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Multicast Topology Inference From Measured
End-to-End Loss

N. G. Duffield, Senior Member, IEEEJoseph Horowitz, Francesco Lo Presti, and Don Tow$telow, IEEE

Abstract—The use of multicast inference on end-to-end mea- a packet reaching each member of a subset of receivers encoun-
surement has recently been proposed as a means to infer network tersidentical conditions between the source and the receivers’
internal characteristics such as packet link loss rate and delay. closest common branch point in the tree.

In this paper, we propose three types of algorithm that use loss . . .
measurements to infer the underlying multicast topology: i) a This approach has been used to infer the per-link packet loss

grouping estimator that exploits the monotonicity of loss rates Probabilities for logical multicast trees with a known topology.
with increasing path length; ii) a maximum-likelihood (ML) The maximum-likelihood estimator (MLE) for the link proba-
estimator (MLE); and iii) a Bayesian estimator. We establish their pjlities was determined in [3] under the assumption that probe
consistency, compare their complexity and accuracy, and analyze o5 occurs independently across links and between probes.
the modes of failure and their asymptotic probabilities. . . . . - .
This estimate is somewhat robust with respect to violations of
Index Terms—Communication networks, end-to-end measure- this assumption. This approach will be discussed in more detail
ment, maximum-likelihood (ML) estimation, multicast, statistical
inference, topology discovery. presently. . .
The focus of the current paper is the extension of these
methods to infer thdogical topologywhen it is not known
in advance. This is motivated in part by ongoing work [1]
to incorporate the loss-based MLE into the National Internet
I. INTRODUCTION Measurement Infrastructure [14]. In this case, inference is per-
formed on end-to-end measurements arising from the exchange
of multicast probes between a number of measurement hosts
N this paper, we propose and evaluate a number of ald@ationed in the Internet. The methods here can be used to
rithms for the inference of logical multicast topologies fromwfer first the logical multicast topology, and then the loss rates
end-to-end network measurements. All are developed from gt the links in this topology. What we do not provide is an
cent work that shows how to infer per-link loss rate from Me&igorithm for identifying the physical topology of a network.
sured end-to-end loss of multicast traffic. The idea behind this o more important motivation for this work is that knowledge
approach is that performance characteristics across a numbej3he multicast topology can be used by multicast applications.
intersecting network paths can be combined to reveal characigefas been shown in [9] that organizing a set of receivers in a
istics of the intersection of the paths. In this way, one can infg[yik transfer application into a tree can substantially improve
characteristics across a portion of the path without requiring thgrformance. Such an organization is central component of the
portion’s endpoints to terminate measurements. widely used RMTP-II protocol [20]. The development of tree
The use of active multicast probes to perform measuremeggnstruction algorithms for the purpose of supporting reliable
is particularly well suited to this approach due to the inhereg{yticast has been identified to be of fundamental importance
correlations in packet loss seen at different receivers. Consiggrthe Reliable Multicast Transport Group of the Internet En-
amulticast routing tree connecting the probe source to a numBgieeirng Task Force (IETF); see [7]. This motivated the work
of receivers. When a probe packet is dispatched down the tiggorted in [16], which was concerned with grouping multicast
from the source, a copy is sent down each descendant link frgggejvers that share the same set of network bottlenecks from
every branch point encountered. By this action, one packet at{ig source for the purposes of congestion control. Closely re-
source gives rise to a copy of the packet at each receiver. Thdsed to [3], the approach of [16] is based on estimating packet
loss rates for the path between the source and the common an-
cestor of pairs of nodes in the special case of binary trees. Since
loss is a nondecreasing function of the path length, this quantity

Manuscript received June 8, 2000; revised May 4, 2001. This work was sghould be maximal for a sibling pair. The whole binary tree is

ported in part by DARPA and the AFL under agreement P30602-98-0238. ; : ;

N. G. Duffield and F. Lo Presti are with AT&T Labs—Research, FIorhanq(:"COhStrUCtecj by iterating this procedure.
Park, NJ 07932 USA (e-mail: duffield@research.att.com; lopresti@research. o
att.com). B. Contribution

J. Horowitz is with the Department of Mathematics and Statistics, University . . .
of Massachusetts, Amherst, MA 01003 USA (e-mail: joeh@math.umass.edu).ThIS paper describes and evaluates three methods for infer-

D. Towsley is with the Department of Computer Science, University of Masgnce of logical multicast topology from end-to-end multicast
achusetts, Amherst, MA 01003 USA (e-mail: towsley@cs.umass.edu). —  measurements. Two of these, i) and i) below, are directly based

Communicated by V. Anantharam, Associate Editor for Communication Net- . L .
works. on the MLE for link loss probabilities of [3], as recounted in

Publisher Item Identifier S 0018-9448(02)00034-2. Section Il. In more detail, the three methods are as follows.

A. Motivation

0018-9448/02$17.00 © 2002 IEEE



DUFFIELD et al. MULTICAST TOPOLOGY INFERENCE FROM MEASURED END-TO-END LOSS 27

i) Grouping ClassifiersWe extend the grouping method ofgathered from a probe source of low bandwidth (a few tens of
[16] to general trees, and establish its correctness. Thitobits per second) over a few minutes.
is done in two steps. First, in Section Ill, we apply and The ML and Bayesian classifiers are considerably more
extend the methods of [3] to establish a one-to-one caremputationally complex than the grouping-based methods
respondence between the expected distribution of evefus two reasons: i) they exhaustively search the set of possible
measurable at the leaves, and the underlying topolotiges, whereas the grouping approaches progressively exclude
and loss rates. In particular, we provide an algorithreertain topologies from consideration as groups are formed;
that reconstructs arbitrary (e.g., nonbinary) topologig8 their per-topology computational costs are greater. Since
from the corresponding distributions of leaf-measurabtbe number of possible topologies grows rapidly with the
events. Second, in Section IV, we adapt the algorithm tmmber of receivers, any decrease in per-topology cost for the
work with the empirical leaf-event distributions arisingML and Bayesian classifiers would eventually be swamped
from multicast end-to-end measurements. A complicay the growth in the number of possible topologies. For this
tion arises through the fact that certain equalities thegason, we expect significant decrease in complexity will only
hold for the expected distributions only hold approxibe available for classifiers that are able to search the topology
mately for the measured distributions. We propose amsgace in a relatively sophisticated manner, e.g., as performed by
evaluate three variants of the algorithm to overcome thithe grouping-based algorithms. Summarizing, we conclude that
One is based on the above reconstruction method tainary-based grouping algorithms provide the best combination
general trees; the other two methods use binary groupiofjaccuracy and computational simplicity.
operations to reconstruct a binary tree, which is then In Section VIII, we further analyze the modes of misclassifi-
manipulated to yield the inferred tree. cation in grouping algorithms. We distinguish the coarser notion

i) Maximum-Likelihood (ML) ClassifierGiven the mea- of misgrouping,which entail_sfailu_re tc_> identify the descendant
sured end-to-end packet losses, the link loss estimator!('fx)szes.Of agien nqde. This notion is releyapt, for example,

’%%multlcast congestion control, where one is interested in es-

[.3] associates a I|k§I|hood with each pos&blg logical mu blishing the set of receivers that are behind each bottleneck.
ticast tree connecting the source to the receivers. The

classifier selects that tree for which the likelihood is max.. obtain convergence rates for the probability of successful
imal. This estimator is presented in Section V. grouping and classification in the regime of small link loss rates.

We conclude in Section IX; the proofs and some more de-
iii) Bayesian Classifierln this approach, the topology andtailed technical material are deferred to Section X.

link probabilities are treated as random variables with

some prior distribution. In Bayesian decision theory, on€. Other Related Work

specifies a loss function that characterizes a penalty forre mirace [12] measurement tool, reports the route from
misclassification, then selects the topology that minj nicast source to a receiver, along with other information
mizes the mean value of this penalty according o thg,,  that path such as per-hop loss statistics. tidweer
posterior distribution (i.e., the conditional distribution of [10] usesmtrace to perform topology discovery. We

the parameters given the measurements). This estimaiefy contrast some properties of those methods with those
is presented in Section VI. presented here. i) Accessirace relies on routers to respond

In all cases, we establish that the classifiers are consistdftexplicit measurement queries; access to such facilities may
i.e., the probability of correct classification convergesitas be restricted by service providers. The present method does not
the number of probes grows to infinity. We establish connetequire such cooperation. ii) Scalingitrace needs to run
tions among the grouping-based algorithms. In particular, tR8ce per receiver in order to cover the tree, so that each router
general grouping-based algorithm is equivalent to the compoBJUst process requests from all its descendant leaf nodes. The
tion of the binary grouping algorithm with a pruning operatioRresent method works with a single pass down the tree. On
that excises links of zero loss and identifies their endpoints. THE other hand, our methods do not associate physical network

The ML and Bayesian classifiers, embodying standard stai§2sON. We envisage combiningrace and multicast-based

. ; . stimation in measurement infrastructures, complementing in-
tical methods, provide reference points for the accuracy of tfie . . )
. i . . . requentmtrace measurements with ongoing multicast-based
grouping-based classifiers. In Section VII, we use simulations {
inference to detect topology changes.

evaluate the relative accuracy of the topology classifiers, and toIn the broader context of network tomoaranhy. we mention
understand their modes of failure. We find that the accuracy of grapny,

the grouping classifiers either closely matches or exceeds thatof < recentanalytic work on a different problem, namely, deter-

of .. o ) .
the other methods when applied to the identification of a sele?—ma.t'on of source-destmgﬂon trafnc. matrix from source- and
. . . P estination-averaged traffic volumes; see [18], [19] for further
tion of fixed unknown topologies. This finding is supported b etails

some numerical results on the tail asymptotics of misclassifica- ’
tion probabilities when using large numbers of probes. The sim-
ulations show that the techniques can resolve topologies even
when link loss probabilities are as small as about 1%, on theWe begin by reviewing the tree and loss models used to for-

basis of data from a few thousand probes. This data could felate the MLE for link loss probabilities in a known topology.

