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Multicast Topology Inference From Measured
End-to-End Loss

N. G. Duffield, Senior Member, IEEE, Joseph Horowitz, Francesco Lo Presti, and Don Towsley, Fellow, IEEE

Abstract—The use of multicast inference on end-to-end mea-
surement has recently been proposed as a means to infer network
internal characteristics such as packet link loss rate and delay.
In this paper, we propose three types of algorithm that use loss
measurements to infer the underlying multicast topology: i) a
grouping estimator that exploits the monotonicity of loss rates
with increasing path length; ii) a maximum-likelihood (ML)
estimator (MLE); and iii) a Bayesian estimator. We establish their
consistency, compare their complexity and accuracy, and analyze
the modes of failure and their asymptotic probabilities.

Index Terms—Communication networks, end-to-end measure-
ment, maximum-likelihood (ML) estimation, multicast, statistical
inference, topology discovery.

I. INTRODUCTION

A. Motivation

I N this paper, we propose and evaluate a number of algo-
rithms for the inference of logical multicast topologies from

end-to-end network measurements. All are developed from re-
cent work that shows how to infer per-link loss rate from mea-
sured end-to-end loss of multicast traffic. The idea behind this
approach is that performance characteristics across a number of
intersecting network paths can be combined to reveal character-
istics of the intersection of the paths. In this way, one can infer
characteristics across a portion of the path without requiring the
portion’s endpoints to terminate measurements.

The use of active multicast probes to perform measurements
is particularly well suited to this approach due to the inherent
correlations in packet loss seen at different receivers. Consider
a multicast routing tree connecting the probe source to a number
of receivers. When a probe packet is dispatched down the tree
from the source, a copy is sent down each descendant link from
every branch point encountered. By this action, one packet at the
source gives rise to a copy of the packet at each receiver. Thus,
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a packet reaching each member of a subset of receivers encoun-
ters identicalconditions between the source and the receivers’
closest common branch point in the tree.

This approach has been used to infer the per-link packet loss
probabilities for logical multicast trees with a known topology.
The maximum-likelihood estimator (MLE) for the link proba-
bilities was determined in [3] under the assumption that probe
loss occurs independently across links and between probes.
This estimate is somewhat robust with respect to violations of
this assumption. This approach will be discussed in more detail
presently.

The focus of the current paper is the extension of these
methods to infer thelogical topologywhen it is not known
in advance. This is motivated in part by ongoing work [1]
to incorporate the loss-based MLE into the National Internet
Measurement Infrastructure [14]. In this case, inference is per-
formed on end-to-end measurements arising from the exchange
of multicast probes between a number of measurement hosts
stationed in the Internet. The methods here can be used to
infer first the logical multicast topology, and then the loss rates
on the links in this topology. What we do not provide is an
algorithm for identifying the physical topology of a network.

A more important motivation for this work is that knowledge
of the multicast topology can be used by multicast applications.
It has been shown in [9] that organizing a set of receivers in a
bulk transfer application into a tree can substantially improve
performance. Such an organization is central component of the
widely used RMTP-II protocol [20]. The development of tree
construction algorithms for the purpose of supporting reliable
multicast has been identified to be of fundamental importance
by the Reliable Multicast Transport Group of the Internet En-
gineeirng Task Force (IETF); see [7]. This motivated the work
reported in [16], which was concerned with grouping multicast
receivers that share the same set of network bottlenecks from
the source for the purposes of congestion control. Closely re-
lated to [3], the approach of [16] is based on estimating packet
loss rates for the path between the source and the common an-
cestor of pairs of nodes in the special case of binary trees. Since
loss is a nondecreasing function of the path length, this quantity
should be maximal for a sibling pair. The whole binary tree is
reconstructed by iterating this procedure.

B. Contribution

This paper describes and evaluates three methods for infer-
ence of logical multicast topology from end-to-end multicast
measurements. Two of these, i) and ii) below, are directly based
on the MLE for link loss probabilities of [3], as recounted in
Section II. In more detail, the three methods are as follows.
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i) Grouping Classifiers:We extend the grouping method of
[16] to general trees, and establish its correctness. This
is done in two steps. First, in Section III, we apply and
extend the methods of [3] to establish a one-to-one cor-
respondence between the expected distribution of events
measurable at the leaves, and the underlying topology
and loss rates. In particular, we provide an algorithm
that reconstructs arbitrary (e.g., nonbinary) topologies
from the corresponding distributions of leaf-measurable
events. Second, in Section IV, we adapt the algorithm to
work with the empirical leaf-event distributions arising
from multicast end-to-end measurements. A complica-
tion arises through the fact that certain equalities that
hold for the expected distributions only hold approxi-
mately for the measured distributions. We propose and
evaluate three variants of the algorithm to overcome this.
One is based on the above reconstruction method for
general trees; the other two methods use binary grouping
operations to reconstruct a binary tree, which is then
manipulated to yield the inferred tree.

ii) Maximum-Likelihood (ML) Classifier:Given the mea-
sured end-to-end packet losses, the link loss estimator of
[3] associates a likelihood with each possible logical mul-
ticast tree connecting the source to the receivers. The ML
classifier selects that tree for which the likelihood is max-
imal. This estimator is presented in Section V.

iii) Bayesian Classifier:In this approach, the topology and
link probabilities are treated as random variables with
some prior distribution. In Bayesian decision theory, one
specifies a loss function that characterizes a penalty for
misclassification, then selects the topology that mini-
mizes the mean value of this penalty according to the
posterior distribution (i.e., the conditional distribution of
the parameters given the measurements). This estimator
is presented in Section VI.

In all cases, we establish that the classifiers are consistent,
i.e., the probability of correct classification converges toas
the number of probes grows to infinity. We establish connec-
tions among the grouping-based algorithms. In particular, the
general grouping-based algorithm is equivalent to the composi-
tion of the binary grouping algorithm with a pruning operation
that excises links of zero loss and identifies their endpoints. The
latter approach turns out to be computationally simpler.

The ML and Bayesian classifiers, embodying standard statis-
tical methods, provide reference points for the accuracy of the
grouping-based classifiers. In Section VII, we use simulations to
evaluate the relative accuracy of the topology classifiers, and to
understand their modes of failure. We find that the accuracy of
the grouping classifiers either closely matches or exceeds that of
the other methods when applied to the identification of a selec-
tion of fixed unknown topologies. This finding is supported by
some numerical results on the tail asymptotics of misclassifica-
tion probabilities when using large numbers of probes. The sim-
ulations show that the techniques can resolve topologies even
when link loss probabilities are as small as about 1%, on the
basis of data from a few thousand probes. This data could be

gathered from a probe source of low bandwidth (a few tens of
kilobits per second) over a few minutes.

The ML and Bayesian classifiers are considerably more
computationally complex than the grouping-based methods
for two reasons: i) they exhaustively search the set of possible
trees, whereas the grouping approaches progressively exclude
certain topologies from consideration as groups are formed;
ii) their per-topology computational costs are greater. Since
the number of possible topologies grows rapidly with the
number of receivers, any decrease in per-topology cost for the
ML and Bayesian classifiers would eventually be swamped
by the growth in the number of possible topologies. For this
reason, we expect significant decrease in complexity will only
be available for classifiers that are able to search the topology
space in a relatively sophisticated manner, e.g., as performed by
the grouping-based algorithms. Summarizing, we conclude that
binary-based grouping algorithms provide the best combination
of accuracy and computational simplicity.

In Section VIII, we further analyze the modes of misclassifi-
cation in grouping algorithms. We distinguish the coarser notion
of misgrouping, which entails failure to identify the descendant
leaves of a given node. This notion is relevant, for example,
in multicast congestion control, where one is interested in es-
tablishing the set of receivers that are behind each bottleneck.
We obtain convergence rates for the probability of successful
grouping and classification in the regime of small link loss rates.

