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ABSTRACT

Node mobility and end-to-end disconnections in Delay Tolerant

Networks (DTNs) greatly impair the effectiveness of data dissem-

ination. Although social-based approaches can be used to address

the problem, most existing solutions only focus on forwarding data

to a single destination. In this paper, we are the first to study multi-

cast in DTNs from the social network perspective. We study mul-

ticast in DTNs with single and multiple data items, investigate the

essential difference between multicast and unicast in DTNs, and

formulate relay selections for multicast as a unified knapsack prob-

lem by exploiting node centrality and social community structures.

Extensive trace-driven simulations show that our approach has sim-

ilar delivery ratio and delay to the Epidemic routing, but can sig-

nificantly reduce the data forwarding cost measured by the number

of relays used.

Categories and Subject Descriptors

C.2.1 [Network and Architecture Design]: Wireless communica-

tion, Store and forward networks; C.4 [Performance of Systems]:

Modeling techniques

General Terms

Design, Algorithms, Performance

Keywords

Multicast, Delay Tolerant Network, Social Network, Centrality, Com-

munity

1. INTRODUCTION
In Delay Tolerant Networks (DTNs) [6], mobile users contact

each other opportunistically in corporate environments, such as con-

ference sites and university campuses. Due to low node density

and unpredictable node mobility, end-to-end connections are hard

to maintain. Alternatively, node mobility is exploited to let mo-

bile nodes physically carry data as relays, and forward data oppor-

tunistically upon contacts. The key problem is how to determine

appropriate relay selection strategy and data forwarding criteria.
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Recent trace-based study on campus wireless networks [8] shows

that different nodes have heterogeneity in their contact patterns, and

such heterogeneity validates the use of Social Network Analysis

(SNA) for data forwarding in DTNs [17, 21]. There are two key

concepts in SNA methods: (i) Communities, which are naturally

formed according to people’s social relations. Social communities

are derived from the “small-world” phenomenon, which is first in-

vestigated by Milgram’s experiment [16] on 1967, and is later for-

malized as a random graph problem in [23]. (ii) Centrality, which

shows that some nodes in a community are the common acquain-

tances of other nodes and act as communication hubs. Since so-

cial relations among mobile users are more likely to be long-term

characteristics and less volatile than node mobility, social-based

forwarding schemes outperform traditional approaches based on

oblivious heuristics [22] or mobility-based predictions [13, 25, 20].

The aforementioned work focuses on forwarding data to a single

destination. Multicast, on the other hand, is more effective for data

dissemination and multi-party communication, but is also more dif-

ficult to model and implement in opportunistic DTNs. Although

there are some initial efforts on studying multicast in DTNs, they

are limited to semantic multicast models [26] and multicast capac-

ity analysis [12], and none of them considers multicast in DTNs

from the social network perspective.

Due to DTN dynamics, deterministic data forwarding, either uni-

cast and multicast, is only guaranteed in two cases: (i) the network

is flooded, and (ii) the data forwarding process does not have time

constraint. Neither of the two cases are practical in DTNs due to

the inevitably high forwarding cost. Thus, a more practical solution

is to maximize the data forwarding probability with a given time

constraint. From such a probabilistic perspective, the essential dif-

ference between multicast and unicast in DTNs is that, a selected

relay for multicast is expected to forward data to as many destina-

tions as possible. The cumulative probability for a relay to forward

data to multiple destinations therefore needs to be calculated, and

such calculation may require global knowledge of social relations

among nodes.

In this paper, we focus on improving the cost-effectiveness of

multicast in DTNs by exploiting the two key concepts in Social

Network Analysis, i.e., centrality and communities. We aim at min-

imizing the multicast cost, in terms of the number of relays used,

given the required delivery ratio and time constraint. We first con-

sider multicasting a single data item to the network, and then gen-

eralize the problem to multiple data items with node buffer con-

straints. Our detailed contributions are as follows:

• We develop analytical models for multicast relay selection
using social network concepts.

• We formulate the relay selections for single-data and multiple-
data multicast in DTNs as a unified knapsack problem.
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• We provide deep insights into the problem of multicasting
multiple data items, by investigating individual nodes’ aware-

ness of their data forwarding probabilities to destinations.

Our approach is based on a weighted social network model for

DTNs, such that the edges in the network contact graph are mod-

eled as Poisson processes with pairwise node contact rates as the

parameters. Based on this model, node centrality and social com-

munity structures are exploited for relay selections under the uni-

fied knapsack formulation.