IIl. LOSSTREES ANDINFERENCE OFLOSSRATE
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We identify the physical multicast tree as comprising actual né@- Inference of Loss Rates
work elements (the nodes) and the communication links thatyynen a probe is sent down the tree from the fpete cannot

jointhem. The logical multicast tree comprises the branch poi§§serve the whole proceds but only the outcoméx; )xc & €
of the physical tree, and the logical links between them. The log- _ {0, 1}® that indicates whether or not the probe reached
ical links comprise one or more physical links. Thus, each nodgcp, receiver. In [3], it was shown how the link probabilities

in the logical tree has at least two children, except the leaf no be determined from the distribution of outcomes when the
(which have none) and the root (which we assume has one). Wﬁology is known. Set

can construct the logical tree from the physical tree by the fol-

lowing procedure: except for the root, delete each node that has (k) = Pr.aVicran X, = 1]. 1)
only one child, and adjust the link set accordingly by linking its LN IERE) S
parent directly to its child. The internal link probabilitesex can be found from

v = {v(k): k € V} as follows. Fork € V, let A(k) be the
A. Tree Model probability that the probe reachésThus,A(k) = Hj>k oy,
the product of the probabilities of successful transmission on

Let7 = (V, L) denote a logical multicast tree with nod€s  each link betweer and the roof). Forl/ ¢ V' we write
and linksL. We identify one node, the ro6t with the source of

probes, and set of leavésC V with the set of receivers. We say Y(U) = P[Viev Vicrm X; = 1.

that a link is internal if neither of its endpoints is the root or a leaf ’

node. We will occasionally usé” to denotel” \ ({0, 1} U R), A short probabilistic argument shows that for diyC d(k)
where 1 denotes the child node @, the set of nodes termi-

nating internal links. Each node apart from the root, has a 1 — (/AR = 1 — (DA, 2
parentf (k) suchthat f (k), k) € L. We will sometimes refer to (1 =A0)/AR) H (1=7G)/AR) @)
(f(k), k) as linkk. Define recursively the compositiorf& =
fo fr=twith f* = f. We say; is descended fromt, and  |n particular, this holds fof/ = d(k) in which casey(l/) =
write j < k, if k = f"(j) for some positive integen. The ~(k). It can be shown for canonical loss trees tHak) is the
set of children ofk, namely,{j € V: f(j) = k}, is denoted unique solution of (2); see [3, Lemma 1] or Proposition 1. Thus,
by d(k). The (nearest) ancesta(U) of a subset/ C V' is given{~(k): k € V} one can find A(k))rev, and hencey, by

the <-least upper bound of all the elementsiéf The nodes taking appropriate quotients.

ina sety C V are said to be siblings if they have the same | et ; = (2, ..., z(™) with z(™ = (X,im))ch be the
parent, i.e., iff(k) = a(U) VE € U. A maximal sibling set set of outcomes arising from the dispatchmaprobes from the

comprises the entire sdtk) of children of some nodé € V. source. We denote the log-likelihood function of this event by
T(k) = (V(k), L(k)) will denote the subtree rooted &t

R(k) = RnV(k) is the set of receivers ifi (k). L(T, o) =logPr_ o[x]. (3)

JEU

B. Loss Model Construct the empirical distributions

For each link we assume an independent Bernoulli loss N e (m)
model: each probe is successfully transmitted across #ink k) =n Z Vier()X;
with probability .. Thus, the progress of each probe down m=1

the tree is described by an independent copy of a stochaglic the fraction of the: probes that reaches some receiver de-
processY = (Xp)rev as follows.Xo = 1. Xj = 1ifthe gcended fronk. Let A denote the corresponding solution of (2)
probe reaches node € V" and0 otherwise. It.X;. = 0, then  gptained by using in place ofy, anda the corresponding prob-
X; = 0,¥j € d(k). Otherwise,P[X; = 1|Xx = 1] = a; gpjlities obtained by taking quotients of the The following

andP[X; = 0|Xx = 1] = 1 — a;. We adopt the convention yegits; the proof of which can be found in [3], holds.
a9 = 1 and denotev = (¢ );ey. We call the pai(7, «) a

loss tree Pz, will denote the distribution of{ on the loss ~ Theorem 1:Let7 be a canonical loss tree.
tree (7, «). In what follows, we shall work exclusively with i) The loss modelis identifiable, i.eF7, ., = Pr . implies
canonical loss treesA loss tree is said to be in canonical form o = o,

if 0 < ai < 1,k € V except fork = 0. Any tree(7, a) ii) With probability 1, for sufficiently largen, A, & are the
not in canonical form can be reduced to a loss {#¢ «') MLEs of 4, a, i.e.,

in canonical form such that the distribution @X)xer is the

same under the corresponding probabilifies , andPz/ . & = argmax £(7, a). (4)
To achieve this, linkst with «;, = 1 are excised and their a

endpoints identified. If any link hasas, = 0, thenX; = 0 for

all j < k, and hence no probes are received at any receiverAs a consequence of the MLE property, is consistent
R(k). By removal of subtree® (k) rooted at suct, we obtain (A"=3" A with probability 1), and asymptotically normal
a tree in which all probabilities;, > 0. Henceforth, we shall (/n(A—A) converges in distribution to a multivariate Gaussian
consider only canonical loss trees. random variable as — oc), and similarly fora; see [17].
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I1l. DETERMINISTIC RECONSTRUCTION OFLOSSTREES BY
GROUPING

The use of estimates of shared loss rates at multicast receivers
has been proposed recently in order to group multicast receivers
that share the same set of bottlenecks on the path from the source
[16]. The approach was formulated for binary trees, with shared
loss rates having the direct interpretation of the loss rate on the
path from the root to the (nearest) ancestor of two receivers.
Since the loss rate cannot decrease as the path is extendedFi

th? B(U’) > B(U) whereU’ = U U {k}. Adjoining the nonsibling

pair of receivers for which shared loss rate is greatest will Bgger. to 17 increases the value d; see Proposition 1 iv).

siblings; if not then one of the receivers would have a sibling
and the shared loss rate on the path to their ancestor would be
greater. This maximizing pair is identified as a pair of siblings .
and replaced by a composite node that represents their paret
Iterating this procedure should then reconstruct the binary tree 2,
In this section and the following section, we establish theo- 3.
retically the correctness of this approach, and extend it to cove 4.
general trees, i.e., those with nodes whose branching ratio me 5.
be greater than two. In this section, we describe how canonicz 6.
loss trees are in one-to-one correspondence with the probabilit
distributions of the random variabléX; ), visible atthere- 7.
ceivers. Thus, the loss tree can be recovered from the receiv 8.
probabilities. This is achieved by employing an analog of the 9.

shared loss for binary trees. This is a functiB(l’) of the loss 10.
distribution at a set of nodés that is minimized wheW is a set 11.
of siblings, in which cas&(U) = A(a(U))), i.e., the comple-  12.
ment of the shared loss rate to the notie$n the case of binary ~ 13.
trees, we can identify the minimizing gétas siblings and sub-  14.
stitute a composite node that represents their parent. Iteratin 15.
this procedure should then reconstruct the tree. The definitior 16.
and relevant properties of the functighare given in the fol- 17.

lowing proposition.

Proposition 1: Let 7 = (V, L) be a canonical loss tree, an
letU ¢ V with #U > 1.

Input: The set of receivers R and associated
probabilities {v(U) : U C R};
R =R, V=R, L' :=10;
foreach j € R’ do B(j) := ¥(j); enddo
while |R'| > 1 do
select U = {uj,u2} C R’ that minimizes B(U);
while there exists u € R’ \ U such that
B(U U {u}) =B(U)do
U:=UU{u};
enddo
Vi=V'U{UL R =R \U)u{U}
foreach j € U do
L= I'U{(U, )} o' (G) := B(G)/BU);
enddo

enddo
V' =V'uU{0};
L'=L'u{0,U};

ay =BU);ap =1,
Output: loss tree (V' L'}, o).

d:ig. 2. Deterministic loss tree classification algoritGRLT).

i) The equation

(1—~W)/B)= ][~ k)/B)

kCU

has a unique solutioB(U) > ~v(U).
i) Let B > ~(U/). Then

(1—~W)/B)> [~ k)/B)

ket

iff B> B(U).

i) B(/) = A(a(l7)) if U is a set of siblings, and hence
B(U) takes the same value for any sibling set with a given

parent.

iv) Let U be a set of siblings, and supposez V is such
thata(U U {k}) > o(U) anda(U U {k}) > k. Then

B(U U {k}) > B(U).

Proposition 1 iv) shows that adjoining a nonsibling
nonancestor node to a set of siblings can only increase the value

do this the Deterministic Loss Tree Classification Algorithm
(DLT), specified in Fig. 2; it works as follows. At the start of
each while loop from line 4, the sél’ comprises those nodes
available for grouping. We first find the paif = {u1, us} that
minimizesB(U) (line 5), then progressively adjoin to it further
elements that do not increase the valu®&dfines 6 and 7). The
members of the largest set obtained this way are identified as
siblings; they are removed from the pool of nodes and replaced
by their parent, designated by their uniéh (line 9). Links
connectingl to its children (i.e., members) are added to the
tree, and the link loss probabilities are determined by taking
appropriate quotients a@8’s (line 11). This process is repeated
until all sibling sets have been identified. Finally, we adjoin the
root noded and the link joining it to its single child (line 14).

Theorem 2:

i) DLT reconstructs any canonical loss tré€, «) from
its receiver setR and the associated probabilities
{v(U): U C R}.

i) Canonical loss trees are identifiable, i.€5 . = Pr/

implies that(7, o) = (77, ).

of B; see Fig. 1. This provides the means to reconstruct the trelthough we have not shown it here, it is possible to establish
7 directly from the{+(U): U C R}. We call the procedure to that any sef?’ present at line 4 dbLT has the property
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L. Inpur: aloss tree (T, a); 1. Input: The set of receivers R, number of probes n,
2. Parameter: a threshold € > 0; receiver traces ( X(i));;:elég’mn¥
3. V={0}udr(0); L' := {(0,k) : k € dr(0)}; 2. RR:=RV':=R; L =0;
4. U:=dr(0); 3. foreachk € R, do
5. while U # @ do 4. E(k‘) = -t 27_1 ) X'(i).
6. select j € U, . LR ) (i)
. . 5. foreach: =1,... . n,do?Y,” = X,;"” ;enddo;
7 U =UAN Y dT(].); 6. enddo * *
8. 1f((1—a]) <;E)A(] # R) then 7. while |R/| > 1 do
¢ = (L'U{(fr (). k) : k € dr(H)D\ 8. select U = {uy,us} C R’ that minimizes
{(fT'() )} ] Ly s yj;)
10, Vi= VA udr(): B) = Hea e
1L else = ) ()
. . 9. foreachi =1,...,ndoY;,’ = V,cyY, enddo
12. L/l;: L,,U {(G.k) : k€ dr(}; 0. Ve=VU{UhR = (R’U\ U {EU};
ii endi}/'- = V' udr(s); 11. foreachu € U do
I5. enddo 2o L= LO{00)a= Be)/BUY
16. Outpur: (V', L"), ') ii endc:: 0
Fig. 3. Tree Pruning AlgorithmT P(¢). 15. V' = Lz u{0h L' =L u{0,U};

16. ay = B(U); a9 = 1,
thatming cr B(U) is achieved whely is a sibling set. Conse-  17. Qutput: loss tree ((V', L'), &).
quently, one could replace steps 5—-8dfT by simply finding
the maximal sibling set, i.e., select a maxiriat: & that min- Fi9- 4. Binary loss tree classification algorithi3 T).
imizes B(l/). However, this approach would have worse com- ‘
putational properties since it requires inspecting every subsefldtus, Y, = 1 iff probe : was received at some receiver de-