We conclude in Section IX; the proofs and some more de-
tailed technical material are deferred to Section X.

C. Other Related Work

Themtrace [12] measurement tool, reports the route from
a multicast source to a receiver, along with other information
about that path such as per-hop loss statistics. Thetracer
tool [10] usesmtrace to perform topology discovery. We
briefly contrast some properties of those methods with those
presented here. i) Access:mtrace relies on routers to respond
to explicit measurement queries; access to such facilities may
be restricted by service providers. The present method does not
require such cooperation. ii) Scaling:mtrace needs to run
once per receiver in order to cover the tree, so that each router
must process requests from all its descendant leaf nodes. The
present method works with a single pass down the tree. On
the other hand, our methods do not associate physical network
addresses with nodes of the logical multicast tree. For this
reason, we envisage combiningmtrace and multicast-based
estimation in measurement infrastructures, complementing in-
frequentmtrace measurements with ongoing multicast-based
inference to detect topology changes.

In the broader context of network tomography, we mention
some recent analytic work on a different problem, namely, deter-
mination of source-destination traffic matrix from source- and
destination-averaged traffic volumes; see [18], [19] for further
details.

II. L OSSTREES ANDINFERENCE OFLOSSRATE

We begin by reviewing the tree and loss models used to for-
mulate the MLE for link loss probabilities in a known topology.
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We identify the physical multicast tree as comprising actual net-
work elements (the nodes) and the communication links that
join them. The logical multicast tree comprises the branch points
of the physical tree, and the logical links between them. The log-
ical links comprise one or more physical links. Thus, each node
in the logical tree has at least two children, except the leaf nodes
(which have none) and the root (which we assume has one). We
can construct the logical tree from the physical tree by the fol-
lowing procedure: except for the root, delete each node that has
only one child, and adjust the link set accordingly by linking its
parent directly to its child.

A. Tree Model

Let denote a logical multicast tree with nodes
and links . We identify one node, the root, with the source of
probes, and set of leaves with the set of receivers. We say
that a link is internal if neither of its endpoints is the root or a leaf
node. We will occasionally use to denote ,
where denotes the child node of, the set of nodes termi-
nating internal links. Each node, apart from the root, has a
parent such that . We will sometimes refer to

as link . Define recursively the compositions
with . We say is descended from, and

write , if for some positive integer . The
set of children of , namely, , is denoted
by . The (nearest) ancestor of a subset is
the -least upper bound of all the elements of. The nodes
in a set are said to be siblings if they have the same
parent, i.e., if . A maximal sibling set
comprises the entire set of children of some node .

will denote the subtree rooted at;
is the set of receivers in .

B. Loss Model

For each link we assume an independent Bernoulli loss
model: each probe is successfully transmitted across link
with probability . Thus, the progress of each probe down
the tree is described by an independent copy of a stochastic
process as follows. . if the
probe reaches node and otherwise. If , then

, . Otherwise,
and . We adopt the convention

and denote . We call the pair a
loss tree. will denote the distribution of on the loss
tree . In what follows, we shall work exclusively with
canonical loss trees. A loss tree is said to be in canonical form
if except for . Any tree
not in canonical form can be reduced to a loss tree
in canonical form such that the distribution of is the
same under the corresponding probabilities and .
To achieve this, links with are excised and their
endpoints identified. If any link has , then for
all , and hence no probes are received at any receiver in

. By removal of subtrees rooted at such , we obtain
a tree in which all probabilities . Henceforth, we shall
consider only canonical loss trees.

C. Inference of Loss Rates

When a probe is sent down the tree from the root, we cannot
observe the whole process, but only the outcome

that indicates whether or not the probe reached
each receiver. In [3], it was shown how the link probabilities
can be determined from the distribution of outcomes when the
topology is known. Set

(1)

The internal link probabilities can be found from
as follows. For , let be the

probability that the probe reaches. Thus, ,
the product of the probabilities of successful transmission on
each link between and the root . For we write

A short probabilistic argument shows that for any

(2)

In particular, this holds for in which case
. It can be shown for canonical loss trees that is the

unique solution of (2); see [3, Lemma 1] or Proposition 1. Thus,
given one can find , and hence , by
taking appropriate quotients.

Let with be the
set of outcomes arising from the dispatch ofprobes from the
source. We denote the log-likelihood function of this event by

(3)

Construct the empirical distributions

i.e., the fraction of the probes that reaches some receiver de-
scended from . Let denote the corresponding solution of (2)
obtained by using in place of , and the corresponding prob-
abilities obtained by taking quotients of the. The following
results, the proof of which can be found in [3], holds.

Theorem 1: Let be a canonical loss tree.

i) The loss model is identifiable, i.e., implies
.

ii) With probability , for sufficiently large , are the
MLEs of , i.e.,

(4)

As a consequence of the MLE property, is consistent
( with probability ), and asymptotically normal
( converges in distribution to a multivariate Gaussian
random variable as ), and similarly for ; see [17].
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III. D ETERMINISTIC RECONSTRUCTION OFLOSSTREES BY

GROUPING

The use of estimates of shared loss rates at multicast receivers
has been proposed recently in order to group multicast receivers
that share the same set of bottlenecks on the path from the source
[16]. The approach was formulated for binary trees, with shared
loss rates having the direct interpretation of the loss rate on the
path from the root to the (nearest) ancestor of two receivers.
Since the loss rate cannot decrease as the path is extended, the
pair of receivers for which shared loss rate is greatest will be
siblings; if not then one of the receivers would have a sibling
and the shared loss rate on the path to their ancestor would be
greater. This maximizing pair is identified as a pair of siblings
and replaced by a composite node that represents their parent.
Iterating this procedure should then reconstruct the binary tree.

In this section and the following section, we establish theo-
retically the correctness of this approach, and extend it to cover
general trees, i.e., those with nodes whose branching ratio may
be greater than two. In this section, we describe how canonical
loss trees are in one-to-one correspondence with the probability
distributions of the random variables visible at the re-
ceivers. Thus, the loss tree can be recovered from the receiver
probabilities. This is achieved by employing an analog of the
shared loss for binary trees. This is a function of the loss
distribution at a set of nodes that is minimized when is a set
of siblings, in which case , i.e., the comple-
ment of the shared loss rate to the nodes. In the case of binary
trees, we can identify the minimizing setas siblings and sub-
stitute a composite node that represents their parent. Iterating
this procedure should then reconstruct the tree. The definition
and relevant properties of the functionare given in the fol-
lowing proposition.

Proposition 1: Let be a canonical loss tree, and
let with .

i) The equation

has a unique solution .

ii) Let . Then

iff .

iii) if is a set of siblings, and hence
takes the same value for any sibling set with a given

parent.

iv) Let be a set of siblings, and suppose is such
that and . Then

.

Proposition 1 iv) shows that adjoining a nonsibling
nonancestor node to a set of siblings can only increase the value
of ; see Fig. 1. This provides the means to reconstruct the tree

directly from the . We call the procedure to

Fig. 1. B(U ) > B(U) whereU = U [ fkg. Adjoining the nonsibling
nodek toU increases the value ofB; see Proposition 1 iv).

Fig. 2. Deterministic loss tree classification algorithm( ).

do this the Deterministic Loss Tree Classification Algorithm
( ), specified in Fig. 2; it works as follows. At the start of
each while loop from line 4, the set comprises those nodes
available for grouping. We first find the pair that
minimizes (line 5), then progressively adjoin to it further
elements that do not increase the value of(lines 6 and 7). The
members of the largest set obtained this way are identified as
siblings; they are removed from the pool of nodes and replaced
by their parent, designated by their union (line 9). Links
connecting to its children (i.e., members) are added to the
tree, and the link loss probabilities are determined by taking
appropriate quotients of ’s (line 11). This process is repeated
until all sibling sets have been identified. Finally, we adjoin the
root node and the link joining it to its single child (line 14).