The rest of this paper is organized as follows. Section 2 pro-

vides an overview about problem definitions, basic ideas and the

weighted social network modeling. Based on such modeling, single-

data and multiple-data multicast problems are studied in Sections 3

and 4, respectively. Section 5 evaluates the performance of our ap-

proach, Section 6 reviews existing work, and Section 7 concludes

the paper.

2. OVERVIEW

2.1 Problem Definitions and Assumptions
We first focus on multicasting a single data item:

PROBLEM 1. Single-Data Multicast (SDM)

{p, D, T}: To deliver a data item to a set D of destinations, how to
choose the minimum number of relays to achieve the delivery ratio

p within the time constraint T ?

The SDM Problem is then generalized as follows:

PROBLEM 2. Multiple-Data Multicast (MDM)

{p, D1, ..., Dn, s1, ..., sn, T}: To deliver a set of data items d1, d2,
..., dn with sizes s1, ..., sn, from a data source to destination sets

D1, D2, ..., Dn, how to choose the minimum number of relays to

achieve the delivery ratio p within the time constraint T?

In these problems, we assume that the selected relays can for-

ward data when contacting other nodes. Suppose each node Nk

has buffer Bk. For SDM, such buffer constraint is trivial because

a node can simply refuse to receive the data if it does not have

enough buffer. For MDM, since a node most likely cannot carry all

the data items simultaneously due to the buffer constraint, and we

should consider which data items to be carried by a selected relay.

We define the required delivery ratio p as the average ratio of
data items being delivered to destinations. Such ratio is defined

from a statistic perspective based on a large number of data items

generated at the data source. For an arbitrary destination node, its

delivery ratio is therefore equivalent to the average probability that

it can receive a data item within time constraint T .

2.2 The Basic Approach
The basic idea of our approach is to develop social-based met-

rics based on the probabilities of nodes forwarding data to their

destinations. Such metrics are developed based on social network

concepts including centrality and social communities. Based on the

social-based metrics, we formulate the relay selections in SDM and

MDM uniformly as a knapsack problem:

min
n∑

k=1

xk

s.t.
n∑

k=1

wkxk ≥ W

(1)

where xk ∈ {0, 1} indicates whether node Nk is selected as the

relay, and the constraint indicates that the selected relays should

satisfy the performance requirements in delivery ratio and delay.

The solution to this knapsack problem itself is trivial, as we can

select the node with the maximum weight wk round by round un-

til the constraint is satisfied. Note that only best-effort solution is

available if
∑n

k=1 wk < W . Social-based metrics will be devel-

oped to calculate the weight wk associated with each node Nk in

the network, and the total required weightW is determined by the

performance requirements. The rest of this paper therefore focuses

on answering the following questions:

1. What are the appropriate social-based metrics for SDM and

MDM, respectively?

2. How to calculate the weights wk of individual nodes?

3. How can the source calculate the total required weightW ?

Generally speaking, the essential difference between SDM and

MDM is on the required knowledge about node social relations for

relay selections. For SDM, relay selection can be done based on the

local knowledge of the data source about its contacted neighbors1 ,

because the data source only multicasts a single data item, and does

not need to distinguish the data forwarding probabilities to different

destinations for relay selection. In Section 3, we use cumulative

contact probability as the centrality metric to develop a centrality-

based heuristic for SDM, and show that such heuristic is able to

satisfy the given performance requirements.

On the other hand, for MDM the relays should be aware of their

probabilities for forwarding each data item to the destinations. Such

capability is called “destination-awareness” throughout this paper,

and is required mainly due to the node buffer constraints. For exam-

ple, suppose the data source S multicasts two data items d1, d2 to

the destination sets D1, D2 respectively, and a selected relay R can
only carry one data item. To maximize the delivery ratio, R should
carry d1 if its probability of forwarding d1 to destinations in D1 is

higher. Otherwise, d2 should be carried by R. Thus, the source
has to be destination-aware, which may require global knowledge

about the social relations between the destinations and other nodes

in the network. Since such global knowledge is hard to maintain

in DTNs, in Section 4 we propose a community-based approach

which only requires nodes to maintain destination-awareness about

other nodes in the same social community.

Table 1: Trace summary

Trace Infocom MIT Reality

Network type Bluetooth Bluetooth

No. of devices 41 97

No. of internal contacts 22,459 54,667

Duration (days) 3 246

Granularity (secs) 120 300

Pairwise contact frequency

(per day) 4.6 0.024

2.3 Experimental Traces
We use two experimental traces collected from realistic DTNs

to validate our social network modeling, and to evaluate the per-

formance of our multicast scheme. These traces record contacts

among users in corporate environments carrying Bluetooth devices.

