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ABSTRACT 

We investigate multicast routing for high-bandwidth 
delay-sensitive applications in a point-to-point network 
as an optimization problem. We associate an edge cost 
and an edge delay with each edge in the network. The 
problem is to construct a tree spanning the destina- 
tion nodes, such that it has the least cost, and so that 
the delay on the path from source to each destination 
is bounded. Since the problem is computationally in- 
tractable, we present an efficient approximation algo- 
rithm. Experimental results through simulations show 
that the performance of the heuristic is near optimal. 

I. INTRODUCTION 

Recent advances in communication technology are mak- 
ing packet video and audio communication over com- 
puter networks a reality. With them come the expecta- 
tion that multiparty communication will become a pop- 
ular interactive mode. In order to support the high data 
rates and considerably stringent delay constraints im- 
posed by these media, new routing algorithms must be 
designed that address these issues. In this paper, we 
define the problem of multicasting in this context, and 
present a routing algorithm that constructs near-optimal 
cost delay-bounded multicast routes. A good discussion 
of research on multicasting can be found in [l]. Recent 
work in providing multicast service on the Internet can 
be found in [2]. 

~~ 
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Previous optimization techniques for multicast rout- 
ing have considered two optimization goals, delay op- 
timization and cost optimization, but as distinct prob- 
lems. Delay optimization is defined as follows. In a 
graph G = (V, E), with node set V, edge set E, and de- 
lay function V : E -+ R+, the optimal delay solution is 
such that the sum of delays on the edges along the path 
from source to each destination is minimum. Dijkstra's 
shortest path algorithm [3] can be used to generate the 
shortest paths from the source to the destination nodes 
in O(n2) time in a graph with n nodes. This provides 
the optimal solution for delay optimization. 

Cost optimization is defined as follows. In a graph 
G = (V, E), with cost function C : E + R+, a cost opti- 
mized multicast route is a tree spanning the destinations 
such that the sum of the costs on the edges of the tree 
is minimum. This problem is also known as the Steiner 
tree problem [4], and is known to be NP-complete [5]. 
However, some heuristics for the Steiner tree problem 
have been developed that take polynomial time [6, 7, 81, 
and produce near optimal results. 

Multicast routing algorithms that perform cost op- 
timization have been based on Steiner tree heuristics. 
Wall [9] studied how the Steiner tree algorithm of Kou, 
Markowsky and Berman could be used to generate mul- 
ticast trees. Waxman [lo] examined the problem of re- 
configuration of the tree if nodes join or leave the tree 
dynamically. Chow [ l l ]  looked at the problem of multi- 
party connections from two points of view. Firstly, the 
problem of designing a good multicast route was con- 
sidered in terms of cost optimality with least computa- 
tion time. Secondly, the inverse problem of combining 
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multiple communications into one route (concast) was 
addressed. 

Of the previous work done on multicast route opti- 
mization, only Kadaba and Jaffe discuss optimization 
on both cost and delay [12]. However, they assume that 
the cost and delay functions are identical. The problem 
we address here considers two independent functions for 
cost and delay. The results of Kadaba and Jaffe do not 
hold if the two functions are different. The other point 
of difference is that we do not optimize on delay, but 
rather search for solutions with bounded delays. 

Ferrari and Verma [13] describe a procedure for es- 
tablishing routes that account for constrained delay for 
unicast connections. They do not attempt to optimize 
on the routing, assuming that routing is addressed by a 
lower protocol layer. The extension of constrained de- 
lay unicast routing to multicasting is non-trivial, and we 
show that the optimization problem is NP-complete. 

In this paper, we shall consider multicast routing as 
a source routing problem, with each node having full 
knowledge of the network and its status. We shall also 
assume that connections will be virtual circuits, since 
they are the more natural mechanism for continuous me- 
dia like audio and video. 