Theorem 2:
i) reconstructs any canonical loss tree from

its receiver set and the associated probabilities
.

ii) Canonical loss trees are identifiable, i.e.,
implies that .

Although we have not shown it here, it is possible to establish
that any set present at line 4 of has the property
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Fig. 3. Tree Pruning Algorithm (").

that is achieved when is a sibling set. Conse-
quently, one could replace steps 5–8 of by simply finding
the maximal sibling set, i.e., select a maximal that min-
imizes . However, this approach would have worse com-
putational properties since it requires inspecting every subset of

.
is a root of the polynomial of degree from

Proposition 1 i). For a binary subset, is written down
explicitly

(5)

Calculation of requires numerical root finding when
. However, it is possible to recover in a two-stage

procedure that requires the calculation of only on binary
sets . The first stage uses the Deterministic Binary Loss Tree

Classification Algorithm. is identical to
except that grouping is performed only over binary trees, thus
omitting lines 6–8 in Fig. 2. The second stage is to use a Tree
Pruning Algorithm on the output of the . acts
on a loss tree by removing from each internal
link with loss rate and identifying its
endpoints . We will find it useful to specify a slightly
more general version: for , prunes link when

. We formally specify in Fig. 3. In Sec-
tion X we prove that composing the binary algorithm
with pruning recovers the same topology as for general
canonical loss trees.

Theorem 3: for canonical loss trees.

IV. I NFERENCE OFLOSSTREE FROM MEASURED LEAF

PROBABILITIES

In this section, we present algorithms which adapt to
use the measured probabilities corresponding to the. Let

denote the measured outcomes arising from

each of probes. Define the processes recursively by

with (6)

Fig. 4. Binary loss tree classification algorithm ( ).

Thus, iff probe was received at some receiver de-
scended from ;

is the fraction of the probes that reach some receiver
descended from. For we define

analogously; is the fraction of probes that reach some re-
ceiver descended from some node in. Let be the unique
solution in Proposition 1 ii) obtained by usingin place of .
We will use the notation to denote an inferred loss tree;
sometimes we will use to distinguish the topology inferred
by a particular algorithm . will denote the probability of
false identification of topology of the loss tree i.e.,

.

Theorem 4: Let be a loss tree. Then

for each

A. Classification of Binary Loss Trees

The adaptation of is most straightforward for binary
trees. By using in place of in and restricting the min-
imization of to binary sets we obtain the Binary Loss Tree

Classification Algorithm; we specify it formally in Fig. 4.
This is, essentially, the algorithm proposed in [16]. We have
taken advantage of the recursive structure of the (in line
9) in order to calculate the probabilities. Note that when
reconstructs an incorrect topology , the definitions of
quantities such as and extend evidently to subsets
of nodes in the incorrect topology . The following theorem
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establishes the consistency of the estimator ; the proof ap-
pears in Section X.

Theorem 5: Let be a binary canonical loss tree. With
probability , for all sufficiently large , and hence

.

B. Classification of General Loss Trees

The adaptation of to the classification of general loss
trees from measured leaf probabilities is somewhat more com-
plicated than the binary case. It is shown during the proof of
Theorem 5 that the have the same relative ordering as
the for sufficiently large. But for a general tree ,

takes the same value for any subsetof a maximal
sibling set . For finitely many probes, the corresponding

will not in general be equal. Hence, choosing
to group the subset that minimizes will not necessarily
group all the siblings in .

In this section we present three algorithms to classify general
trees. Each of these overcomes the problem described in the pre-
vious paragraph by incorporating a threshold into the grouping
procedure. The set is grouped if is sufficiently close to
being minimal. However, this can also give rise to false inclusion
by effectively ignoring internal links whose loss rates do not ex-
ceed the threshold. The variety of algorithms derives from dif-
ferent ways to implement the threshold. We establish domains
in which the algorithms correctly classify canonical loss trees.
In succeeding sections we evaluate their relative efficiencies and
compare their modes and frequencies of false classification.

1) Binary Loss Tree Pruning Classification Algorithm
: Nodes are grouped as if the tree were binary, the

resulting tree is pruned with to remove all internal links
with loss probabilities less than or equal to the threshold .
Thus, for each we define to be the composition

. A refinement of is to
recalculate the loss probabilities based on the measurements
and the pruned topology .

2) Binary Loss Tree Clique Classification Algorithm
: For each , groups by forming maximal

sets of nodes in which all binary subsets have
sufficiently close to the true minimum over all binary sets. This
amounts to replacing line 8 in Fig. 4 with the following steps:

i) select that minimizes ;

ii) construct the graph of all links such that

iii) select comprising the elements of the largest connected
component of that contains .

Note that if the grouping is done correctly, then
takes the same value for all binary subsets of . For
finite but large , the corresponding sampled will
differ slightly.

3) General Loss Tree Classification Algorithm : For
each , is a modification of that employs a
threshold to perform the grouping based on. Each grouping
step starts by finding a binary set of minimal , then

adjoining further elements to it provided the resulting set
satisfies

The violation of this condition has the interpretation that the
ancestor is separated from by a link with loss
rate at least. Thus, we replace line 8 of Fig. 4 by the following.

8a. select that minimizes ;
8b. while there exists such that

8c. ;
8d. enddo.

For clarity, we have omitted the details of the dependence of
on the ; these are as described before Theorem 4.

4) Convergence of General Loss Tree Classifiers:As the
number of probes grows, the topology estimates furnished by

, , and converge to the true topology
provided all internal link loss probabilities are greater than.
This happens for the same reason as it does in. It is not
difficult to see that the deterministic versions of each algorithm,
obtained by using in place of , reconstruct the topology.
Since converges to as the number of probes grows, the
same is true for the classifiers using. We collect these results
without further proof:

Theorem 6: Let be a loss tree in which all loss prob-
abilities , , for some . For each

and each algorithm

with probability , for all sufficiently large , and hence
.

Convergence to the true topology requiresto be smaller than
the internal link loss rates, which are typically not known in
advance. A very small value of is more likely to satisfy the
above condition but at the cost, as shown in Section VIII, of
slower classifier convergence. A large value of, on the other
hand, is more likely to result in systematically removing links
with small loss rates. In practice, however, we believe that the
choice of does not pose a problem. We expect, indeed, that
for many applications while it is important to correctly identify
links with high loss rate, failure to detect links with small loss
rates could be considered acceptable. In other words, in practice,
it could be sufficient for the inferred topology to converge to

, obtained from , by ignoring links whose
loss rates fell below some valuewhich, in this case, would
be regarded as some application-specific minimum loss rate of
interest.

The results below establish the desired convergence to
for any provided , . The key ob-
servation is that since the deterministic versions of each algo-
rithm reconstruct , so does each algorithm, as the number of
probes grows. Denote . Without fur-
ther proof we have the following theorem.
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Theorem 7: Let be a loss tree. For each ,
such that , , and for each algorithm

then with probability , for all suffi-
ciently large , and hence .

C. Effects of Model Violation

The two underlying statistical assumptions are i) probes are
independent; and ii) conditioned on a probe having reached a
given node , the events of probe loss on distinct subtrees de-
scended from are independent. We now discuss the impact of
violations of these assumptions.

The first observation is that the estimators remain consis-
tent under the introduction of some temporal dependence be-
tween probes, i.e., under violation of assumption i) above. As-
suming the loss process to be ergodic,still converges to al-
most surely, as the number of probesgrows. However, rates
of convergence can be slower, and hence the variance ofcan
be higher than for the independent case. This would increase
the misclassification probabilities for inference from a given
number of probes .