R, scended fronk;
B(U) is a root of the polynomial of degregU — 1 from n ‘
Proposition 1i). For a binary subs@&({j, k}) is written down (k) =n"t Z Yk(z)
explicitly
Bl k) — ~()v(k) 5 is the fraction of the probes, ..., n that reach some receiver
({7, k1) = (k) +~v0G) —v{4, kYD)’ ®) descended fromr. Forl/ C V we define
Calculation of B(U) requires numerical root finding when R B <
o . . (U)y=n"t Z Vi YO
#U > 5. However, it is possible to recovér in a two-stage v : JEV S
procedure that requires the calculation&ifl/) only on binary =1

setsl/. The first stage uses the Deterministic Binary Loss Trealogously;(U) is the fraction of probes that reach some re-
(DBLT) Classification Algorithm.DBLT is identical toDLT  ceiver descended from some nodéin_et B(17) be the unique
except that grouping is performed only over binary trees, theelution in Proposition 1 ii) obtained by usirgin place ofy.
omitting lines 6-8 in Fig. 2. The second stage is to use a Tréé will use the notatlorﬁT &) to denote an inferred loss tree;
Pruning(TP) Algorithm on the output of th®BLT. TP acts sometimes we will usdy to distinguish the topology inferred
on a loss tred(V, L), ) by removing fromL each internal by a particular algorithnX. Pf will denote the probability of
link (f(k), k) with loss ratel — oy, = 0 and identifying its false identification of topolog)ﬂ’ of the loss tred 7, «) i.e.,
endpointsk, £(k). We will find it useful to specify a slightly P; = Pz o [7x # 7).

more general version: for > 0,.TP( €) prunes linkk when Theorem 4: Let ((V, L), «) be a loss tree. Then

1 — ar < e. We formally specifyTP(¢) in Fig. 3. In Sec- .
tion X we prove that composing the binary algoritihBLT lim B(U) = B(U), foreachl/ C V.
with pruning recovers the same topology BT for general nee

canonical loss trees. o )
A. Classification of Binary Loss Trees

Theorem 3: DLT = TP(0) o DBLT for canonical loss trees. The adaptation oDLT is most straightforward for binary

trees. By usiqg% in place of B in DLT and restricting the min-
IV. INFERENCE OFLOSSTREE FROM MEASURED LEAF imization of B to binary sets we obtain the Binary Loss Tree
PROBABILITIES (BLT) Classification Algorithm; we specify it formally in Fig. 4.
In this section, we present algorithms which adBhfT to This is, essentially, the algorithm proposed in éG] We have
use the measured probabilities corresponding to-thé.et taken advantage of the recursive structure of (in line
(X(Z))Ze;r '™ denote the measured outcomes arising froﬁ? in order to calculate the probabilitiés Note that wherBLT

i 0 . reconstructs an incorrect topology #+ T, the definitions of
each ofn probes. Define the processié,§ recursively by quantities such aB(U) ande ) extend evidently to subsets

Y =VieawY” with vV =X keR. (6) ofnodes in the incorrect topology’. The following theorem
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establishes the consistency of the estimaigr; the proof ap- adjoining further elements to it provided the resulting et
pears in Section X. satisfies

Theorem 5: Let (7, «) be a binary canonical loss tree. With
probability 1, 7g 1 = 7 for all sufficiently largen, and hence
lim,, oo Fg+ = 0.

BU)(1 - ¢) < B({uy, u}).

The violation of this condition has the interpretation that the

I ancestor(U) is separated from({u1, u.}) by a link with loss

B. Classification of General Loss Trees rate at least. Thus, we replace line 8 of Fig. 4 by the following.
The adaptation oDLT to the classification of general loss ) L e

trees from measured leaf probabilities is somewhat more com—8a' selectl := {u1, u} C § that minimizes5(-);

. : ,
plicated than the binary case. It is shown during the proof of 8b. while there exists: € 1’ I/ such that

Theorem 5 that thé3(I/) have the same relative ordering as (1 - e)B(U U {u}) < B(uy, uz)} do
the B(U) for » sufficiently large. But for a general tré&’, L), ’
B(U’) takes the same value for any sub&&tof a maximal 8c. U=UuU{u};

sibling set/ C V. For finitely many probes, the corresponding 8d. enddo.

{B(U"): U" c U} willnotin general be equal. Hence, choosin% ) ) ) .
to group the subsét’ that minimizes3(-) will not necessarily 0" clarity, we have omitted the details of the dependendg of

group all the siblings iri/. on the#; these are as described before Theorem 4.

In this section we present three algorithms to classify generaf?) Convergence of General Loss Tree Classifiefs the
trees. Each of these overcomes the problem described in the Ff&Tber of probes grows, the topology estimates furnished by
vious paragraph by incorporating a threshold into the groupifa} T F(€), BLTC(¢), andGLT (e) converge to the true topology
procedure. The séf is grouped ifB(U) is sufficiently close to prqwded all internal link loss probabllltl_es are great_er than
being minimal. However, this can also give rise to false inclusiol{iS happens for the same reason as it doeSLif. It is not

by effectively ignoring internal links whose loss rates do not egifficult to see that the deterministic versions of each algorithm,

ceed the threshold. The variety of algorithms derives from dgPtainéd by using3 in place of B, reconstruct the topology.
ince B converges taB as the number of probes grows, the

ferent ways to implement the threshold. We establish domain > oA
in which the algorithms correctly classify canonical loss treeS2Me is true for the c;lassmers usifg We collect these results
In succeeding sections we evaluate their relative efficiencies ajfinout further proof:

compare their modes and frequencies of false classification. Theorem 6: Let (T, a) be aloss tree in which all loss prob-

1) Binary Loss Tree Pruning Classification Algorithmapilities 1 — «, > &/, k € W, for somee’ > 0. For each
BLTP: Nodes are grouped as if the tree were binary, thec (0, ¢’) and each algorithm

resulting tree is pruned withP(¢) to remove all internal links

with loss probabilities less than or equal to the threskaid0. X € {BLTP(¢), BLTC(¢e), GLT(e)}

Thus, for eaclr > 0 we defineBLTP(¢) to be the composition - . o

TP(e) o BLT. A refinement BLTP'(¢) of BLTP(e) is to with probabilityl, 7x = 7 for all sufficiently largen, and hence

o ;o
recalculate the loss probabilitie$ based on the measurement§iin—oo Fx = 0.

and the pruned topology”. o _ Convergence to the true topology requirés be smaller than

2) Binary Loss Tree Clique Classification Algorithmpe internal link loss rates, which are typically not known in
BLTC: For eache > 0, BLTC(¢) groups by forming maximal aqvance. A very small value afis more likely to satisfy the
sets of noded/ in which all binary subseté/" have B(U")  ahove condition but at the cost, as shown in Section VIII, of
sufficiently close to the true minimum over all binary sets. Thigjower classifier convergence. A large valuespbn the other
amounts to replacing line 8 in Fig. 4 with the following steps:hang, is more likely to result in systematically removing links

i) selectl/’ = {u/, v/} that minimizesB(U/"); with small loss rates. In practice, however, we believe that the
choice ofe does not pose a problem. We expect, indeed, that
for many applications while it is important to correctly identify
(1- E)B({u//7 o'} < E(U’); links with high Ioss_rate, failure to detect links with small Ios_s

rates could be considered acceptable. In other words, in practice,
it .,could be sufficient for the inferred topology to converge to

¢ = TP(e)(T), obtained fromZ, by ignoring links whose
loss rates fell below some valuewnhich, in this case, would
Note that if the grouping is done correctly, thét{{«’, +'}) be regarded as some application-specific minimum loss rate of
takes the same value for all binary subsgts +'} of U. For interest.
finite but largen, the corresponding sampleg{{«’, v'}) will The results below establish the desired convergencg<to
differ slightly. foranye € (0, 1) providede # oy, & € W. The key ob-

3) General Loss Tree Classification Algorith@LT: For servation is that since the deterministic versions of each algo-
eache > 0, GLT(¢) is a modification ofDLT that employs a rithm reconstruc? ¢, so does each algorithm, as the number of
thresholck to perform the grouping based @h Each grouping probes grows. DenotB)’;(s) = Pfja[TX # 7T°<]. Without fur-
step starts by finding a binary sgt;, 2} of minimal B, then ther proof we have the following theorem.

ii) construct the grapli of all links (x, ") such that

i) select/ comprising the elements of the largest connect
component of7 that containd/’.
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Theorem 7:Let (7, «) be a loss tree. For eaehe (0, 1), Theorem 8:Lete > 0 and let(7, «) be a loss tree with
such that # «y, kK € W, and for each algorithm a € A7, Thenlim, .00 P7 o[Zvr # 7] = 0.
X € {BLTP(e), BLTC(¢e), GLT(e)}
then with probabilityl, 7x = 7° = TP(e)(T) for all suffi- VI. LossBASED BAYESIAN TREE CLASSIFIER
ciently largen, and hencéim,, .., P){(s) =0. Let 7(R) denote the set of logical multicast topologies
having a given receiver sét. A9 from Section V, is the set of
C. Effects of Model Violation possible loss rates in the topolo@y A possible loss tree with

The two underlying statistical assumptions are i) probes dfRP0l0gy In7' () is an element of the parameter space
independent; and ii) conditioned on a probe having reached a
given nodek, the events of probe loss on distinct subtrees de- ©= U ({r} x A2). (®)
scended fronk are independent. We now discuss the impact of TET(R)
violations of these assumptions. , _ Let 7r(7, ) be a prior distribution or®. Given receiver mea-
The first ob;ervauon is that the estimators remain ConsiS;rements: — (=M, ..., (), the posterior distribution on
tent under the introduction of some temporal dependence fpg;q
tween probes, i.e., under violation of assumption i) above. As-
suming the loss process to be ergodigstill converges toy al- 7(7, alx) = 7 (7, &) f(z|7, @)/ f(z) 9)
most surely, as the number of probegrows. However, rates
of convergence can be slower, and hence the varianfeaain  Wheref(z|7, @) = ¢“(:*) is the joint density of the observa-
be higher than for the independent case. This would incredi§¥s andf(x) their marginal density.
the misclassification probabilities for inference from a given A decision rules provides an estimat&(x) € © of the loss
number of probes. tree given receiver measurementsThe quality of a decision
On the other hand, spatial dependence of loss (i.e., violatidikée is evaluated in terms of lass functionH (¢, ¢’), a non-
of assumption ii) above) can lead to bias. We take spatial I03ggative function or® x © interpreted as the loss incurred
dependence to be characterized by departure from zero of antipdeciding that?” is the true parameter when, in fact, it is
propriate set of loss correlation coefficients. By extending an #- A measure of quality of a decision rukeis its Bayes risk
gument given for binary trees in [3, Theorem 7], it can be showf(6) = E(H (¢, 6(z)), where the expectation is taken with re-
that the limit quantities?’ = lim,,_... B deform continuously SPect to the joint distribution (7, «) f(z |7, ) of the loss tree
away from the quantitie® of the spatially independent case a§ = (7, «) and the observations The Bayes decision rulgs
the loss correlation coefficients move away from zero. Henceisthe one that minimizeE(6): it has least average loss. A stan-
given canonical loss tree can be recovered correctly by applyié@rd theorem in decision theory givés in the form
DBLT to the quantities3’ provided the spatial dependence is
sufficiently small, i.e., to make thB’ sufficiently close taB’ so 6p(x) = argmin / H(6,6)r(0)|x)do (10)
that B(U,) > B(Us) iff B'(U;) > B'(U,) for all relevant sub- prce Jo
sets of node$/; andU». Then, by a similar argument to that ofj e _ it is the minimizer of theposterior risk which is the ex-