The organization of the paper is as follows: section 2 
contains a formal statement of the constrained multicast 
tree problem, and details a heuristic that we developed 
to solve the problem. Section 3 describes a set of ex- 
periments to evaluate the performance of the algorithm. 
Section 4 discusses the results of the experiments, and 
Section 5 presents some conclusions on the problem, the 
algorithm, and its applications. 

11. THE OPTIMAL CONSTRAINED 
MULTICAST TREE PROBLEM 

We describe the optimal constrained multicast tree as 
follows. We have a point-tepoint network represented 
by a graph G = (V, E), with 

C : E 4 R', a real edge cost function 

and 

V : E + Z', an integer edge delay function 

A multicast on this graph is defined by three para- 
meters: a source node s, a destination node set S, and a 
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Figure 1: The KMB algorithm. (a) The graph. (b) The 
closure. (c) The MST. (d) The Steiner tree. 

delay constraint D. A constrained multicast tree (CMT) 
is a tree rooted at s that spans the set S, such that 
the sum of the delays along the path from s to each 
destination v E S is bounded above by D. An optimal 
CMT is a CMT with the least cost, i.e., with the least 
sum of costs on the edges of the tree. 

This problem is NP-complete (as shown in Appendix 
2), but we have developed a heuristic to construct a near 
optimal CMT based on a Steiner tree approximation al- 
gorithm due to Kou, Markowsy, and Berman [6]. We 
briefly describe the KMB algorithm, and demonstrate it 
on the graph in Fig. 1. Assume that all the edges have 
unit cost and unit delay. The set of nodes to be spanned 
is {B, E}, and A is the source. 

1. The first step of the KMB algorithm is to construct 
a closure graph G' on the set S U  {s}. The closure 
is a complete graph on the nodes in S, with the cost 
of an edge (U, U) being the least cost path between 
U and v in G (Fig. lb). The path costs are shown 
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along the edges of the closure graph. 

2. The second step is to construct a minimum span- 
ning tree T of G’ (Fig. IC). 

3. Finally, the edges in Tare expanded to the edges in 
G that make up the least cost paths of G’ (Fig. Id). 

Note that this algorithm does not necessarily generate 
a CMT. However, by adding constraints to the various 
steps of the algorithm, we can ensure that the solution 
is a CMT. 

Before we can describe the CMT algorithm, we need 
to define the shortest constrained path between two 
nodes. The shortest constrained path between U and 
v is defined as the path with least cost, subject to  the 
delay along the path being less than D, the delay con- 
straint. We can construct the shortest constrained path 
as follows. Let C ( U ,  w) be the cost on edge (U,  w), and 
D(u,  w) be its delay. Define W(U, w) to be the cost of 
the shortest constrained path between U and w. Define 
W d ( U , W )  to be the cost of the shortest path between U 
and w with delay equal to d.  Then, 

A W ( u , w )  = min W d ( U , w )  
O < d < D  

The CMT algorithm follows the steps of the KMB al- 
gorithm, being careful not to violate the delay constraint. 
We describe the CMT algorithm next, and apply it to 
the same graph as in Fig. 1. 

1. The first step is to construct the constrained clo- 
sure G’. Here, instead of setting the cost of an 
edge in G’ to the cost of the shortest path, we 
set it equal to the cost of the shortest constrained 
path (Fig. 2b). The path delays and path costs are 
shown along the edges of the closure graph. 

2. In the second step, we construct a constrained min- 
imum spanning tree T of G’ (Fig. 2c). We use 
Prim’s technique of constructing a minimum span- 
ning tree [14], with the following critical measure, 
c,, that determines which edge to add to the sub- 
tree at each iteration: 

A B 
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Figure 2: The MCT algorithm. (a) The graph. (b) The 
closure. (c) The MST. (d) The constrained multicast 
tree. 

where 

Dp(u)  = delay along the path from 
source s to U 

and 

’D’(u, w) = delay along the shortest 
constrained path from U to U 

3. The last step is to expand the edges of the tree 
T into the edges that constitute the shortest con- 
strained paths (Fig.2d). 