On the other hand, spatial dependence of loss (i.e., violations
of assumption ii) above) can lead to bias. We take spatial loss
dependence to be characterized by departure from zero of an ap-
propriate set of loss correlation coefficients. By extending an ar-
gument given for binary trees in [3, Theorem 7], it can be shown
that the limit quantities deform continuously
away from the quantities of the spatially independent case as
the loss correlation coefficients move away from zero. Hence, a
given canonical loss tree can be recovered correctly by applying

to the quantities provided the spatial dependence is
sufficiently small, i.e., to make the sufficiently close to so
that iff for all relevant sub-
sets of nodes and . Then, by a similar argument to that of
Theorem 5, a tree with link loss rates greater than some is
recovered by with probability for a sufficiently large
number of probes, and sufficiently small spatial correlations.

We remark that the experiments reported in Sections VII
and VIII use network level simulation rather than model-based
simulation. Hence, it is expected that the model assumptions
will be violated to some extent. Nevertheless, the classifiers are
found to be quite accurate.

V. ML CLASSIFIER

Let denote the set of logical multicast trees with re-
ceiver set . Denote by the MLE of in (4) for the topology

. TheML classifierassigns the topology that maximizes

(7)

We prove that, if the link probabilities are bounded away from
and , the ML classifier isconsistentin the sense that, with

probability , it identifies the correct topology as the number of
probes grows to infinity. For , let

Theorem 8: Let and let be a loss tree with
. Then .

VI. L OSS-BASED BAYESIAN TREE CLASSIFIER

Let denote the set of logical multicast topologies
having a given receiver set. from Section V, is the set of
possible loss rates in the topology. A possible loss tree with
topology in is an element of the parameter space

(8)

Let be a prior distribution on . Given receiver mea-
surements , the posterior distribution on

is

(9)

where is the joint density of the observa-
tions and their marginal density.

A decision rule provides an estimate of the loss
tree given receiver measurements. The quality of a decision
rule is evaluated in terms of aloss function , a non-
negative function on interpreted as the loss incurred
by deciding that is the true parameter when, in fact, it is
. A measure of quality of a decision ruleis its Bayes risk

, where the expectation is taken with re-
spect to the joint distribution of the loss tree

and the observations. The Bayes decision rule
is the one that minimizes : it has least average loss. A stan-
dard theorem in decision theory gives in the form

(10)

i.e., it is the minimizer of theposterior risk, which is the ex-
pected loss with respect to the posterior distribution ; see
[17, Proposition 3.16] and result 1 of [2, Sec. 4.4].

Since our interest is in identifying the correct topology, we
choose the loss function where

is the indicator function, i.e., no loss for a correct identifi-
cation of the topology, and unit loss for any misidentification.
Here, the loss ratesplay the role of a nuisance parameter. The
Bayes classifier for the topology becomes , where

(11)

or, equivalently,

(12)

Thus, the Bayes classifier yields the topology with max-
imum posterior probability given the data. By definition, this
classifier minimizes the misclassification probability.

A special case is the uniform prior in which all topologies in
are taken to be equally likely, and for each topology

is distributed uniformly on . The corresponding prior distri-
bution is a noninformative prior,



DUFFIELD et al.: MULTICAST TOPOLOGY INFERENCE FROM MEASURED END-TO-END LOSS 33

expressing “maximum ignorance” about the tree topology and
link probabilities. Clearly, if other prior information is available
about the tree, it may be incorporated into a nonuniform prior
distribution. The Bayes classifier becomes

(13)

This should be compared with the ML classifier in (7).

A. Consistency of Pseudo-Bayes Classifiers

In practice, our task is to identify the specific topology giving
rise to a set of measured data. When no prior distribution is spec-
ified, the concept of the Bayes classifier, as the maximizer of the
probability of correct classification, does not make sense, be-
cause “the” probability of correct classification is not defined.
Nonetheless, it may be convenient to construct apseudo-Bayes
classifier by choosing a distribution on , which plays the
role of a prior, and forming the classifier in (10), which we now
denote by . Classifiers constructed in this way are also con-
sistent under a mild condition.

Theorem 9: Let be a prior distribution on , and assume
that lies in the support of . Then is consistent in the
frequentist sense, i.e., as .

VII. SIMULATION EVALUATION AND ALGORITHM COMPARISON

A. Methodology

We used two types of simulation to verify the accuracy of the
classification algorithms and to compare their performance. In
model-based simulation, packet loss occurs pseudorandomly in
accordance with the independence assumptions of the model.
This allows us to verify the prediction of the model in a con-
trolled environment, and to rapidly investigate the performance
of the classifiers in a varied set of topologies.

This approach was complemented by network-level simula-
tions using thens [13] program; these allow protocol-level sim-
ulation of probe traffic mixed in with background traffic of TCP
and UDP sessions. Losses are due to buffer overflow, rather than
being generated by a model, and hence can violate the Bernoulli
assumptions underlying the analysis. This enables us to test the
robustness to realistic violations of the model. For thens simu-
lations we used the topology shown in Fig. 5. Links in the inte-
rior of the tree have higher capacity (5 Mb/s) and latency (50 ms)
than those at the edge (1 Mb/s and 10 ms) in order to capture the
heterogeneity between edges and core of a wide-area network.
Probes were generated from nodeas a Poisson process with
mean interarrival time 16 ms. Background traffic comprised a
mix of infinite FTP data sources connecting with TCP, and ex-
ponential on–off sources using UDP. The amount of background
traffic was tuned in order to give link loss rates that could have
significant performance impact on applications, down to as low
as about 1%. One strength of our methodology is its ability
to discern links with such small but potentially significant loss
rates. In view of this, we will find it convenient to quote all loss
rates as percentages.

Fig. 5. Network-level simulation topology forns . Links are of two types:
edgelinks of 1-Mb/s capacity and 10-ms latency, andinterior links of 5-Mb/s
capacity and 50-ms latency.

Fig. 6. " = 0:25%.

Fig. 7. " = 0:5%.

B. Performance of Algorithms Based on Grouping

1) Dependence of Accuracy on Threshold: We conducted
100ns simulations of the three algorithms , , and

. Link loss rates ranged from 1.8% to 10.9% on interior
links; these are the links that must be resolved if the tree is to
be correctly classified. In Figs. 6–11, we plot the fraction of
experiments in which the topology was correctly identified as a
function of the number of probes, for the three algorithms, and
for selected values of between 0.25% and 5%. Accuracy is
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Fig. 8. " = 1.0%.

Fig. 9. " = 2.0%.

Fig. 10. " = 3.0%.

best for intermediate, decreasing for larger and smaller. The
explanation for this behavior is that smaller values oflead
to stricter criteria for grouping nodes. With finitely many sam-
ples, for small , sufficiently large fluctuations of the cause
erroneous exclusion of nodes. By increasing, the threshold
for group formation is increased and so accuracy is initially in-
creased. However, asapproaches the smallest interior link loss
rate, large fluctuations of the now cause erroneous inclusion
of nodes into groups. When is increased much beyond the

Fig. 11. " = 5.0%.

Fig. 12. " = 5%.

Fig. 13. " = 7%.

smallest interior loss rate, the probability of correct classifica-
tion falls to zero. The behavior is different if we ignore failures
to detect links with loss rates smaller than. For and

, in Figs. 12 and 13, respectively, we plot the fraction
of experiments in which the pruned topology was correctly
identified for the three algorithms. Here, the accuracy depends
on the relative values of and the internal link loss rates. In
these experiments, the actual loss rates was often very close to
5%, so that small fluctuations results in erroneous inclusions/ex-
clusions of nodes which accounts for the significant fraction of
failures for 5%. In Section VIII-B, we shall analyze this
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Fig. 14. Dependence of accuracy on branching ratio. Convergence is faster for binary trees (left);and outperform for nonbinary trees
(right).

behavior and obtain estimates for the probabilities of misclassi-
fication in the regimes described. We comment on the relative
accuracy of the algorithms in the following subsection..