Theorem 5, a tree with link loss rates greater than somé is  pected loss with respect to the posterior distributiofz); see

recovered bYBLTP(¢) with probability1 for a sufficiently large [17, Proposition 3.16] and result 1 of [2, Sec. 4.4].

numberrn of probes, and sufficiently small spatial correlations. sjnce our interest is in identifying the correct topology, we
We remark that the experiments reported in Sections Vdhoose the loss functial (7, o), (7', /) = x[r # 7] where

and VIIl use network level simulation rather than model-based s the indicator function, i.e., no loss for a correct identifi-

S|mulat|9n. Hence, it is expected that the model assumptiofigion of the topology, and unit loss for any misidentification.

will be violated to some extent. Nevertheless, the classifiers a4@re the loss rates play the role of a nuisance parameter. The

found to be quite accurate. Bayes classifier for the topology becontas = 7 (), where
V. ML CLASSIFIER Tp(z) = argmin P[r’ # 7| ] (11)
TeT
Let 7(R) denote the set of logical multicast trees with re- T
ceiver setiz. Denote byv7 the MLE of« in (4) for the topology  or, equivalently,
7. TheML classifierassigns the topolog¥yr, that maximizes )
L(T, é&r) Tp(x) = argmax P[r' = 7| z]. (12)
7' CT(R)
Tur, = argmax L(T, &7). ) . )
TeT(R) Thus, the Bayes classifiéfp yields the topology with max-

imum posterior probability given the data By definition, this
'Yassifier minimizes the misclassification probability.

A special case is the uniform prior in which all topologies in
(R) are taken to be equally likely, and for each topolegy

is distributed uniformly on4°. The corresponding prior distri-
A7 ={ace < <1—¢, ke V\{0}} bution (7, a) = x40 (ov)/#7 (R) is a noninformative prior,

We prove that, if the link probabilities are bounded away fro
0 and1, the ML classifier isconsistenin the sense that, with
probability 1, it identifies the correct topology as the number 0)}
probes grows to infinity. For > 0, let
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expressing “maximum ignorance” about the tree topology and R * 90
link probabilities. Clearly, if other prior information is available IMb/sec, 10ms :
about the tree, it may be incorporated into a nonuniform prior L
distribution. The Bayes classifier becomes 5Mb/sec, S0ms
T5(z) = arg max flz|r, @) da. (13) 3
7 CT(R) A")_,
This should be compared with the ML classifier in (7). o . ."'0
4 5 8
A. Consistency of Pseudo-Bayes Classifiers _ _ .
L L ] [ J [ ]
In practice, our task is to identify the specific topology giving 9 10 11 12

rise to a set of measured data. When no prior distribution is spec-

i i i ig. 5. Network-level simulation topology fars. Links are of two types:
ified, th.G. concept ofthe Bay.e.s CI.aSSIfler’ as the maximizer of t'é‘?gelinks of 1-Mb/s capacity and 10-ms latency, antkrior links of 5-Mb/s
probability of correct classification, does not make sense, Q@pacity and 50-ms latency.

cause “the” probability of correct classification is not defined.

Nonetheless, it may be convenient to construgsseudo-Bayes 1

(%24

classifier by choosing a distribution on ©, which plays the ]

role of a prior, and forming the classifier in (10), which we now g 08

denote byZ,. Classifiers constructed in this way are also con- “§

sistent under a mild condition. T 56t
=

Theorem 9: Let 7 be a prior distribution or®, and assume g
that(7, «) lies in the support of-. ThenZ; is consistent in the g 047/
i i 7 s ; Clique Alg. ——

frequentist sense, i.&Rr , [7: # 7] — 0 asn — . 5 U Jenera lique Alg. _____ —
% 0.2 n Pruning Alg.
©

VII. SIMULATION EVALUATION AND ALGORITHM COMPARISON o

0 JENE T | 1 Il 1 1
A. Methodology 1000 2000 3000 4000 8000
no. of probes
We used two types of simulation to verify the accuracy of the

classification algorithms and to compare their performance. g 6- ¢ = 0-25%.
model-based simulation, packet loss occurs pseudorandomly in
accordance with the independence assumptions of the model.
This allows us to verify the prediction of the model in a con-
trolled environment, and to rapidly investigate the performance
of the classifiers in a varied set of topologies.

This approach was complemented by network-level simula-
tions using thes [13] program; these allow protocol-level sim-
ulation of probe traffic mixed in with background traffic of TCP
and UDP sessions. Losses are due to buffer overflow, rather than
being generated by a model, and hence can violate the Bernoulli
assumptions underlying the analysis. This enables us to test the
robustness to realistic violations of the model. Fornkesimu- ol o . .
lations we used the topology shown in Fig. 5. Links in the inte- 1000 2000 3000 4000 8000
rior of the tree have higher capacity (5 Mb/s) and latency (50 ms) no. of probes
than those at the edge (1 Mb/s and 10 ms) in order to capture
heterogeneity between edges and core of a wide-area netw
Probes were generated from ndilas a Poisson process with ) )
mean interarrival time 16 ms. Background traffic comprised® Performance of Algorithms Based on Grouping
mix of infinite FTP data sources connecting with TCP, and ex- 1) Dependence of Accuracy on ThreshaldWe conducted
ponential on—off sources using UDP. The amount of backgrouh@0 ns simulations of the three algorithn®LTP, BLTC, and
traffic was tuned in order to give link loss rates that could haveLT. Link loss rates ranged from 1.8% to 10.9% on interior
significant performance impact on applications, down to as ldmks; these are the links that must be resolved if the tree is to
as about 1%. One strength of our methodology is its abilitye correctly classified. In Figs. 6-11, we plot the fraction of
to discern links with such small but potentially significant losexperiments in which the topology was correctly identified as a
rates. In view of this, we will find it convenient to quote all lossunction of the number of probes, for the three algorithms, and
rates as percentages. for selected values of between 0.25% and 5%. Accuracy is

e

06} §

0.4 i

Clique Alg. ——
General Tree Alg. -
021 Pruning Alg.

Fraction of correctly classified trees

ghl,?(e7 e = 0.5%.
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smallest interior loss rate, the probability of correct classifica-

tion falls to zero. The behavior is different if we ignore failures
best for intermediate, decreasing for larger and smalterThe to detect links with loss rates smaller thanFore = 5% and
explanation for this behavior is that smaller valuessdéad = = 7%, in Figs. 12 and 13, respectively, we plot the fraction
to stricter criteria for grouping nodes. With finitely many samef experiments in which the pruned topology was correctly
ples, for smalk, sufficiently large fluctuations of thé& cause identified for the three algorithms. Here, the accuracy depends
erroneous exclusion of nodes. By increasinghe threshold on the relative values of and the internal link loss rates. In
for group formation is increased and so accuracy is initially inhese experiments, the actual loss rates was often very close to
creased. However, asapproaches the smallest interior link los$%, so that small fluctuations results in erroneous inclusions/ex-
rate, large fluctuations of thB now cause erroneous inclusionclusions of nodes which accounts for the significant fraction of
of nodes into groups. When is increased much beyond thefailures fore = 5%. In Section VIII-B, we shall analyze this
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Fig. 14. Dependence of accuracy on branching ratio. Convergence is faster for binary tree& léftind BLTP outperformBLT C for nonbinary trees
(right).

behavior and obtain estimates for the probabilities of misclas&inally, observe that each increase in the size of sets considered
fication in the regimes described. We comment on the relatire GLT is functionally equivalent to one pruning phase in
accuracy of the algorithms in the following subsection.. BLTP. Thus, inGLT, the threshold is applied throughout the

2) Dependence of Accuracy on Topologye performed algorithm; in BLTP it is applied only at the end. We expect
1000 model-based simulations using randomly generatiis to facilitate adaptive selection efin BLTP. Comparing
24-node trees with given maximum branching rattoand4. now with BLTC, we observe that this algorithm requires, in
Link loss rates were chosen at random in the interval [1%, 10%[ddition to the calculation of shared losses, the computation
Fig. 14 shows the probability of successful classification faf a maximal connected subgraph, an operation that does not
BLTP(e), BLTC(e), andGLT(e) for ¢ = 0.25%. In both cases scale well for large numbers of nodes. For these reasons, we
this grows tol, but convergence is slower for trees with higheadoptBLTP as our reference grouping algorithm since it is the
branching ratios. We believe this behavior occurs due to teemplest and has close to the best accuracy. In the next section,
larger number of comparisons of values Bfthat are made we compare its performance with that of the ML and Bayesian
for trees with higher branching ratio, each such compariscfassifiers.
affording an opportunity for misclassification. ) ) ) N

3) Comparison of Grouping Algorithm Accuracyn all ex- C. Comparison oBLTP With the ML and Bayesian Classifiers
periments reported so far, with one exception, the accuracieg) Complexity: In this subsection, we compare our refer-
of BLTP and GLT were similar, and at least as good as thaince grouping algorith@LTP with the ML and Bayesian clas-
of BLTC. The similar behavior oBLTP andGLT is explained sifiers. Here we consider the simplest implementation of these
by observing that the two algorithms group nodes in a similatassifiers whereby we proceed by exhaustive search of the set
manner. IBLTP, a link is pruned from the reconstructed binary7 ( R) of all possible topologies during evaluation of the maxima
tree if its inferred loss rate is smaller thanin GLT, a node is (7) and (13). By contrast, all the grouping algorithms proceed by
added to a group if the estimated common loss of the augmengi¢hinating subsets of (R) from consideration; once a set of
group is withine of the estimated common loss of the originahodes is grouped, then only topologies which have those nodes
group. The operation dBLTC is somewhat different, checkingas siblings are considered.
all possible pairs among candidate nodes for grouping. IncorrectThe Bayesian classifier further requires numerical integration
ordering in any test can result in false exclusion from a siblirfgr each candidate topology. In order to reduce its complexity,
set. We observe also that the performance gap betBe&q we took the prior for the link rates to be uniform on the dis-
and the other algorithms is sensitive to the value- @nd to crete set {1%. .., 10%]}, with all topologies equally likely; we
the branching ratio. The exceptional case in wHstiTC per- also precomputed the joint distributiofiéz|7, «). Due to these
forms better than the other algorithms is in the inference of ljemputational costs, we were able to comp@Ld P with the
nary trees: hereBLTC performs slightly better because of theML classifier for only up to five receivers, and restricted the
stricter grouping condition is employs, making it less likely t®ayesian classifier to the smallest nontrivial case, that of three
group more than two nodes. receivers. The four possible three-receiver trees are shown in