The critical measure balances the greedy choice of the 
least cost edge ( U ,  U) against the residual delay, L e . ,  the 
delay left over from the path from s to w. The higher the 
residual delay, the better the chances are that the same 
route can be used to send data to another destination 
without exceeding the delay constraint. 
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For the example in Fig. 1, the Steiner tree produced 
by the KMB algorithm violates the delay constraint 
D = 3. Fig. 2 shows the steps involved in constructing 
a constrained multicast tree, with A as the source and 
{B, E} as the destination set, given D = 3. Pseudetode 
for the CMT algorithm is listed in Appendix 1. 

We now show that the CMT algorithm always finds 
a solution if one exists. Then we demonstrate the worst 
case performance of the CMT algorithm in terms of the 
cost of the constrained multicast tree, when compared 
with the optimal solutions. 

Lemma 1: A constrained multicast tree exists if there 
are k edges incident on s with finite cost in the con- 
strained closure graph, where IS1 = k. 
Proof: Obvious, since there must exist at least one path 
under the delay constraint D from s to each of the k 
destinations for a solution. 

Theorem 1: The CMT algorithm finds a solution i f a  
solution exists. 

Proof: Follows from Lemma 1 and the observation that 
any edges chosen in forming the tree from the closure 
graph do not violate the delay constraint. 

The complexity of the algorithm is dominated by the 
computation of the all-pairs shortest constrained paths, 
which takes O ( n 3 D ) .  The rest of the algorithm takes 
O ( k 3 ) ,  where IS1 = k. Although this algorithm is not 
polynomial, since it takes time > 2 ' O g D ,  it is close enough 
to a polynomial solution in practical situations, given 
that D is from a bounded set of well-known values of 
delay tolerance for video and audio transmission. 

Let the optimal tree be TO, and the CMT tree be 
TCMT for some problem, and their costs be IT01 and 
ITcMTI, respectively. The performance of the CMT al- 
gorithm can be measured by the ratio p,  where 

Theorem 2: For the CMT algorithm, the worst case 
ratio is given by 

k l  
Pmaz = - 

k + l  

Proof: The graph in Fig. 3 shows a graph with this 
ratio. This would occur if all the shortest constrained 
paths are disjoint, and the delays along them are just 
under D, so that it is not possible to concatenate any 
paths without violating the delay constraint. Thus, the 
star graph out of s would be the only possible solution 

S 

v2 

Figure 3: A worst case example for the CMT algorithm, 
with p = fi 

from the closure, giving a cost of k l .  In the graph in 
Fig. 3, ul, v 2 , .  . . , vk are the destination nodes, and s is 
the source. The shortest constrained paths from s to vi 

are shown as edges, each of which is of length 1. However, 
there is a path from s to U of cost I ,  and from U to vi 

of cost 1, such that the path delay is under the delay 
constraint. These paths form the optimal CMT of cost 
( k  + I ) .  

111. EXPERIMENTS 

One of the important measures of the utility of the CMT 
algorithm is its average case performance. To determine 
this, we ran the algorithm on a number of randomly 
generated graphs. We generated a constrained multicast 
tree using the CMT heuristic. We also found the optimal 
solution by enumerating all constrained spanning trees, 
and picking the least cost tree. Finally, we produced 
a constrained spanning tree by randomly picking edges 
until a solution was found. We chose to consider that 
the tree generated randomly would be as bad a solution 
as we could find. We compared the costs of the different 
trees. We chose to measure two figures of merit. Firstly, 
we computed the average distance from the optimal solu- 
tion normalized by the cost of the optimal solution. We 
call this the average normalized distance, denoted by 6, 
where 
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This measure can be thought of as the percentage Efficiency vs. Delay Tolerance (Group size = 5 ) 
over the optimal cost incurred by using the CMT algo- 
rithm. It gives an indication of how efficient the algo- 
rithm is when the penalty of being sub-optimal is amor- 
tized over a number of multicasts. 