2) Dependence of Accuracy on Topology:We performed
1000 model-based simulations using randomly generated
24-node trees with given maximum branching ratiosand .
Link loss rates were chosen at random in the interval [1%, 10%].
Fig. 14 shows the probability of successful classification for

and for 0.25%. In both cases
this grows to , but convergence is slower for trees with higher
branching ratios. We believe this behavior occurs due to the
larger number of comparisons of values of that are made
for trees with higher branching ratio, each such comparison
affording an opportunity for misclassification.

3) Comparison of Grouping Algorithm Accuracy:In all ex-
periments reported so far, with one exception, the accuracies
of and were similar, and at least as good as that
of . The similar behavior of and is explained
by observing that the two algorithms group nodes in a similar
manner. In , a link is pruned from the reconstructed binary
tree if its inferred loss rate is smaller than. In , a node is
added to a group if the estimated common loss of the augmented
group is within of the estimated common loss of the original
group. The operation of is somewhat different, checking
all possible pairs among candidate nodes for grouping. Incorrect
ordering in any test can result in false exclusion from a sibling
set. We observe also that the performance gap between
and the other algorithms is sensitive to the value ofand to
the branching ratio. The exceptional case in which per-
forms better than the other algorithms is in the inference of bi-
nary trees: here, performs slightly better because of the
stricter grouping condition is employs, making it less likely to
group more than two nodes.

4) Computational Complexity of Grouping Algorithms:Of
the two best performing grouping algorithms, namely,
and , we observe that has smaller computational
complexity for several reasons. First, is given explicitly for
binary groups, whereas generally it requires numerical root
finding. Second, although the algorithms have to calculate
for up to groups, in typical cases requires addi-
tional calculations due to the larger sibling groups considered.

Finally, observe that each increase in the size of sets considered
in is functionally equivalent to one pruning phase in

. Thus, in , the threshold is applied throughout the
algorithm; in it is applied only at the end. We expect
this to facilitate adaptive selection ofin . Comparing
now with , we observe that this algorithm requires, in
addition to the calculation of shared losses, the computation
of a maximal connected subgraph, an operation that does not
scale well for large numbers of nodes. For these reasons, we
adopt as our reference grouping algorithm since it is the
simplest and has close to the best accuracy. In the next section,
we compare its performance with that of the ML and Bayesian
classifiers.

C. Comparison of With the ML and Bayesian Classifiers

1) Complexity: In this subsection, we compare our refer-
ence grouping algorithm with the ML and Bayesian clas-
sifiers. Here we consider the simplest implementation of these
classifiers whereby we proceed by exhaustive search of the set

of all possible topologies during evaluation of the maxima
(7) and (13). By contrast, all the grouping algorithms proceed by
eliminating subsets of from consideration; once a set of
nodes is grouped, then only topologies which have those nodes
as siblings are considered.

The Bayesian classifier further requires numerical integration
for each candidate topology. In order to reduce its complexity,
we took the prior for the link rates to be uniform on the dis-
crete set {1% 10%}, with all topologies equally likely; we
also precomputed the joint distributions . Due to these
computational costs, we were able to compare with the
ML classifier for only up to five receivers, and restricted the
Bayesian classifier to the smallest nontrivial case, that of three
receivers. The four possible three-receiver trees are shown in
Fig. 15. In this case, the execution time of the Bayesian clas-
sifier was one order of magnitude longer than that of the ML
classifier, and about two orders of magnitude longer than that
of .

2) Relative Accuracy:We conducted 10 000 simulations
with the loss tree selected randomly according to the
uniform prior. As remarked in Section VI, the Bayesian Classi-
fier is, by definition, optimal in this setting. This is seen to be
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Fig. 15. ML and Bayesian classifier: The four possible topologies with three receivers.

Fig. 16. Misclassification in ML, Bayesian, and classifier:(�; �) randomly drawn according to the prior distribution. (a) Bayes and (") classifier.
(b) Bayes and ML classifiers.

the case in Fig. 16, where we plot the fraction of experiments in
which the topology was incorrectly identified as function of the
number of probes, for the different classifiers (for clarity, we
plot separately the curves for the ML and classifiers).
Accuracy of greatly varies with : it gets close to optimal
for the intermediate value of 0.5%, but rapidly decreases
otherwise as approaches either or the smallest internal
link loss rate. It is interesting to observe that the ML classifier
fails 25% of the time. This occurs when is the leftmost
tree in Fig. 15. The reason is that the likelihood function is
invariant under the insertion of links with zero loss. Statistical
fluctuations present with finitely many probes lead to tree with
highest likelihood to be a binary tree obtained by insertion of
links with near-zero loss. This behavior does not contradict
the consistency property of the ML classifier in Theorem 8;
if links with loss less than some are excluded from
consideration, then for sufficiently large number of probes, the
spurious insertion of links will not occur.

The effect of these insertions can be suppressed by pruning
after ML classification. Setting ML ML we
find the accuracy almost identical with that of ; this
is plotted in Fig. 16(b). A more detailed inspection of the exper-
iments shows that selects the ML topology most of the
time.

In practice, we want to classify a fixed but unknown topology.
In this context, the uniform prior specifies a pseudo-Bayesian
classifier, as in Section VI. Note that this classifier is not nec-
essarily optimal for a fixed topology. We conducted a number
of experiments of 10 000 simulations of the three algorithms

with fixed loss trees. The relative accuracy of the algorithms was
found to vary with both topology and link loss rates. However,
in all examples we found a value offor which accu-
racy either closely approached or exceeded that of the ML and
Bayesian classifiers. As an example, in Fig. 17, we plot the re-
sults for the first binary tree topology in Fig. 15 with all loss rates
equal to 10% but that of the sole internal link, which has loss rate
1%. In this example, the ML classifier is more accurate than the
pseudo-Bayesian classifier. accuracy improves asis
decreased, and eventually, for 0.25%, it exceeds that of the
pseudo-Bayesian and ML classifier.

These experimental results are supported by approximations
to the tail slopes of the misclassification probabilities, as
detailed in Section VIII. For the same example, we display in
Fig. 17 (right), the estimated experimental and numerical ap-
proximated tail slopes of the ML and BLTP classifiers. For a
given classifier these agree within about 25%. Finally, not re-
ported in the figure, we also verified that the ML() classifiers
provide the same accuracy as .

D. Summary

Whereas the Bayesian classifier is optimal in the context of
a random topology with known prior distribution, similar accu-
racy can be achieved using or ML with an appropri-
ately chosen threshold. In fixed topologies, the corresponding
pseudo-Bayes classifier is not necessarily optimal. In the fixed
topologies for which we were able to make comparisons, better
accuracy could be obtained using or ML with an
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Fig. 17. Misclassification in ML, Bayesian, and classifier. Fixed(�; �). Left: Fraction of misclassified topologies. Right: Comparison of experimental and
approximated tail slopes.

appropriate threshold. The accuracies of and ML
are similar: most of the time selects the ML topology with
ML.

has the lowest complexity, primarily because each
grouping operation excludes subsets of candidate topologies
from further consideration. By contrast, the ML and Bayesian
classifiers use exhaustive searches through the space of pos-
sible topologies. Since the number of possible topologies
grows rapidly with the number of receivers, these methods
have high complexity. A more sophisticated search strategy
could reduce complexity for these classifiers, but we expect
this to be effective only if the number of topologies to be
searched is reduced (e.g., in the manner of ). With larger
numbers of receivers, any fixed reduction in the per-topology
computational complexity would eventually be swamped due
to the growth in the number of possible topologies.