4) Computational Complexity of Grouping Algorithm&f Fig. 15. In this case, the execution time of the Bayesian clas-
the two best performing grouping algorithms, naméi,TP  sifier was one order of magnitude longer than that of the ML
and GLT, we observe thaBLTP has smaller computational classifier, and about two orders of magnitude longer than that
complexity for several reasons. Fird?, is given explicitly for of BLTP.
binary groups, whereas generally it requires numerical root2) Relative Accuracy:We conducted 10000 simulations
finding. Second, although the algorithms have to calculate with the loss tregr, «) selected randomly according to the
for up to O(#R?) groups, in typical caseSLT requires addi- uniform prior. As remarked in Section VI, the Bayesian Classi-
tional calculations due to the larger sibling groups consideréibr is, by definition, optimal in this setting. This is seen to be
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Fig. 15. ML and Bayesian classifier: The four possible topologies with three receivers.
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Fig. 16. Misclassification in ML, Bayesian, alBLT classifier:(7, a) randomly drawn according to the prior distribution. (a) Bayes Bbd P(¢) classifier.
(b) Bayes and ML classifiers.

the case in Fig. 16, where we plot the fraction of experimentsivith fixed loss trees. The relative accuracy of the algorithms was

which the topology was incorrectly identified as function of théound to vary with both topology and link loss rates. However,

number of probes, for the different classifiers (for clarity, wén all examples we found a value ofor which BLTP(¢) accu-

plot separately the curves for the ML aBHTP(¢) classifiers). racy either closely approached or exceeded that of the ML and

Accuracy ofBLTP greatly varies witlz: it gets close to optimal Bayesian classifiers. As an example, in Fig. 17, we plot the re-

for the intermediate value af = 0.5%, but rapidly decreasessults for the first binary tree topology in Fig. 15 with all loss rates

otherwise ass approaches eithed or the smallest internal equal to 10% but that of the sole internal link, which has loss rate

link loss rate. It is interesting to observe that the ML classifiel%. In this example, the ML classifier is more accurate than the

fails 25% of the time. This occurs when is the leftmost pseudo-Bayesian classifi@LTP(e) accuracy improves asis

tree in Fig. 15. The reason is that the likelihood function idecreased, and eventually, for= 0.25%, it exceeds that of the

invariant under the insertion of links with zero loss. Statisticglseudo-Bayesian and ML classifier.

fluctuations present with finitely many probes lead to tree with These experimental results are supported by approximations

highest likelihood to be a binary tree obtained by insertion ob the tail slopes of théog misclassification probabilities, as

links with near-zero loss. This behavior does not contradidetailed in Section VIII. For the same example, we display in

the consistency property of the ML classifier in Theorem &ig. 17 (right), the estimated experimental and numerical ap-

if links with loss less than some > 0 are excluded from proximated tail slopes of the ML and BLTP classifiers. For a

consideration, then for sufficiently large number of probes, tlggven classifier these agree within about 25%. Finally, not re-

spurious insertion of links will not occur. ported in the figure, we also verified that the Ml.(classifiers
The effect of these insertions can be suppressed by prunprgvide the same accuracy BETP(e).

after ML classification. Setting M{g) = TP(e) o ML we

find the accuracy almost identical with that BETP(¢); this D. Summary

is plotted in Fig. 16(b). A more detailed inspection of the exper-

iments shows thaBLTP selects the ML topology most of the Whereas the Bayesian classifier is optimal in the context of

time. a random topology with known prior distribution, similar accu-
In practice, we want to classify a fixed but unknown topologyacy can be achieved usiBgTP(¢) or ML(e) with an appropri-

In this context, the uniform prior specifies a pseudo-Bayesiately chosen threshold In fixed topologies, the corresponding

classifier, as in Section VI. Note that this classifier is not nepseudo-Bayes classifier is not necessarily optimal. In the fixed

essarily optimal for a fixed topology. We conducted a numbgopologies for which we were able to make comparisons, better

of experiments of 10000 simulations of the three algorithneecuracy could be obtained usiB§TP (¢) or ML(e) with an
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Fig. 17. Misclassification in ML, Bayesian, a8l T classifier. Fixed 7, «). Left: Fraction of misclassified topologies. Right: Comparison of experimental and
approximated tail slopes.

appropriate threshokd The accuracies BLTP (¢) and ML(e) receiver misgrouping. To this end, we need to first introduce

are similar: most of the timBLTP selects the ML topology with a more general form of the functiaBi(-) to take into account

ML. expressions which may arise as a result of classification errors.
BLTP has the lowest complexity, primarily because eadDbserve that in (6) fok ¢ V we definedYk(z) as

grouping operation excludes subsets of candidate topologies ‘ ‘ ‘

from further consideration. By contrast, the ML and Bayesian Yk(”) = vjed(k)Yj(”) = vjeRT(k)Yj(”).

classifiers use exhaustive searches through the space of pos-

sible topologies. Since the number of possible topologi&sline 9 of BLT, we have for the newly formed nodé,

grows rapidly with the number of receivers, these methods @ ‘ @

have high complexity. A more sophisticated search strategy Y, = \/’UEUYTU(,Z) = VjesY;

could reduce complexity for these classifiers, but we expect

this to be effective only if the number of topologies to b&T SOme subse of K7. By construction,5 is the set of re-

searched is reduced (e.g., in the manneBIGFP). With larger ceivers of the subtree &f rooted inU (which has been ob-

numbers of receivers, any fixed reduction in the per—topolog'ned by recursively grouping the nodesj It is clear that

computational complexity would eventually be swamped dug ~ R (k) for some nodet € V' if the subtree has bee_n
to the growth in the number of possible topologies. correctly reconstructed, but, upon an error, can be otherwise a

generic subset ol+. Therefore, inBLT we need to consider

VIII. M ISGROUPING ANDMISCLASSIFICATION the following more general expression:

In this section, we analyze more closely the modes of failure i s Y i Vjcs, Y
of BLTP, and estimate the convergence rate of the probability E(S Sy) 1= I i I
of correct classification. Since this classifier proceeds by recur- L () )
sively grouping receivers, we can analyze topology misclassi- ”El (VJ'CSIYJ ) ) (ViCSij )
fication by looking at how sets of receivers can be misgrouped R R
in the estimated topology . We formalize the notion of correct = Y51)3(5>)
receiver grouping as follow$+ will denote the set of receivers Y(S1) +4(S2) — (51 U S2)
in the logical multicast topolog¥ .

—

(14)

where S; and S; are two nonempty disjoint subsets &fr.
Definition 1: Let (7, a) be a loss tree witd” = (V, L), Analogous to Theorem 4

and let(7, &) be an inferred loss tree with = (V, L). The .

receiversiz (i) descended from a nodec W are said to be ,}glgo B(S1, S2) = B(S1, 52)

correctly grouped in/” if there exists a nodé € V such that

Rz (i) = R#(0). In this case, we shall say also that nade where

correctly classified inZ . B(S1. 5) PVjes, X; = 1PV es, X; = 1]
1, 92) =
Observe that we allow the trees rooted andz to differ in \% Jele Vjes, Xj = 1]
the above definition; we only require the two sets of receivers ~(51)7(S2)
= . 15
o be equal. Y(51) +7(S2) —¥(S1 U S2) (15)

Correct receiver grouping and correct topology classification
are related: in the case of binary trees, the topology is correcyuation (15) can be regarded as a generalization of (5) where
classified if and only if every node € W is correctly classified. we consider a pair of disjoint sets of receivers instead of pair of
This allows us to study topology misclassification by looking atodes.
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A. Misgrouping and Misclassification iBLT whereV is the cumulative distribution function (cdf) of the stan-

We start by studying misgrouping in binary trees ungleF. dard normal distribution. Thus, for largeand small||@||, The- _
Consider the evert; thatBLT correctly groups nodes it (i) orem _10 and (17) 'Fogether suggest that we approximate the mis-
for somei € W. This happens if grouping operations do no8rouping probability
pair any nodes formed by recursive groupiRg (), with any
nodes formed similarly from the compleme®t \ B+ (¢), until ¢
no candidate pairs ifR7(¢) remain to be grouped.

(19)

Here we have used the fact th&f should be dominated by
Lemma 1: A sufficient condition for correct grouping afis  the summand with the smallest (negative) exponent according to

that (18). Thus, asymptotically for many probes, the probability of

. . . correctly identifying a group of receivers descended from node

D(81, Sa, S3) := B(S1, S3) — B(51, S2) >0 (16) i is determined by the loss rate of linkalone, and is larger for
lossier links. Moreover, the stated relations between the mini-
mizing (S1, S2, S3) in iii) say that the likely mode of failure is

y to mistakenly group a child afwith the sibling of:.

(81, 92, 55) € S() In binary trees, the topology is correctly classified when all
groups are correctly formed. Hence

for all

= {(Slv 527 53) : Slv 52 C RT(Z)v 53 g RT \RT(Z)v

Sk7£w7k:17 27 37 Sk#*gévk?ég}
PgLT < Z Pif ~ max Pif

Therefore, = iCW
Gi2Q;= N Q(S1, Sz, S3) and we expedbg PJ ; to be asymptotically linear with a func-
(S1, 82, 53)€S(3) tion of n with a negative slop&’ /2, where
whereQ(S1, Sz, S3) denotes the event that (16) holds. This ' = min @,. (20)
provides the following upper bound for probability of mis- icW

groupingi, denoted by: Thus, in the regime considered, the most likely way to misclas-

S c ¢ sify atree is by incorrectly grouping siblings whose parent node
Fr=PlE] < 2 PLR7 (S, 52, S5l (A7) j terminates the least lossy internal link, mistakenly grouping
the sibling of;j with one of its children.

1) Estimation of Misclassification ProbabilitiesiWe now We remark that the preceding argument can be formalized
consider the asymptotic behaviorBf, first for largen, then using Large Deviation theory [5]. However, calculation of the
for small loss probabilities = 1 — «. Lets(k) := >_,,, @, decayrate appears computationally infeasible, although one can
k € V,and setD(-) = E[D(-)]. B recover the leading exponefit /2 in the small||@|| regime.

. 2) Experimental EvaluationAlthough we have derived

Theorem 10:Let (7, ) be a canonical loss tree. For eache sjopew” through a series of approximations, we find that

‘e W, it describes experimental misclassification and misgrouping
(F _ ., reasonably well. We performed 10000 experiments with an

Vi (D(51, 52, 83)=D(81, 82, 53)). (1, 52, 53) € S() eight-leaf perfectly balanced binary tree. On each experiment,

converges in distribution, as the number of probes» oo, the loss rates are a random permutation of the elements of the

to a Gaussian random variable with me@nand variance Set{0.5%, 1%,...,7%, 7.5%}. In this way, the smallest loss

(Sl, Sa, Sg)CS(i)

02(51, Sy, Ss), with rate is fixed to 0.5%. In Fig. 18, we plot the proportion of links,
that had loss rates greater than or equal to a given threshold
D(51, Sa, S3) = B(S51, S3) — B(S1, S2). ¢, and were misclassified. As the number of probes increases,
misclassification is due exclusively to misgrouping of low loss
Moreover, ad|@|| = maxxey @ — 0, then rate links: in this set of experiments, no link with loss rate

i) D(S1,S2,S3)=s(a(S51US2))—s(a(S1US3))+O0(||@||?); higher than 2% was misclassified once the number of probes

2 _ —12y. exceeded 700.

