
those they use [12]. However, we highlight that our eventual
argument utilizes the geometric properties of the cut and hence
is distinct from their work. In particular, the claims and the
proof by Keshavarz-Haddad and Riedi [12] are applicable only
to store-and-forward routing, while our bounds apply to NC.
Keshavarz-Haddad and Riedi [12] have established the
following lower bound on the multicast capacity under store-
and-forward routing.
Theorem 5.4: Under the physical model, the multicast ca-
pacity of a random geometric network with store-and-forward
routing has the following lower bound w.h.p.

1 n
Cm(n) =Q <W> if m < log(n)? (50)
1 . n n
Cm,(’n) =0 <7m log(n)3> if lOg(TL)S S S lOg(TL)2
(5D
1 n n
Cm, =0 | ——= = =
(’I’L) < mnlog(n)) log(n)2 <m< log(n)
(52)
1 n
Cm(n) =Q (E) if Tog (1) <m (53)

Given that any capacity achieved with store-and-forward rout-
ing is necessarily achievable with NC, putting together the
results we have presented up to this point, we arrive at the
following result.

Theorem 5.5: Under the physical model, the multicast ca-
pacity in a random geometric network with NC has a tight
bound w.h.p. of

Cin(n) =© (%)

if m<
lo

n
54
g(n)? S

<m (55)

n
f —
log(n) ~
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Accordingly, we have the following result.
Corollary 5.6: In a random geometric network with n
nodes and for values of m < 7 2 — and —2—~ < m, the
i . log(n); log(n)
multicast throughput order gain provided by NC over store-
and-forward routing is O(1) under the physical model.

VI. CONCLUSION

Network coding (NC) has received considerable attention,
and recent results for specific instantiations of NC have led
many to infer that NC could lead to order throughput gains
for multicasting in wireless networks. In this work, under
standard assumptions made in prior work regularly such as
uniform power, random traffic, and random node deployment,
we used the protocol and physical models to show that the
order throughput gain derived from NC for multicasting and
broadcasting in wireless networks is bounded by a constant.
That is, as the network size increases, NC renders the same
order throughput as traditional store-and-forward routing.

Despite our negative result on the multicast order through-
put for NC, the constant-factor gains that can be attained with
NC over store-and-forward routing should not be ignored, and
they may be of importance in practical settings. Hence, the
exact characterization of the constant remains an open problem
that merits further investigation. In addition, we highlight
that, heterogeneity in node deployment and traffic patterns,
power control and mobility, and signaling overhead can all
significantly impact the scaling law of the ad-hoc network.
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