The Bluetooth devices periodically discover their peers in the neigh-

borhood and record contacts. We believe that the chosen traces

cover a large diversity of environments, from university campuses

(MIT Reality) to conference sites (Infocom), with experimental pe-

riods from a few days (Infocom) to several months (MIT Reality).

The two traces are summarized in Table. 1.

1
The nodes that have been directly contacted by the data source.
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2.4 Social Network Modeling
In this paper, we model a weighted social network which dif-

ferentiates the contact frequencies of different node pairs. In this

model, the contact process of each node pair is formulated as a

Poisson process, with the corresponding pairwise node contact rate

as its parameter. Similar assumptions have been used in other ex-

isting works to analyze the multicast capacity [12] and content dis-

semination [11] in DTNs,

Table 2: Acceptance ratio of χ2 tests for Infocom Trace

No. of test intervals 5 10 15 20 25

α=0.95 74.71 85.02 87.14 91.03 94.71

α=0.75 78.54 86.46 88.29 91.41 94.79

α=0.50 82.83 87.44 89.59 91.88 94.87

Table 3: Acceptance ratio of χ2 tests forMIT Reality Trace

No. of test intervals 5 10 15 20 25

α=0.95 54.45 87.53 89.20 93.67 90.67

α=0.75 60.74 88.18 90.50 93.78 91.21

α=0.50 66.93 88.65 91.20 93.96 91.94

Although [12] and [11] have this assumption, they did not vali-

date it experimentally. Next, we validate this social network model

based on realistic trace analysis. As a prerequisite, letting the ran-

dom variable XAB(t) be the cumulative number of contacts of a
node pair A and B at time t, we assume that any two contacts be-
tweenA andB are independent from each other. Hence,XAB(t) is
a stochastic process with independent increments, i.e., for any 0 ≤
t1 < t2 < ... < tn, XAB(t2) − XAB(t1), XAB(t3) − XAB(t2),
..., XAB(tn)−XAB(tn−1) are all independent random variables.
We observe that for most of the contacted node pairs in the In-

focom and MIT Reality traces, the pairwise inter-contact time is

exponentially distributed. To validate this result, we conduct χ2

hypothesis test [7] on each contacted node pair, to test whether the

hypothesis “the pairwise inter-contact time is exponentially dis-

tributed with parameter λ = n/
∑n

i=1 Ti”, where T1, T2, ..., Tn

are the inter-contact time samples, can be accepted. Since exponen-

tial distribution is continuous, in the χ2 tests we divide the range

of the sample values into several test intervals, and compare the

sample frequencies with theoretical probabilities on each interval.

The results of acceptance ratio on the Infocom and MIT Reality

traces under different significance levels α are listed in Tables 2
and 3. The results show that, when a enough number of test inter-

vals (≥ 10) is used, over 85% of the contacted node pairs pass the
test.

XAB(t) is therefore modeled as a homogeneous Poisson pro-
cess. For any t > 0, the number of contacts XAB(t + ∆t) −
XAB(t) between nodes A and B during time ∆t follows Poisson
distribution P (λAB∆t), i.e.,

P (XAB(t + ∆t) − XAB(t) = k) =
(λAB∆t)ke−λAB∆t

k!
. (2)

Then, the contact frequency between node pair {A, B} is in-
dicated by the contact rate λAB , and its stochastic properties are

represented by the Poisson process.

3. SINGLE-DATA MULTICAST
In this section, we develop a centrality-based heuristic for the

SDM problem based on the local knowledge of the data source.

The relays are selected among the contacted neighbors of the data

source based on their centrality, to ensure that the required delivery

ratio can be achieved within the time constraint.
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Figure 1: Node centrality values and the number of times for

them to be counted as relays: (a) Infocom, (b)MIT Reality

3.1 Centrality Metric
Currently, the “betweenness” centrality metric is widely used in

social-based data forwarding [4, 9]. Betweenness measures the ex-

tent to which a node lies on the shortest paths linking other nodes,

and a node with higher betweenness has better capability of fa-

cilitating communication between other nodes. For utilization in

distributed environments, the localized version of betweenness is

proposed by Marsden [14] in the “ego-centric” network for each

node, which only includes the contacted neighbors of that node.