::|)) o (51, 52, 83) = ({51 US2))—s(al(5105:) HO(|]): According to (19), the different curves should be asymptot-

ically linear with negative slope approximately2 (when ad-

justed by a factolog; , ¢ since the logarithms are to bat®. In

the table of Fig. 18 (right) we display the estimated experimental

and approximated slopes. Agreement is goodifer 2.5% and

where, for small enougji||, the minimum is attained for 59, We believe the greater error for= 7.5% may be due to

51, 82, 53 such thata(S;US2) =4 anda(S1US3)= f(i). the departure from the leading order linear approximations of

(18) for larger values af; also relatively few points are avail-

able for estimation from the experimental curves. In the figure,
D(51, Sz, S3) we also plot the log fraction of timéBLT correctly identify the

' o(S1, Sa, S3) ) topology; as expected, this curve exhibits the same asymptotic

DQ(Slv 527 53)

! =a+0 (|[a)*) (@18
(SI,SZ%SES(i) 02(S1,Sa,S3) @i+ (||04||) (18)

Theorem 10 suggests we approximB{&°(S1, S2, S3)] by

¥ <—\/ﬁ



DUFFIELD et al. MULTICAST TOPOLOGY INFERENCE FROM MEASURED END-TO-END LOSS 39

1e+00

Fraction of misclassified trees

105S > 0% o ¢ Expt. | Approx.
1 loss E 2.52/0 """ oo 0% | 0.0005 | 0.0011
o0t [i ossz S ] 2.5% | 0.0051 | 0.0054

5.0% | 0.0097 | 0.0109
7.5% | 0.0248 | 0.0163

1e-02 | 1% .

Fraction of misclassified links

1e-03 : : -
0 500 1000 1500 2000

no. of probes

Fig. 18. Misclassification and misgroupingBLT . Left: Fraction of links misclassified with loss ¢, for ¢ = 0%, 2.5%, 5.0%, 7.5%. Right: Comparison of
experimental and approximated tail slopes.

linear slope of the fraction of misgrouped links, i.e., the one fdf;, i € W<}. The latter conditions ensure that all the links

¢ = 0%. in the binary tree produced byLT, which either result from
node misgrouping or correspond to fictitious links due to binary
B. Misgrouping and Misclassification iBLTP(e) reconstruction, have estimated loss rates less than or equal to

We turn our attention to the errors in classifying general treésand are hence pruned. Summarizing(}¢by, S, 53, €) be
by the reference algorithBLTP(z). In the following, without the event that (21) holds for a givef;, Sz, Ss), andG(e) the
loss of generality, we will study the errors in the classifica€Vent that the topology is correctly classified. Then
tion of the pruned treé7 =, o*) = TP(e)(7, «), with 7¢ = Gle) O A oW A Oii)

(Ve, L#), under the assumption that? «y, £ € W. This will ()2 k&VQR (@ 0@ () N @™(e)

include, as a special case, whelis smaller than the internal i
link loss rates of the underlying tree (.. = 7), the analysis Where
of the misclassification of . W< = V< \ ({0, 1} U Rz<) will iy — S Sy Sa. e
denote the set of nodes #¥ terminating internal links. @ (¢) ﬂ QS1, 52, 5, €)

Let (7, &) denote the tree produced BT, the final esti-
mate” < is obtained fromZ by pruning links whose loss rate

(Sl, Sa, Sg)CS(k)

is smaller or equal than, i.e., (7%, &°) = TP(e)(7, &). In Q") = N (@51, 52, 53)
contrast to the binary case, incorrect groupingdd may be (51,82, 55)€5(c)
sufficient but not necessary for misclassification. Baf P(e), NQ(S1, Sz, 53, €)°) U(Q(S1, 52, S3)°
incorrect classification occurs if any of the following hold: NQ(S1, Ss, Sa, £)°).
i) atleast one node i © is misclassified ir/ <; Consequently, we can write a union bound for the probability of
i) TP(e) prunes links front/” that are present i <; or misclassification
iiiy TP(e) fails to prune links front/” that are not present in
7" PBLTP(E.) = P[G(e)]

Observe that i) implies that a nodesuch thatv; < ¢ can be < Z (P[Qi] +P [ ;:)(E)CD +P [Qm) (E)C}
misclassified and stilf = = 7= provided the all the resulting kewe
erroneous links are pruned. (22)

We have approximated the probability of errors of type i) iBng each term in (22) can in turn be bounded above by a sum
our analysis oBLT. Errors of type ii) are excluded if for all gimijar to the right-hand side of (17). For the last term, in par-

e wr ticular, observe that
D(S1, S, Ss, E) = B(S1 USs, Sg) (1—6) —B(Sl, SQ) >0 Qm)(g)c = U
(22) (S1, 52, S3)€S(=)
for all (S1, S2, S3) € S(4), since this condition implies that all -(Q(S1, S2, S3)°UQ(S1, Sa2, S3, €))
estimated loss rates of links in the actual tree are greaterthan N(Q(S1, Sz, S3) N Q(S1, Ss, Sa, €))
Errors of type iii) are excluded iB(S1, S3) — B(S1, S2) > 0
andB(S;US,, S3)(1—e)—B(S1, Sy) <0, 0rif B(S;, S3)— < U
B(S1, S2) < 0andB(S; U S3, S2)(1 — &) — B(Sy, S3) > (51, 52, 52)C5(2)
0 for all (S1, Sa, S3) € S(e) whereS(e) = {(Sy, Sa, S3): (Q(51, 52, 53, €) UQ(S1, 53, 52, €))

Sj - .R7 Sj # (2)7 SJmSk = (Z), J # ]%7 (51USQU53)QRT('£) = U Q(Sl, SQ, Sg, E) (23)
=0V (51USUSs) C Rr(i)v3je{l,2, 3} Rr(i) C (51,52, 53)CS(e)
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so that Using the same reasoning as was used in Section VIII-A, we
expect the logarithms of the probabilities of errors of types i),
P [Qm) (E)C} < > Q(S1, 52, 53, €). ii), and iii) to be asymptotically linear in the number of probes
(81, S2, S3)€S(e) n, with slopes that behave, respectively, as
1) Misclassification Probabilities and Experiment Dura- Dy i (@ (e) — €)?
tion: We examine the asymptotics of the misclassification d=al(e)/2 M= Tl (e)
probability P, BLTP( , for large n and small||@|| by the same - o
means as in Section VIII-A. This amounts to finding the mean O (*/|lal?), ifar(e)=0
D(S1, So, S3, €) and asymptotic variance?(Sy, Sz, S3, €) A = (e — aP(e))? _ (27)
of the distribution of D(S;, Sy, Ss, €), then finding the “oa(e) if af(e) > 0.

dominant exponenb? /a2 over the variougS;, S, S3). Let
@’ (¢) = minjew- @; denote the smallest internal link loss ratd he dominant mode of misclassification is that with the lowest

of 7°¢ larger thare and@”(¢) = maxicw\w- @ the largest slope in (27), the corresponding term of which then dominates
internal link loss rate off” smaller thare or a”(¢) = 0 if no the sum in (22) for large. Hence, we approximate the misclas-
such loss rate exists (which occurs wheis smaller than all Sification probability to leading exponential order by

internal links loss rate). The proof of the following result is pf n o= (/2 min{e?, ¢, 610} 28)
similar to that of Theorem 10 and is omitted. BLTP(e) :

Theorem 11:Let (7, «) be a canonical loss tree. For eactpincec”’ > ¢, type ii) errors always dominate type i). Be-
0<e<1,(S1, S S3) € Ujew- S(E) US(e) tween types ii) and iii), the prevailing type of errors depends
on the relative magnitude @ (), @ (¢), ande, which satisfy
V- (D(Sy, Sa, S, €) — D(Sy, So, Ss, €)) al(e) < e < @’ (¢). Type i) becomes prevalent as— @’ (¢)
since thent) — 0; similarly, type iii) dominates as — @”(¢).
converges in distribution, as the number of probes- oo, Thus,e should be chosen large enough to avoid the type iii) er-
to a Gaussian random variable with me@nand variance rors, but small enough so that the probability of type ii) does
0%(S1, Sz, Ss, £). Furthermore, afal| = maxiey @ — 0 not become large. Unfortunately, this is not possible unless in-

ande/||a|| — ¢ € (0, o) formation on the actual link loss rates is available. We believe,
. nevertheless, that this does not represent a problem in prac-
D = — _
) ((ﬁéhf)?’ 53,¢) = s(a(S1 U 52)) = s(a(51U5s)) —e+ tice. Indeed, as the analysis above indicates, for enough large

L n, the most likely wayBLTP(¢) misclassifies a tree is by ei-
ii) 02(S51, S, 53, €) = [s(a(S1 U S2)) = 5(al(S1US3))l+  ther pruning the link which has the least loss rate higher than

(llell®). e (a type ii) error) or by not pruning that with the largest loss
i) If (S1, S, S3) € S(4),i € W=, rate smaller tham (a type iii) error); either way, the resulting
inferred tree would differ from the actual by at most one link,
M approximatively, that with the loss rate closestto
(51,52.5,)e8() 02(S1, 52, 53, ¢) The foregoing arguments allow us to also estimate the number
_ (w;—e)? Lo (HEHQ) (24) of probesN required for inference with misclassification prob-
7 ability & in a tree with minimum link loss rata”. This is done
nd by inverting the approximation (28) to obtain thstis approx-
a imately
. D?(81,S5,S5,¢€) -
—’ il _2al(e)logé if &P(e) —
zlgl‘}vnf (51, 52 Sg)CS(Z) a2(S1, 82, S3,¢) (e—al ()2’ if a’(e) =0 (29)
al(e) —¢ _ _ al (o) aP(e) if &
— ( éf)(g) ) +0 (HaHQ) . (25) 2max{(ﬁ @2 @)y }IOg(S if & (E) > 0.
Note that forBLT, or whens < @/, this reduces to the simple
If (51, 52, S3) € S(e) form N ~ —2log(8)/a’.
D?(S1, 52, S5, ¢) We conclude by observing that in the above analysis, we have

implicitly assumed thai#* # 0. Nevertheless, for large enough

nin —
- 2
($1,52,53)e8() (51, 52, 55, €) e, W& = ( which corresponds to the case whEh s a degen-

0 (52/”5”2) ) if a?(e) =0 5 erate tree where all leaf nodes are siblings. In this case, itis clear
TN (e—ar(e))? +0 (HEHQ) if @(c) > 0 (26) that misclassification occurs only because of typeiii) errors. The
Tarle) ) :

misclassification analysis for this special case can then be ob-
In (26), for clarity we distinguish the expressionsfdi(c) = 0 tained by taking into account type iii) errors alone. .
anda®(e) > 0. Observe that the result fa¥(¢) = 0 in (27) 2) Experimental EvaluationWe performed 10 000 experi-

can be actually obtained by taking the limit of the expression fg#€nts in a 21-node tree with mixed branching ratiand3.
@(g) > 0, which is of the form On each experiment, the loss rates are a random permutation

of the elements of the set {0.5%, 1%, ,9.5%, 10%}, thus,
((e=a@E))?+o(|al®)/ @)+ 0 (a|l?)) . having the same smallest link loss as in the experiments for
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1e+00 : - ~ Forr # 7, each term in this sum can be bounded above by
loss > 0% -+

loss 22.5% -8 n .
loss> 5% e P+ . n1 XD 7 of >0
loss 27.5% ---x—-- T« < U { Zg( 7, )

@

=

B £

£ 1e01 pwt @’ CA- i=1

8 where

‘g 1e-02 I g(a; 7, o) = log(p(x; 7, o) /p(z; T, @)

< e T 1 .