VIII. M ISGROUPING ANDMISCLASSIFICATION

In this section, we analyze more closely the modes of failure
of , and estimate the convergence rate of the probability
of correct classification. Since this classifier proceeds by recur-
sively grouping receivers, we can analyze topology misclassi-
fication by looking at how sets of receivers can be misgrouped
in the estimated topology . We formalize the notion of correct
receiver grouping as follows. will denote the set of receivers
in the logical multicast topology .

Definition 1: Let be a loss tree with ,
and let be an inferred loss tree with . The
receivers descended from a node are said to be
correctly grouped in if there exists a node such that

. In this case, we shall say also that nodeis
correctly classified in .

Observe that we allow the trees rooted atand to differ in
the above definition; we only require the two sets of receivers
to be equal.

Correct receiver grouping and correct topology classification
are related: in the case of binary trees, the topology is correctly
classified if and only if every node is correctly classified.
This allows us to study topology misclassification by looking at

receiver misgrouping. To this end, we need to first introduce
a more general form of the function to take into account
expressions which may arise as a result of classification errors.
Observe that in (6) for we defined as

In line 9 of , we have for the newly formed node,

for some subset of . By construction, is the set of re-
ceivers of the subtree of rooted in (which has been ob-
tained by recursively grouping the nodes in). It is clear that

for some node if the subtree has been
correctly reconstructed, but, upon an error, can be otherwise a
generic subset of . Therefore, in we need to consider
the following more general expression:

(14)

where and are two nonempty disjoint subsets of .
Analogous to Theorem 4

where

(15)

Equation (15) can be regarded as a generalization of (5) where
we consider a pair of disjoint sets of receivers instead of pair of
nodes.
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A. Misgrouping and Misclassification in

We start by studying misgrouping in binary trees under .
Consider the event that correctly groups nodes in
for some . This happens if grouping operations do not
pair any nodes formed by recursive grouping , with any
nodes formed similarly from the complement , until
no candidate pairs in remain to be grouped.

Lemma 1: A sufficient condition for correct grouping ofis
that

(16)

for all

Therefore,

where denotes the event that (16) holds. This
provides the following upper bound for probability of mis-
grouping , denoted by:

(17)

1) Estimation of Misclassification Probabilities:We now
consider the asymptotic behavior of , first for large , then
for small loss probabilities . Let ,

, and set .

Theorem 10:Let be a canonical loss tree. For each
,

converges in distribution, as the number of probes ,
to a Gaussian random variable with meanand variance

, with

Moreover, as , then

i) ;

ii) ;

iii)

(18)

where, for small enough , the minimum is attained for
such that and .

Theorem 10 suggests we approximate by

where is the cumulative distribution function (cdf) of the stan-
dard normal distribution. Thus, for largeand small , The-
orem 10 and (17) together suggest that we approximate the mis-
grouping probability

(19)

Here we have used the fact that should be dominated by
the summand with the smallest (negative) exponent according to
(18). Thus, asymptotically for many probes, the probability of
correctly identifying a group of receivers descended from node

is determined by the loss rate of linkalone, and is larger for
lossier links. Moreover, the stated relations between the mini-
mizing in iii) say that the likely mode of failure is
to mistakenly group a child ofwith the sibling of .

In binary trees, the topology is correctly classified when all
groups are correctly formed. Hence

and we expect to be asymptotically linear with a func-
tion of with a negative slope , where

(20)

Thus, in the regime considered, the most likely way to misclas-
sify a tree is by incorrectly grouping siblings whose parent node

terminates the least lossy internal link, mistakenly grouping
the sibling of with one of its children.

We remark that the preceding argument can be formalized
using Large Deviation theory [5]. However, calculation of the
decay rate appears computationally infeasible, although one can
recover the leading exponent in the small regime.

2) Experimental Evaluation:Although we have derived
the slope through a series of approximations, we find that
it describes experimental misclassification and misgrouping
reasonably well. We performed 10 000 experiments with an
eight-leaf perfectly balanced binary tree. On each experiment,
the loss rates are a random permutation of the elements of the
set {0.5%, 1%, 7%, 7.5%}. In this way, the smallest loss
rate is fixed to 0.5%. In Fig. 18, we plot the proportion of links,
that had loss rates greater than or equal to a given threshold

, and were misclassified. As the number of probes increases,
misclassification is due exclusively to misgrouping of low loss
rate links: in this set of experiments, no link with loss rate
higher than 2% was misclassified once the number of probes
exceeded 700.

According to (19), the different curves should be asymptot-
ically linear with negative slope approximately (when ad-
justed by a factor since the logarithms are to base). In
the table of Fig. 18 (right) we display the estimated experimental
and approximated slopes. Agreement is good for 2.5% and
5%. We believe the greater error for 7.5% may be due to
the departure from the leading order linear approximations of
(18) for larger values of ; also relatively few points are avail-
able for estimation from the experimental curves. In the figure,
we also plot the log fraction of times correctly identify the
topology; as expected, this curve exhibits the same asymptotic
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Fig. 18. Misclassification and misgrouping in . Left: Fraction of links misclassified with loss� �, for � = 0%, 2.5%, 5.0%, 7.5%. Right: Comparison of
experimental and approximated tail slopes.

linear slope of the fraction of misgrouped links, i.e., the one for
0%.

B. Misgrouping and Misclassification in

We turn our attention to the errors in classifying general trees
by the reference algorithm . In the following, without
loss of generality, we will study the errors in the classifica-
tion of the pruned tree , with

, under the assumption that , . This will
include, as a special case, whenis smaller than the internal
link loss rates of the underlying tree (i.e., ), the analysis
of the misclassification of . will
denote the set of nodes in terminating internal links.

Let denote the tree produced by , the final esti-
mate is obtained from by pruning links whose loss rate
is smaller or equal than, i.e., . In
contrast to the binary case, incorrect grouping by may be
sufficient but not necessary for misclassification. For ,
incorrect classification occurs if any of the following hold:

i) at least one node in is misclassified in ;
ii) prunes links from that are present in ; or
iii) fails to prune links from that are not present in

.

Observe that i) implies that a nodesuch that can be
misclassified and still provided the all the resulting
erroneous links are pruned.

We have approximated the probability of errors of type i) in
our analysis of . Errors of type ii) are excluded if for all

(21)
for all , since this condition implies that all
estimated loss rates of links in the actual tree are greater than.
Errors of type iii) are excluded if
and , or if

and
for all where :

. The latter conditions ensure that all the links
in the binary tree produced by , which either result from
node misgrouping or correspond to fictitious links due to binary
reconstruction, have estimated loss rates less than or equal to
, and are hence pruned. Summarizing, let be

the event that (21) holds for a given , and the
event that the topology is correctly classified. Then

where

and

Consequently, we can write a union bound for the probability of
misclassification

(22)

and each term in (22) can in turn be bounded above by a sum
similar to the right-hand side of (17). For the last term, in par-
ticular, observe that

(23)
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so that

1) Misclassification Probabilities and Experiment Dura-
tion: We examine the asymptotics of the misclassification
probability for large and small by the same
means as in Section VIII-A. This amounts to finding the mean

and asymptotic variance
of the distribution of , then finding the
dominant exponent over the various . Let

denote the smallest internal link loss rate
of larger than and the largest
internal link loss rate of smaller than or if no
such loss rate exists (which occurs whenis smaller than all
internal links loss rate). The proof of the following result is
similar to that of Theorem 10 and is omitted.