Unfortunately, betweenness is defined and calculated based on

the topology of network contact graph, and is not sufficient to ana-

lytically represent the probabilities for a node to contact others. To

analytically model the relay selection process in SDM, we propose

a new centrality metric based on the Poisson modeling of social

networks, in the ego-centric network of a mobile node:

DEFINITION 1. Suppose there are totally N nodes in the net-

work, and the contact rate between a node Ni to node Nj is λij .

The cumulative contact probability (CCP) of Ni is defined as

Ci = 1 −
1

N − 1

N∑

j=1,j �=i

e−λijT . (3)

Ci indicates the average probability that a randomly chosen node

in the network is contacted by Ni within time T . Since all the
nodes in DTNs can exchange their centrality values upon contacts

with each other, the data source knows the centrality values of all

of its contacted neighbors when it selects relays.

To show the effectiveness of our centrality metric in character-

izing the capability of a node to contact other nodes and to deliver

data to destinations, we run 500 SDM scenarions with random data

sources and destinations in both Infocom and MIT Reality traces,

using Epidemic routing [22] to forward data. If a node delivers the

data to a destination, the node is counted as a relay. The statistical

results on the number of times for nodes to be counted as relays are

shown in Figure 1. The CCP spots in the figures show the trend to

form straight lines, which lead to the result that nodes with higher

CCP values are more effective in delivering data to destinations.

Comparatively, betweenness as the centrality metric is not effective

enough, as the corresponding spots are scattered in wide ranges.

3.2 Relay Selection
The minimum number of relays is selected to satisfy the required

delivery ratio p within time constraint T . We assume that the desti-
nations are uniformly distributed in the network, so that each node

other than the data source has equal chance to be a destination. To

forward data to all the destinations, we ensure that all the nodes are

contacted by the data source or the selected relays within T .
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3.2.1 Relays In Contact

Suppose the data source S is in contact with a set of nodes R =
{R1, R2, ..., Rk}, which can be selected as relays. The selected
relays still need to contact the remaining N − k − 1 nodes other
than S and nodes in R, to make sure that all the destinations are
contacted. We assume that none of the destinations is in the set R,
otherwise S can trivially forward data to destinations immediately.
We define the random variableXij as

Xij =

{
1 If a node Nj is contacted by Ri within T

0 Otherwise

then Xij follows Bernoulli distribution with Xij = 1 − e−λijT

where λij is the contact rate between Ri and Nj .

When we randomly choose a node other than S and R in the

network, which needs to be contacted by the relays, the probability

for each node to be chosen is 1
N−k−1

. Therefore, for a randomly

chosen node Nj /∈ R̃, where R̃ = {S} ∪ R, the probability that
Nj is not contacted by Ri within T is

pi =
1

N − k − 1
·

N∑

j=1,j /∈R̃

(1 − Xij) =
1

N − k − 1

N∑

j=1,j /∈R̃

e−λijT

=
N − 1

N − k − 1
· (1 − Ci) −

1

N − k − 1
·

∑

j∈R̃,j �=i

e−λijT .

(4)

Since S is in contact with every Ri ∈ R, S can request each Ri to

calculate pi locally based on its centrality value Ci.

To ensure that the average delivery ratio is higher than p, the
probability that a randomly chosen node Nj /∈ R̃ is not contacted

by the selected relays should be lower than 1 − p, i.e.,

r∏

i=1

pi
xi ≤ 1 − p (5)

where xi ∈ {0, 1} indicates whether Ri is selected as relay. Such

problem can be transformed to the unified knapsack formulation in

Eq. (1) by taking logarithms on both sides of the inequality, where

wi = log 1
pi
andW = log 1

1−p
.

3.2.2 Relays Not In Contact

When the data source selects relays, some contacted neighbors

of the data source with higher centrality may not be in contact with

the data source. To select relays among these nodes, we should also

consider the time needed for them to contact the data source.

For a contacted neighbor Ri of the data source S, let the random
variable T1 be the time for S to contact Ri, and T2 be the time for

Ri to contact another nodeNj , then the probability that S forwards
data to Nj via Ri is P (T1 + T2 ≤ T ). Assuming that the prob-
ability density functions (PDF) of T1 and T2 are f1(t) and f2(t)
(t ≥ 0), respectively, P (T1 + T2 ≤ T ) is calculated through the
convolution f1(t) ⊗ f2(t) as

P (T1 + T2 ≤ T ) =

∫ T

0

f1(t) ⊗ f2(t)dt

=

∫ T

0

dt

(∫ t

0

f1(τ )f2(t − τ )dτ

)
.