£ T andp(z; 7, o) the probability of the outcome € @ = {0, 1} %
] )

[T

under the loss tre€7, «). Let u,, = n™t Y | 6 denote
the empirical distribution of the first quantitiesX ' (heres,

1e-03 — : : i i !
0 500 1000 1500 2000 is the unit mass at), and for eachr anda’ € A, let
no. of probes
(a) I ow=<4reM(Q): Zg(a:; 7, & w(z) >0
16+00 mpgez—r zCiL
2 x° """"" T (here M, () is the set of probability measures ) and set
e N T Iy = Ugpca, Ir o Since they(X ), 7, o) are independent
3 U and identically distributed (i.i.d.) random variables, we can use
i e R Sanov’s Theorem [5] to conclude that
© e
S te01 | e ) 1 A
£ ¢ limsup — logP7 o(Zur = 71)
5 £=0.1% e _ n—oo N .
= - O/ . P e .
% E; 8%0//: . e < limsup — logP7 o(pn € ;)
o £= 0.4% ---x--- - n—oo N
- <—inf K(v|f(; 7, a)). (30)
vCl-
1e-02 : : : :
0 2000 4000 6000 8000 10000 Here, forv, n € My ()
no. of probes
(b) K(v|n) =Y v(x)log(z)/n(x))
z€EQ

Fig. 19. Misclassification and misgrouping BLTP(¢). (a) Fraction of ; | i w i ” .
misclassified links with losg ¢, for ¢ = 0%, 2.5%, 5.0%, 7.5\%. (b) Fraction is the Kullback . L,elpl,er dIStance’ or entropy ofrelative to
of misclassified trees for = 0.1%, 0.2%, 0.3%, 0.4%. 7. By further minimizing the right-hand term of (30) over all

T # 7, we obtain an asymptotic upper bound for the decay

BLT. In Fig. 19, we plot the fraction of links, that had loss ratekte of the misclassification probability asncreases. For each
greater than or equal to a given threshg|dand were misclas- 7 the minimization can be carried out using the Kuhn—Tucker
sified. These appear very similar to those BT in Fig. 18. In  theorem; we use the form given in [15].

Fig. 19(b) we also plot the fraction of misclassified trees using Ve mention that a lower bound of the following form can be
BLTP(¢) for different values of, all smaller than the smallestfound:

loss rate of 0.5%. With this choic&?(¢) = 0 anda’(e) = . . .1 -

0.5%. As expected, accuracy is best 1(‘02 intermedia’ﬂ'dge)dif- liminf - log P, (T # 7)

ference in shape between the last and the first three curves indi- > —inf{K(, |T,a): 7 £T,d € A} (31)
cates the change between the two different regimes of misclas-
sification. Fore smaller than 0.4%, misclassification is domi-
nated by erroneous exclusion of nodes from a group, while for
e = 0.4%, misclassification is mostly determined by erroneousIn this paper, we have proposed and established the consis-
pruning of the link with the smallest loss rate (which is 0.5%ency of a number of algorithms for inferring logical multicast
because of statistical fluctuation of its inferred loss rate belawpology from end-to-end multicast loss measurements. The
e. In the latter case, we can use (27) to compute the tail slogigorithms fall in two broad classes: the grouping algorithms
obtaining 4.3x 10~*, in good agreement with the estimated extBLTP, BLTC, andGLT), and the global algorithms (ML and
perimental slope which is 4.2 10~*. Bayesian).

3) Asymptotic Misclassification Rates for the ML Classi- The computational cost of the grouping approaches is con-
fier: We sketch how the theory of large deviations [5] can bsiderably less for two reasons: i) they work by progressively
used to bound the asymptotic probability of misclassificatiagkcluding subsets of candidate topologies from consideration
by the ML estimator. The expressions obtained here were usefile the global algorithms inspect all topologies; and ii) their
to determine the ML tail slopes in the table in Fig. 17. Firstost per inspection of each potential sibling set is lower. Of the
observe that grouping algorithms, thBLTP approach of treating the tree as

PT,a(TML £T) = Z PT,a(TML =7). binary then pruning low-loss links is simplest to implement and
T execute.

IX. SUMMARY AND CONCLUSION
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Ofthe algorithms presented, only the Bayesianis able to iden- Proof of Lemma 2:Setc¢; = g;/g < 1sothaty”, ¢; > 1.
tify links with arbitrarily small loss rates. All the other clas-Lethi(z) = (1 — ), ho(x) = I[,(1 — ¢;x), andh = hy — ho,
sifiers require a parameter > 0 that acts as a threshold: aso thatf(b) = h(g/b). We look for zeros of. Forz € [0, 1]
link with loss rate below this value will be ignored and its end- B () — 0
points identified. The threshold is required in order that sibling i(z) =
groups not be separated due to random fluctuations of the in-

2
2
ferred loss rates. However, we do not believe that the neces- hy () = ha(x) { <Z Qi($)> - zqz‘(x) } >0
sity of a threshold presents an obstacle to their use in practice, ’ ’

since it is the identification of high-loss links that is more imwhereqi(x) = ¢;/(1—c;z) > 0. Henceh is strictly concave on
portant for performance diagnostics. In practice, we expéat [0, 1]. Now h(0) = 0, h(1) < 0, andh’(0) = =1+, ¢; > 0.
be chosen according to an application-specific notion of a migo sinceh is concave and continuous ¢, 1] there must be
imum relevant loss rate. exactly one solutior* to h(x) = 0 for = € (0, 1) and hence
By construction, the Bayesian classifier has the greatest agre solutiond* to f(b) = 0forb > g. Furthermore, given
curacy in the context of classification of topologies drawn ag- ¢ (0, 1), h(z) > 0iff z < z* and hence giveh > g,
cording to a known random distribution. However, the perfo[f(b) > 0iff b > b*. O
mance gap narrows when classifying a fixed unknown topology,
and in fact the Bayesian classifier has slightly worse perfor-
mance than the others in this context. We conclude BhatP min v(k) < v(U) < Z ~(U)
offers the best performance, having the lowest computational ket st

co_T_thfor nelar tg)pt|m?llggl)_fel_rliormanc$. " vzing it in a canonical loss tree and hence i) and ii) follow from Lemma
'S selection .(f?.) motivates analyzing IS error , iii) is then a restatement of (2), established during the proof
modes, and their probabilities. Although the analysis is quife [3, Prop.osition 1]
complex, a simple picture emerges in the regime of small loss; \’ ' '

e, and b q likely t iv) Write U’ = U U {k}. We refer to Fig. 1, where we show
ratesa;, and many probes, and errors are most likely 1o occury, logical multicast subtree spannediy/ and their descen-
when grouping the children of the nogethat terminates the

H ! H !
link of lowest loss rate. dants, together with(U'), a(U") and the roo6. From i), B(U")

Th : . T i? the solution of the equation

e leading exponents for the misclassification that were cal-

culated in Section VIII can be used to derive rough estimates O,-I(l _ (U ) _ <1 _ v(k) ) H <1 _ () ) . (32)
the number of probes required in practice. Consider the proble B(U" B(U" B(U"

of classifying a general topology whose smallest link loss rate in ] ]

1%. According to (29), the number of probes required for a mignd B(U/) is the solution of

classification probability of 1% (using= 0.5%) is about 4000. _ — ol

(In a binary topology usingLT the number required drops to (1 =A)/BLD) H (1 =AA/BU)). (33)

icU
about 1000.) Using small (40-byte) probes at low rate of a few J/& .
tens of kilobits per second, measurements involving this maf{fW SupPose tha(l) > B(U"). We shall show that this leads

probes could be completed within only a few minutes. t0 a contradiction. Since thei(U/) > B(U") > ~(U"), we can
We note that the grouping methods extend to a wider classPlY 1) and ii) to (32) to obtain

estimators by replacing the shared loss estimate with any func- 1 ~(U") < B m) H < B M)

tion on the nodes i) that increases on moving away from the root; B(U) ~ B(U)) 11 B(U)

and ii) whose value at a node can be consistently estimated from Jev

measurements at receivers descended from that node. Examples _ ~v(k) ~(U)

of such quantities include the mean and variance of the cumu- - < B W) < B W)

Iat|v_e delay from the_root to agiven node; see [6] an_d [11]'_ ith the right-hand equality obtained by substitution of (33).
Fmally, a challenging prpblem is to take the resulting logic gplying (2) at the node(U”) we have

multicast trees and mapping the constituent nodes onto phys-

ical routers within real networks. This remains beyond our ca-y __Y(U") _ <1 k) ) <1 ) ) . (35)

pability at this time. A(a(U") Aa(U) Aa(U)

Since the assumptioB(U) > B(U’) implies thatB(U) >
X. PROOFS OF THETHEOREMS +(U"), then comparing (34) with (35) and using ii) again we
The proof of Proposition 1 depends in the following lemmafind
Lemma2: Letg; > 0fori =1, 2, ..., m; letg be such that A(a(U")) < B(U) = A(a(U)).
min; g; < g < >, g;; and set

Proof of Proposition 1: Clearly,

jeu

(34)

This is a contradiction, sinc&U’) > a(U) and7" canonical
f(b) == (1—g/b) — H(1 —g;/b). implies A(a(U")) > A(a(U)). O

%

While proving thatDLT reconstructs the tree correctly,
Then the equatiorf(b) = 0 has a unique solutioh* > g¢. we find it useful to identify a subsef of V' as astratum if
Furthermore, giveh > g thenf(b) > Oifandonly ifb > 4*.  {R(k): k € S} is a partition of R. If DLT works correctly,
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then before each execution of the while loop at line 4 of 3) Ifnotall sibling nodes ofi;, u» are included inl/ of steps

Fig. 2, the setR’ is a stratum and the séV’, L’) of nodes 5—7. This would violate Proposition 1 iii).
and links is consistent with the actual tréé, L) in the sense 4y |f 4 node that is not a sibling oy, u» is included inl/.
that it decomposes over subtrees rooted at the stratyre., This would violate Proposition 1 iv).