The second measure is a rating of the CMT algo- 
rithm between the performance of the optimal solution 
(best) and randomsolution (worst, in the sense described 
above). We call this measure the efficiency 9 ,  of the al- 
gorit hrn. 

CL=, (& - Mi) 
xz1 (R, - oi) 9 =  

I 
I I I 

In the above, 

I 

Mi = cost of the CMT tree in the ith run 

Oi = cost of the optimal tree in the ith run 

h?, = cost of the random tree in the ith run 

Graphs were generated randomly with the follow- 
ing characteristics. Every graph had to have at least 
one solution. A number of graphs of different sizes 
were tried. Every node had a degree between 1 and 
the maximum degree. Each edge had unit cost, and a 
randomly assigned delay, uniformly distributed over the 
set { 1, . . . ,8}. Various destination set sizes were tried, 
with the destinations randomly selected. Different delay 
constraints were also tried. An experiment generated N 
graphs with the same number of nodes n, maximum de- 
gree d, destination set size g, and delay constraint D. 
The experiments had the following parameters: 

number of runs N 
number of nodes n 
maximum node degree d 
size of destination set g 

10 000 
10, 11, . . .) 20 
4, 5 
3, 4,  5 

edge cost, C(e) 1 
edge delay, D(e)  1 I D ( e )  58,  

uniformly random 
15, 20, 25, 30 delay constraint D 

Table 1: Parameters for the experiments 

IV. RESULTS 

The efficiency ratio, 9 ,  is a measure of how close to per- 
fect we are on a scale of 0 to 1, with 0 being the worst, 
and 1 the best. From Fig. 4, we notice that the effi- 
ciency increases with an increase in the delay constraint. 

Figure 4: Efficiency as a function of delay tolerance for 
various group sizes 

In fact, if D becomes infinite, then the algorithm reduces 
to the KMB algorithm, since the numerator is the only 
significant factor in c,. 

In Fig. 5, we notice that efficiency decreases with 
an increase in node size, but approaches a stable value. 
This is because the average delay on an edge is about 
4. With a delay constraint of 25, the average number 
of hops on a path will be around 6 edges. Thus, since 
the nodes farther from the source will not be reachable 
under the delay constraint, the node size does not play a 
significant role beyond a certain point, for a given delay 
tolerance and maximum degree. The average normal- 
ized distance 6, can be seen from Fig. 6 to be quite low, 
ranging between 1 and 7%. This shows that the abso- 
lute performance of the algorithm is good. We notice 
that this measure also increases with node size, but also 
reaches a plateau for the same reason that the nodes at a 
distance will be unreachable under the delay constraint. 

Another observation is that over the 2.6 million 
graphs generated through the experiments, the largest 
value for the ratio 6 was 2. Note that the worst case 
value of Theorem 2 is applicable only if nodes have un- 
bounded degree. 
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Efficiency vs. Nodes (Delay Tolerance = 25) Avg. Distance vs. Nodes (Delay Tolerance = 25 ) 

1 I I 

10 12 14 16 18 20 
# of Nodes 

Figure 5: Efficiency as a function of number of nodes for 
various group sizes 

Finally, the time taken to run these experiments on 
a DECstation 5000 was about 12.5 days. Most of the 
time was needed to compute the optimal solution. The 
random solution also took considerable time because the 
tree cost for the random solution was actually an average 
of the cost of 50 randomly constructed trees. 

V. CONCLUSIONS 

We have considered the problem of multicasting for delay 
sensitive data. In this paper we have assumed a source 
routing based solution. Our CMT routing algorithm 
minimizes the cost of a multicast while ensuring that the 
delay between the source and any destination is bounded 
by a specified value. We have presented an O(n3 D )  so- 
lution. Since in practice the value of D is chosen from a 
finite set, this algorithm should be regarded as polyno- 
mial. Empirical results show that this heuristic has good 
performance in an absolute sense (i.e., when compared 
with the optimal). In addition, comparisons with ran- 
dom solutions satisfying the delay constraint show that 
the optimization is worthwhile. 