(6)

In order to select relays using the node centrality values as weights,

in our approach we exploit the following lower bound as an approx-

imation to such probability.

THEOREM 1. For any fixed T̃ ∈ (0, T ), we have

P (T1 + T2 ≤ T ) ≥ (1 − e−λSiT̃ )(1 − e−λij(T−T̃ )). (7)

PROOF. The r.h.s. of Eq. (7) indicates the probability

P (T1 ≤ T̃ ) · P (T2 ≤ T − T̃ ).

We define two sets T1 and T2 as
{

T1 = {(T1, T2)|T1 + T2 ≤ T}

T2 = {(T1, T2)|T1 ≤ T̃ , T2 ≤ T − T̃}

It is obviously that for any element {t1, t2} ∈ T2, we also have

{t1, t2} ∈ T1, which means T2 ⊆ T1. Therefore, we have

P (T1 + T2 ≤ T ) ≥ P (T1 ≤ T̃ ) · P (T2 ≤ T − T̃ )

which proves the theorem.

From Theorem 1, for a randomly chosen node other than S and
Ri in the network, the average probability P (T1 +T2 ≤ T ) for the
relay choice Ri has the similar lower bound:

P (T1+T2 ≤ T ) ≥ (1−e−λSiT̃ )(1−
1

N − 2

N∑

j=1,j /∈{S,i}

e−λij(T−T̃ )).

Note that, since Ri is not in contact with S, in the above equa-
tion we also consider the contacts between Ri to another contacted

neighbor, sayRj , of S. IfRj is in contact with S, P (T1+T2 ≤ T )
is reduced and therefore provides a lower bound which also guar-

antees the required delivery ratio in later relay selection. If Rj is

not in contact with S, we should consider the contacts between Ri

and Rj because S contacts Rj opportunistically, too.

The tightest bound in Eq. (7) is achieved by T̃0 when
∂P

∂T̃
|T̃=T̃0

=
0, and such equation can be proved to have only one solution in
(0, T ). Such differential equation can be written as

λSie
−λSiT̃

1 − e−λSiT
=

N∑
j=1,j /∈{S,i}

λije
−λij(T−T̃ )

N − 2 −
N∑

j=1,j /∈{S,i}

e−λij(T−T̃ ))

(8)

which can be solved by Newton’s method numerically.

For each nodeNi in the network, upon contact with another node

Nj , it calculates the optimal T̃0 forNj from Eq. (8), based on their

contact rate λij . Ni then calculates

C̃i = (1 − e−λij T̃0)(1 −
1

N − 2

N∑

k=1,k/∈{i,j}

e−λik(T−T̃0))

and send C̃i to Nj along with Ci described in Eq. (3). Since the

pairwise inter-contact time is shown to be exponentially distributed,

the pairwise node contact rate is going to be invariant over time,

which makes it unnecessary to solve Eq. (8) and recompute C̃i

repetitively upon every contact. In relay selection, if Ri is not in

contact with S, C̃i is used in calculating wi instead of Ci, i.e.,

wi = log
1

1 − C̃i

.

4. MULTIPLE-DATA MULTICAST
We exploit a community-based approach to solve theMDMProb-

lem to which localized heuristic is not applicable due to the node

buffer constraints and the subsequent requirement of destination-

awareness, as discussed in Section 2.2. In our approach, a node
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Figure 2: MDM data forwarding process

maintains its destination-awareness about other nodes in the same

social community. The data source selects relays among its con-

tacted neighbors based on destination-awareness, and places appro-

priate data items on each relay. Our relay selection scheme ensures

that the average probability that a data item is delivered to its des-

tinations by the selected relays is higher than the required p.
In practice, each data item is forwarded to the destinations by

the selected relays according to their local knowledge about the

destinations. Such process is illustrated in Figure 2, where S mul-
ticasts three data items d1, d2, d3 to destination sets {D1}, {D2},
{D3, D4}, respectively. The relay and data item selections are

shown in the figure. For destinations D1 and D2 in the same com-

munity with relayR1,R1 forwards d1 and d2 to the destinations ac-

cording to its local destination-awareness about D1 and D2, in the

form of social forwarding paths to be described in Section 4.1. For

destinations D3 and D4 which reside in other communities, data

forwarding is conducted through the “gateway” nodes G1 and G2,

which belong to multiple communities. Such hierarchical scheme

limits inter-community data forwarding to the gateway nodes, and

is therefore able to greatly reduce the forwarding cost.