V' = Uper V(E) andL’ = | J,cp- L(k). This is because any

correct iteration of the loop that groups the children of néde i) Since i) allows the reconstruction of the loss tree from the

has the effect of joining subtrees rooted at node#(i), while outcome distribution, distinct loss trees cannot give rise to the
modifying the pf;rtition?R(k) k € R'} by replacing e'Iements same outcome distributions, and hence the canonical loss tree is
{R(j): j € d(k}) by R(k). The proof of Theorem 2 depends'dentmable' -
on the following lemma that collects some properties of strata. Proof of Theorem 3:Consider a maximal set/ =
{ug, ua, ..., u,,} Of siblings that is formed by execution of

Lemma 3: If $'is a stratum in a logical multicast tr¢¥, L) the while loop at line 6 inDLT; see Fig. 2. We assume the

then nontrivial case that: > 2 and assume initially thdf is unique.
i) if & € S then no ancestor or descendantdfes in S; By Proposition 1 iii), B(-) is minimal within R©® := R’ on
i) exactly one of the following alternatives applies to eachny pair of nodes fron§(?) := U. The action ofDBLT can be
nonroot node: in V: a) k € S; b) k has an ancestor ifi; described iteratively ovet = {0, 1, ..., m} as follows. After

¢) k has at least two descendantsSin selectingl/ (") = {u@, ugé)} in line 5, all pairs in

Proof of Lemma 3:

(+1) _ (g0 © 0
i) If 4,k € Sandj < kthenR(5) C R(k), contradicting S = (VAU U{UT}

the partition property. minimize B(-) over all pairs in
i) If & ¢ S, then there existg € S obeying one of the (e41) ® ® ®
alternativeg > % orj < k, for otherwiselz(;j) does not overlap R = (RY\UY) u{Uu™}

with any element of the partitioR(j): j € S}. By i), the
alternatives are exclusive. There exigtE S with 7 = k, it
is unique, by i). If not, there exists € S with j < k. In this (1—~(U®Y/BU)) = H (1 —~(u)/B(U))
casek cannot be a leaf node and herggj) < R(k) sincek wet(6)

has branching ratio at lea&dtHence, there must be at least one
more nodej’ € S with j < k, since otherwise the partition wherel{(¢£) denotes the members bfthat are descended from

{R(j): j € 5} would not coverR. O UY in the binary tree built byDBLT. Hence

Proof of Theorem 2: (1—A(UO)/BU)) = (1=(uf”)/BU))(1—7(us”)/B(U))
i) Suppose thaDLT yields an incorrect tree, and consider the 0y _ . .
first execution of the loop during whicf¥”’, L) becomes in- and soB(U™Y) = B(U) by Proposition 1 ).

. ) . Thus for each step iBLT that groups the nodes i, there
consistent. Inconsistency could occur for the following reasons .
only: arem — 1 steps ofDBLT that successively group the same

o . . set of nodes. Sinc&(I/(Y) = B(U) for all ¢, each nodej

1) If the minimizing pair{u:, us} are not siblings Then  added iNDBLT hasa; = 1, apart from the last one. There-
there exist$ < a(u1, u2) thatis the parent of eithesi or  fore, TP(0) acts to excise all links between the binary nodes
uz; Sayt = uy. Sinceu; € R’ by Lemma 3i) no ancestor (70 /(m=1) Thus,DLT = TP(0) o DBLT. If U in not

of u;—includingt—can be ink’. Hence by Lemma 31i), ynique, the same arguments apply, except now there can be al-

there must be at least one nodgin addition tou, With  terpation of grouping operations acting on different maximal
the property thati; < ¢ anduj € R'. Since the loss tree gjpjing sets. 0

is canonical

with the same minimunB(U). This is because

Proof of Theorem 4:Since each/(U) is the mean of: in-
Blus, u)) < A(t) < Ala(u, u2)) = Bluy, uz) dependent random variables then by the Strong Law of Large
- Numbers3(U) converges t&[5(U)] = v(U) almost surely as
contradicting the minimality ofB(uy, uz). Hence the ™ — In [3, Theorem 1], it is shown tha(l/) is a contin-

minimizing pair are siblings. uous function of{y(a(U)), {v(k): & € U}}, from which the

2) If not all sibling nodes of.;, u, are members oR’. Let result follows. =

there be a sibling of u; thatis notinR’. Sinceu; € R/, Proof of Theorem 5:Let U denote a generic binary subset
then by Lemma 3 i) no ancestor ef—and hence no of R’ that minimizesB(-) whenDBLT is applied to(7, «).
ancestor of its sibling—can lie in R, Sinces itself is Assume initially that the minimizing’ is unique. Since the loss
not in i/, by Lemma 3 ii), there exist;, s, € R’ with treeis canonicalB(U/) < B(U") for any other candidate binary

ancestok. Since the loss tree is canonical setl/’; by the convergence property of TheoremBl(,U) <
B(U") for all n sufficiently large. Hence the nodes I are

B(s1, s2) < A(s) < Ala(u, u2)) = B(u1, uz) grouped correctly.
But it may happen, by coincidence, that the minimizigs
contradicting the minimality oB(u; , u»). Hence, all sib- not unique. Then there are palr$', ..., U™ that minimize

lings of u;, uo are members of?’. B. Since the tree is canonical, then after eat® R’ has
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been grouped, the remaining pairs are still minimizer&6f) Proof of Lemma 1:Assume that a number of groupings

among all pairs of the reduced gt \ UY) u {U®} inline have been formed, after whidh, k. are candidate nodes de-

10 of Fig. 4. HenceDBLT picks these pairs successively foiscended fromi, while k3 is some other candidate node not de-

grouping until all pairs have been picked. scended from. Since the grouping thus far is correks,cannot
With BLT, the B(U9) are no longer equal. But for suffi- bei or an ancestor of, and hence

ciently largen they will still all be less thari?(U’) for any other

candidate paif//, by Theorem 4. ThusBLT will successively R(ks) = S3 C Ry \ Rr(i).

group the paird/V), ..., U™ in some random order that de-

pends on the relative magnitude of theU(©). But the order LetS; = Rz (k;),j = 1, 2. All the 5; are disjoint. By argu-

is not important, since the end result is just to have the palR€Nts similar to those used in the proof of Theorem 2

formed a<DBLT would have. O
B({k1, k3}) = B(S1, S3) > B(S1, S2) = B({k1, k2}).
Proof of Theorem 8:It suffices to show that
, Thus, correct grouping o, k2 by BLT is guaranteed if (16)
lim Pr o(Tye=7") =0 holds for all(Sy, S, Ss) € S(i). O

n—oo

for each?” # 7, Letp(z; 7, «) denote the probability of the Proof of Theorem 10:Since for eactt' C R, 4(S) is the
outcomez € {0, 1} under the loss tre€7, «). Under our mean ofi.i.d. random vanablé%”) the variables/n - (4 —v),
assumptions, i’ # 7, the Kullback—Leibler information 4 = {4(5)}scr, converge to a multivariate Gaussian random

;o variable as: — ~o. SinceD is a differentiable functio® of 4,
(7T, @), (T, &) the Delta method insures that the stated convergence holds.

= Er o(log(p(X; 7, a)/p(X; T', ))) (36)  To prove i) observe that sineg S, ), a(Ss) < a(S; U Ss)
then B(S1, S3) = A(a(S1 U S3)). SinceS; and S; may not
because of identifiability. Thus, there is a number 0 such Sﬁtlswa(sl)’ a(S) < a5 U SQ)—thflshmay OCCUI: Wr;engver h
thatI((T, a), (T, ') > 6 for all o’ € As,. Now there was a grouping error in any of the steps that lead to the

construction of nod&; and/or nodeS;—we need to explicitly
ija(jML =T write the expression faB(S1, S2)

p (XD T, ’) B(Sy, S2)
SPM( U { Z o8 i T o] X@) 7,q) 20}>' _ PlVics, Xj = 1IP[Vjcs, Xy = 1]

a/EAE, 7
) (37) P[v JﬁslAJ Vies, X; =1]

is a continuous function of’ € A%, and is strictly positive

=P[X, =1
Sincea’ € A%, the density(x; 77, o) is bounded away from [Xatsius =1]

zero, hence the conditions of Jennrich’s [8] uniform strong law o P [\/Jcle =1 |Xa(51U52) = 1]
of large numbers are satisfied. Thls; ,—almost surely P[Vies X; = 1|Xgs,uss) =1, Vies, X; =1]
n X(z) T o _
o> log —) — —I(T, @), (T", o)) < =6 Ala(S1U ), s (41)
' (38) where
uniformly in o/ € A5, whence the right-hand side of (37) P [Vies. X;=1|Xa(si08) =1]
converges to zero as— oc. O ¥, = ! 102

P[Vjes, X;=1 |Xa(51U52)_1 Vies, X;=1]"
Proof of Theorem 9:Recall from the proof of Theorem N ) N

8 that the Kullback—Leibler informatioi(6, ¢') is a contin- Observe from Proposition 1 v) thals, s,) < 1. Intuitively,

uous function of’, and, because of identifiability, has a uniquéh® smallerys, s,), the greater the error committed so far

minimum, namel0, até’ = 6. Given any neighborhoolf of N classifying the subtree rooted ati) then follows as for

6 € ©, it follows that, for sufficiently smale > 0, the set @l — 0itis easy to verify thaﬂ( ) =1—s(k)+O([al*)

C. = {¢: I(6, &) < ¢} is contained in/. Using Schervish @nd x(s,,s;) = 1 — O([[@]|*). To prove ii), a standard
[17, Theorem 7.80], we have, far — oo application of the Delta method shows that the collection

of v/n(B(S1, S2) — B(S1, S2)) converge an — oo to a
m(Ulz) — 1, Py —a.s. (39) multivariate Gaussian random variable with mean zero and

. N . covariance matrix
Consider the pseudo-Bayes classifigr which now takes the

aB(S51, S dB(Ss, S
orm V(s 5, (8550 = D a(fy(l:s‘) Y oss 8(7(2*/)4)
T(z) = argmax (7 x A°|z). (40) 5 S'CR
r€T(R) (42)
whereCs s = Cov[Yé”), YS(,Z)] Now, following the same lines
From (39) we obtain thatPr . almost surely,n({Z7} x of [3, Theorem 5], we have that
A%|zr) — 1, and7w({7} x A |z) — 0for+ # 7, hence
T(z) = T for sufficiently largen, P7 o almostsurely. O Cs, s = s(a(SUS)) + O([a|?)
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and

dB(Sy, Ss)
9v(S)

by direct differentiation. Therefore, we have

= §(s,us,), s + O ([|[al|?)

l/(517 52),(85,84) = C(SIU52)7 (S3US4) + O(HaHQ)
Hence
02(513 523 53)

= V(81, 53), (51, 53) T V(51, 52), (51, S2)
- 21/(51752)7(51,53) +0 (HaHQ)

= s(a(S1 U S2)) — s(a(S1US3)) + O (|[al]*) . (43)
Finally, iii) follows ass(a(S1 U S2)) — s(a(S; U S3)) is mini-
mized wherz(S1 U S2) = ¢ anda(S1 U S3) = f(¥). O
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