The heart of the algorithm operates on a condensed 
graph and builds a tree by selecting edges based on a 
metric which considers both the cost and the residual 
delay. We have also been considering other critical mea- 
sures that may give rise to improved performance in the 
case of source routing [15]. That paper also presents 

10 12 14 16 10 20 
# of Nodes 

Figure 6: Normalized distance of multicast solution from 
optimal for various numbers of nodes 

distributed routing algorithms for solving this problem 
and discusses their performance. These distributed algo- 
rithms use information about adjacent nodes only,rather 
than requiring knowledge of the entire network topology. 

We believe that the CMT algorithm and similar ap- 
proaches are called for in carrying audio and video data 
over the network because of the kind of traffic charac- 
teristics these media have. Typically, audio data will 
need bandwidths between 64Kbits/sec and lMbit/sec, 
depending on the sound quality, and require an end-to- 
end delay of less than 100 msec [16]. Video data has an 
order of magnitude higher data rate, with about 30 to 
50 msec delay tolerance [17]. Taking the cost on an edge 
to be a function of the bandwidth utilized, and the delay 
to be a sum of the switching and propagation delays, the 
CMT algorithm could be applied to generate multiparty 
connections for multimedia applications. 
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APPENDIX 1 

/* 
* Let G = (V ,  E) describe the network topology 
* s = source node 
* S = multicast group 
* D = delay constraint 

Multicast ( G ( V ,  E), s ,  S,  D) 
begin 

*/ 

/* assume the cheapest constrained paths have 
* been found between all nodes in S U {s} 
*/ 

V ’  +- s U {s} 
for each U, w E V’ do 
begin 

W[u, w] t cost of cheapest constrained 
path from v to w 

D[u, w] + path delay along cheapest 
constrained path from U to w 

end 
/* C = set of nodes already visited */ 
/* P[u] = path delay from s to v in the tree */ 
c= {s} 
P[s] = 0 
/* until all nodes in V’ have been spanned */ 
while (C # V’) do 
begin 

man = 00 

for each v E C do 
for each w E V’ \ C do 
begin 

/* if delay from s to w is within limits, 
* consider edge (U, w )  as a candidate 

if ( C , ( U ,  w )  < min and 

begin 

*/ 

D[u, w] + P[v]  < D) then 

neztedge = (U, w )  
min = c,(u, w) 
u = w  

end /* if */ 
end /* for */ 
c = c U {U} 

P[u] = P[u] + D[u, U] 
end /* for */ 

end /* while */ 
end /* Multicast */ 

APPENDIX 2 

Theorem: Given a graph G = ( V ,  E), with edge weights 
and edge delays, destination set S, source s, and delay 
constraint D, finding the optimal constrained multicast 
tree problem is NP-complete. 

Proof:The problem is in NP, since a non-deterministic 
“guess” can list a set of edges that form the tree, and in 
deterministic time, it is possible to check: 

a) the edges do form a tree 

b) the nodes of S are all covered 

c) the path delay from s to each node in S is under 
the delay constraint D. 

The problem is NP-hard. Assume there exists a de- 
terministic polynomial time algorithm A for the prob- 
lem. Then given a Steiner tree problem, we can con- 
struct a multicast tree problem as follows. Take any 
node in the set S to be the source node s. Let the delay 
constraint be the longest simple path delay. A solution 
given by A is exactly the solution for the Steiner tree 
problem. Thus, the optimal constrained multicast tree 
problem is NP-complete. This proof holds even for edge 
weights = 1, since the corresponding Steiner tree prob- 
lem is NP-complete [18]. 
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