Theorem 11:Let be a canonical loss tree. For each
,

converges in distribution, as the number of probes ,
to a Gaussian random variable with meanand variance

. Furthermore, as
and

i)
;

ii)
.

iii) If , ,

(24)

and

(25)

If

if

if
(26)

In (26), for clarity we distinguish the expressions for
and . Observe that the result for in (27)
can be actually obtained by taking the limit of the expression for

, which is of the form

Using the same reasoning as was used in Section VIII-A, we
expect the logarithms of the probabilities of errors of types i),
ii), and iii) to be asymptotically linear in the number of probes

, with slopes that behave, respectively, as

if

if
(27)

The dominant mode of misclassification is that with the lowest
slope in (27), the corresponding term of which then dominates
the sum in (22) for large. Hence, we approximate the misclas-
sification probability to leading exponential order by

(28)

Since , type ii) errors always dominate type i). Be-
tween types ii) and iii), the prevailing type of errors depends
on the relative magnitude of , , and , which satisfy

. Type ii) becomes prevalent as
since then ; similarly, type iii) dominates as .
Thus, should be chosen large enough to avoid the type iii) er-
rors, but small enough so that the probability of type ii) does
not become large. Unfortunately, this is not possible unless in-
formation on the actual link loss rates is available. We believe,
nevertheless, that this does not represent a problem in prac-
tice. Indeed, as the analysis above indicates, for enough large

, the most likely way misclassifies a tree is by ei-
ther pruning the link which has the least loss rate higher than

(a type ii) error) or by not pruning that with the largest loss
rate smaller than (a type iii) error); either way, the resulting
inferred tree would differ from the actual by at most one link,
approximatively, that with the loss rate closest to.

The foregoing arguments allow us to also estimate the number
of probes required for inference with misclassification prob-
ability in a tree with minimum link loss rate . This is done
by inverting the approximation (28) to obtain thatis approx-
imately

if

if
(29)

Note that for , or when , this reduces to the simple
form .

We conclude by observing that in the above analysis, we have
implicitly assumed that . Nevertheless, for large enough
, which corresponds to the case when is a degen-

erate tree where all leaf nodes are siblings. In this case, it is clear
that misclassification occurs only because of type iii) errors. The
misclassification analysis for this special case can then be ob-
tained by taking into account type iii) errors alone.

2) Experimental Evaluation:We performed 10 000 experi-
ments in a 21-node tree with mixed branching ratioand .
On each experiment, the loss rates are a random permutation
of the elements of the set {0.5%, 1%, 9.5%, 10%}, thus,
having the same smallest link loss as in the experiments for
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Fig. 19. Misclassification and misgrouping in ("). (a) Fraction of
misclassified links with loss� �, for � = 0%, 2.5%, 5.0%, 7.5\%. (b) Fraction
of misclassified trees for" = 0.1%, 0.2%, 0.3%, 0.4%.

. In Fig. 19, we plot the fraction of links, that had loss rates
greater than or equal to a given threshold, and were misclas-
sified. These appear very similar to those for in Fig. 18. In
Fig. 19(b) we also plot the fraction of misclassified trees using

for different values of , all smaller than the smallest
loss rate of 0.5%. With this choice, and
0.5%. As expected, accuracy is best for intermediate. The dif-
ference in shape between the last and the first three curves indi-
cates the change between the two different regimes of misclas-
sification. For smaller than 0.4%, misclassification is domi-
nated by erroneous exclusion of nodes from a group, while for

0.4%, misclassification is mostly determined by erroneous
pruning of the link with the smallest loss rate (which is 0.5%)
because of statistical fluctuation of its inferred loss rate below
. In the latter case, we can use (27) to compute the tail slope

obtaining 4.3 10 , in good agreement with the estimated ex-
perimental slope which is 4.1 10 .

3) Asymptotic Misclassification Rates for the ML Classi-
fier: We sketch how the theory of large deviations [5] can be
used to bound the asymptotic probability of misclassification
by the ML estimator. The expressions obtained here were used
to determine the ML tail slopes in the table in Fig. 17. First,
observe that

For , each term in this sum can be bounded above by

where

and the probability of the outcome
under the loss tree . Let denote
the empirical distribution of the first quantities (here
is the unit mass at), and for each and let

(here is the set of probability measures on) and set
. Since the are independent

and identically distributed (i.i.d.) random variables, we can use
Sanov’s Theorem [5] to conclude that

(30)

Here, for

is the Kullback–Leibler “distance,” or entropy ofrelative to
. By further minimizing the right-hand term of (30) over all

, we obtain an asymptotic upper bound for the decay
rate of the misclassification probability asincreases. For each

, the minimization can be carried out using the Kuhn–Tucker
theorem; we use the form given in [15].

We mention that a lower bound of the following form can be
found:

(31)

IX. SUMMARY AND CONCLUSION

In this paper, we have proposed and established the consis-
tency of a number of algorithms for inferring logical multicast
topology from end-to-end multicast loss measurements. The
algorithms fall in two broad classes: the grouping algorithms
( , , and ), and the global algorithms (ML and
Bayesian).

The computational cost of the grouping approaches is con-
siderably less for two reasons: i) they work by progressively
excluding subsets of candidate topologies from consideration
while the global algorithms inspect all topologies; and ii) their
cost per inspection of each potential sibling set is lower. Of the
grouping algorithms, the approach of treating the tree as
binary then pruning low-loss links is simplest to implement and
execute.
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Of the algorithms presented, only the Bayesian is able to iden-
tify links with arbitrarily small loss rates. All the other clas-
sifiers require a parameter that acts as a threshold: a
link with loss rate below this value will be ignored and its end-
points identified. The threshold is required in order that sibling
groups not be separated due to random fluctuations of the in-
ferred loss rates. However, we do not believe that the neces-
sity of a threshold presents an obstacle to their use in practice,
since it is the identification of high-loss links that is more im-
portant for performance diagnostics. In practice, we expectto
be chosen according to an application-specific notion of a min-
imum relevant loss rate.

By construction, the Bayesian classifier has the greatest ac-
curacy in the context of classification of topologies drawn ac-
cording to a known random distribution. However, the perfor-
mance gap narrows when classifying a fixed unknown topology,
and in fact the Bayesian classifier has slightly worse perfor-
mance than the others in this context. We conclude that
offers the best performance, having the lowest computational
cost for near optimal performance.

This selection of motivates analyzing its error
modes, and their probabilities. Although the analysis is quite
complex, a simple picture emerges in the regime of small loss
rates and many probes, and errors are most likely to occur
when grouping the children of the nodethat terminates the
link of lowest loss rate.

The leading exponents for the misclassification that were cal-
culated in Section VIII can be used to derive rough estimates of
the number of probes required in practice. Consider the problem
of classifying a general topology whose smallest link loss rate in
1%. According to (29), the number of probes required for a mis-
classification probability of 1% (using 0.5%) is about 4000.
(In a binary topology using the number required drops to
about 1000.) Using small (40-byte) probes at low rate of a few
tens of kilobits per second, measurements involving this many
probes could be completed within only a few minutes.

We note that the grouping methods extend to a wider class of
estimators by replacing the shared loss estimate with any func-
tion on the nodes i) that increases on moving away from the root;
and ii) whose value at a node can be consistently estimated from
measurements at receivers descended from that node. Examples
of such quantities include the mean and variance of the cumu-
lative delay from the root to a given node; see [6] and [11].

Finally, a challenging problem is to take the resulting logical
multicast trees and mapping the constituent nodes onto phys-
ical routers within real networks. This remains beyond our ca-
pability at this time.

X. PROOFS OF THETHEOREMS

The proof of Proposition 1 depends in the following lemma.

Lemma 2: Let for ; let be such that
; and set

Then the equation has a unique solution .
Furthermore, given then if and only if .

Proof of Lemma 2:Set so that .
Let , , and ,
so that . We look for zeros of . For

where . Hence, is strictly concave on
. Now , , and .

So since is concave and continuous on there must be
exactly one solution to for and hence
one solution to for . Furthermore, given

, iff and hence given ,
iff .

Proof of Proposition 1: Clearly,

in a canonical loss tree and hence i) and ii) follow from Lemma
2. iii) is then a restatement of (2), established during the proof
of [3, Prop.osition 1].

iv) Write . We refer to Fig. 1, where we show
the logical multicast subtree spanned by and their descen-
dants, together with and the root . From i),
is the solution of the equation

(32)

and is the solution of

(33)

Now suppose that . We shall show that this leads
to a contradiction. Since then , we can
apply i) and ii) to (32) to obtain

(34)

with the right-hand equality obtained by substitution of (33).
Applying (2) at the node we have

(35)

Since the assumption implies that
, then comparing (34) with (35) and using ii) again we

find

This is a contradiction, since and canonical
implies .

While proving that reconstructs the tree correctly,
we find it useful to identify a subset of as astratum if

is a partition of . If works correctly,
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then before each execution of the while loop at line 4 of
Fig. 2, the set is a stratum and the set of nodes
and links is consistent with the actual tree in the sense
that it decomposes over subtrees rooted at the stratum, i.e.,

and . This is because any
correct iteration of the loop that groups the children of node
has the effect of joining subtrees rooted at nodes in, while
modifying the partition by replacing elements

by . The proof of Theorem 2 depends
on the following lemma that collects some properties of strata.

Lemma 3: If is a stratum in a logical multicast tree
then

i) if then no ancestor or descendant oflies in ;

ii) exactly one of the following alternatives applies to each
nonroot node in : a) ; b) has an ancestor in;
c) has at least two descendants in.

Proof of Lemma 3:
i) If and then , contradicting

the partition property.
ii) If , then there exists obeying one of the

alternatives or , for otherwise does not overlap
with any element of the partition . By i), the
alternatives are exclusive. There exists with , it
is unique, by i). If not, there exists with . In this
case, cannot be a leaf node and hence since
has branching ratio at least. Hence, there must be at least one
more node with , since otherwise the partition

would not cover .

Proof of Theorem 2:
i) Suppose that yields an incorrect tree, and consider the

first execution of the loop during which becomes in-
consistent. Inconsistency could occur for the following reasons
only:

1) If the minimizing pair are not siblings. Then
there exists that is the parent of either or

; say . Since , by Lemma 3 i) no ancestor
of —including —can be in . Hence by Lemma 3 ii),
there must be at least one nodein addition to with
the property that and . Since the loss tree
is canonical

contradicting the minimality of . Hence the
minimizing pair are siblings.

2) If not all sibling nodes of are members of . Let
there be a sibling of that is not in . Since ,
then by Lemma 3 i) no ancestor of —and hence no
ancestor of its sibling—can lie in . Since itself is
not in , by Lemma 3 ii), there exist with
ancestor . Since the loss tree is canonical

contradicting the minimality of . Hence, all sib-
lings of are members of .

3) If not all sibling nodes of are included in of steps
5–7. This would violate Proposition 1 iii).

4) If a node that is not a sibling of is included in .
This would violate Proposition 1 iv).

ii) Since i) allows the reconstruction of the loss tree from the
outcome distribution, distinct loss trees cannot give rise to the
same outcome distributions, and hence the canonical loss tree is
identifiable.

Proof of Theorem 3:Consider a maximal set
of siblings that is formed by execution of

the while loop at line 6 in ; see Fig. 2. We assume the
nontrivial case that and assume initially that is unique.
By Proposition 1 iii), is minimal within on
any pair of nodes from . The action of can be
described iteratively over as follows. After
selecting in line 5, all pairs in

minimize over all pairs in

with the same minimum . This is because

where denotes the members of that are descended from
in the binary tree built by . Hence

and so by Proposition 1 i).
Thus for each step in that groups the nodes in, there

are steps of that successively group the same
set of nodes. Since for all , each node
added in has , apart from the last one. There-
fore, acts to excise all links between the binary nodes

. Thus, . If in not
unique, the same arguments apply, except now there can be al-
ternation of grouping operations acting on different maximal
sibling sets.

Proof of Theorem 4:Since each is the mean of in-
dependent random variables then by the Strong Law of Large
Numbers, converges to almost surely as

. In [3, Theorem 1], it is shown that is a contin-
uous function of , from which the
result follows.

Proof of Theorem 5:Let denote a generic binary subset
of that minimizes when is applied to .
Assume initially that the minimizing is unique. Since the loss
tree is canonical, for any other candidate binary
set ; by the convergence property of Theorem 4,

for all sufficiently large. Hence the nodes in are
grouped correctly.

But it may happen, by coincidence, that the minimizingis
not unique. Then there are pairs that minimize

. Since the tree is canonical, then after each has
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been grouped, the remaining pairs are still minimizers of
among all pairs of the reduced set in line
10 of Fig. 4. Hence, picks these pairs successively for
grouping until all pairs have been picked.

With , the are no longer equal. But for suffi-
ciently large they will still all be less than for any other
candidate pair , by Theorem 4. Thus, will successively
group the pairs in some random order that de-
pends on the relative magnitude of the . But the order
is not important, since the end result is just to have the pairs
formed as would have.

Proof of Theorem 8:It suffices to show that

for each , Let denote the probability of the
outcome under the loss tree . Under our
assumptions, if , the Kullback–Leibler information

(36)

is a continuous function of , and is strictly positive
because of identifiability. Thus, there is a number such
that for all . Now

(37)

Since , the density is bounded away from
zero, hence the conditions of Jennrich’s [8] uniform strong law
of large numbers are satisfied. Thus, —almost surely

(38)
uniformly in , whence the right-hand side of (37)
converges to zero as .

Proof of Theorem 9:Recall from the proof of Theorem
8 that the Kullback–Leibler information is a contin-
uous function of , and, because of identifiability, has a unique
minimum, namely , at . Given any neighborhood of

, it follows that, for sufficiently small , the set
is contained in . Using Schervish

[17, Theorem 7.80], we have, for

a.s. (39)

Consider the pseudo-Bayes classifier, which now takes the
form

(40)

From (39) we obtain that, almost surely,
, and for , hence

for sufficiently large , almost surely.

Proof of Lemma 1:Assume that a number of groupings
have been formed, after which are candidate nodes de-
scended from, while is some other candidate node not de-
scended from. Since the grouping thus far is correct,cannot
be or an ancestor of, and hence

Let , . All the are disjoint. By argu-
ments similar to those used in the proof of Theorem 2

Thus, correct grouping of by is guaranteed if (16)
holds for all .

Proof of Theorem 10:Since for each , is the
mean of i.i.d. random variables , the variables ,

, converge to a multivariate Gaussian random
variable as . Since is a differentiable function of ,
the Delta method insures that the stated convergence holds.

To prove i) observe that since
then . Since and may not
satisfy —this may occur whenever
there was a grouping error in any of the steps that lead to the
construction of node and/or node —we need to explicitly
write the expression for

(41)

where

Observe from Proposition 1 iv) that . Intuitively,
the smaller , the greater the error committed so far
in classifying the subtree rooted at. i) then follows as for

it is easy to verify that
and . To prove ii), a standard
application of the Delta method shows that the collection
of converge as to a
multivariate Gaussian random variable with mean zero and
covariance matrix

(42)
where . Now, following the same lines
of [3, Theorem 5], we have that
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and

by direct differentiation. Therefore, we have

Hence

(43)

Finally, iii) follows as is mini-
mized when and .
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