4.1 Social Forwarding Path
We first introduce the concept of social forwarding path.

DEFINITION 2. A k-hop social forwarding path PAB = (VP ,
EP ) between two nodes A and B consists of a node set VP =
{A, N1, N2, ..., Nk−1, B} and an edge set EP = {e1, e2, ..., ek}
with edge weights {λ1, λ2, .., λk}. The path weight is the prob-
ability pAB(T ) that a data item is forwarded from A to B along

PAB within time T .

We now describe how to determine the weight of a social for-

warding path. The inter-contact time Xi between nodes Ni and

Ni+1 follows an exponential distribution with PDF pXi(x) = λie
−λix

(x ≥ 0). As a result, the total time needed to transfer data fromA to
B along PAB is Y =

∑k
i=1 Xi. The PDF pY (x) can be calculated

by convolutions on pi(x) as

pY (x) = p1(x) ⊗ p2(x)... ⊗ pk(x).

THEOREM 2. For a k-hop social forwarding path with edge
weights λ1, λ2, ..., λk, Let pXi(x) = λie

−λix, pY (x) is expressed
as

pY (x) =

k∑

i=1

C
(k)
i pXi(x)

where the coefficients C
(k)
i =

k∏
j=1,j �=i

λj

λj−λi
.
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PROOF. This theorem is proved in the Appendix.

From pY (x), the weight of social forwarding path PAB is

pAB(T ) = P (Y < T ) =

∫ T

−∞

pY (x)dx

=

k∑

i=1

(C
(k)
i ·

∫ T

−∞

pXi(x)dx) =

k∑

i=1

C
(k)
i · (1 − e−λiT )

(9)

and a node A maintains its destination-awareness to another node

B in the form of the social forwarding path PAB .

4.2 Community-based Destination-Awareness
Each node maintains the “best” social forwarding path with the

largest path weight to all the other nodes within the same commu-

nity. To do this, we assume that each node in the network belongs

to at least one social community.

Table 4: Record of social forwarding path table

D Hops {N1, ..., Nk−1, D} edge weights {λ1, ..., λk}

An efficient community detection mechanism is therefore needed.

We use the k-clique community detection mechanism [18], because
they are able to detect overlapping communities. A social commu-

nity can be defined differently by the community detection mech-

anisms. According to Palla et al. [18], a k-clique community is
defined as a union of all k-cliques (complete subgraphs of size k)
that can be reached from each other through a series of adjacent k-
cliques. In the distributed implementation of the k-clique method
for DTNs [10], each node first builds a familiar set containing its

contact neighbors, based on specific admission criteria, then builds

its local community by merging the familiar sets of other nodes.

We adopt such method using the contact rate specified in Section

2.4 as the admission criterion.

Each node maintains a social forwarding path table for all the

other nodes within the same community, and the record format for

the path to a node D is shown in Table 4. If a node belongs to

multiple communities, a separate table is maintained for each com-

munity. Initially, each node only has the information about its con-

tacted neighbors. When a node A contacts another node B, they
exchange and update their social forwarding path tables.

For a record of node C in B’s social forwarding path table, if
C has not been recorded at A and is in the same community with

A, A adds this record into its own table. Otherwise, if the path

to C recorded by B has larger weight than that recorded by A, A
updates its local record about C. When updating a record, A also

checks whether itself is on the path to prevent possible loops. If so,

303



(a) (b)

Figure 4: Coverage of destination-awareness: (a) 10 destina-

tions in total, (b) 40 destinations in total

A extracts and stores the part {N1, ..., Nk−1, D} from the looped
path {N0, ..., Ns, A, N1, ..., Nk−1, D}.
Compared with node mobility, the long-term social community

relations among nodes are much more stable over time. This fact is

validated by experimental results on the MIT Reality trace, where

a community change is an operation adding a node to or deleting a

node from a social community. Figure 3 shows that the community

change rates are lower than 7 × 10−3 per hour. These results, to-

gether with the fact that contact frequencies between nodes in the

same community are much higher than the network average level

[9], ensure that the community-based destination-awareness can be

maintained up-to-date and accurately at individual nodes.

Figure 4 shows the coverage of the community-based destination-

awareness from an experiment on 500 MDM scenarios with ran-

dom sources and destinations. Such coverage is defined as the per-

centage of destinations that the data source is aware of. It is shown

that the data source is aware of most of the destinations, and this

result ensures that the data source has enough knowledge about

the destinations to select relays effectively. The other destinations

and the corresponding data items are considered as a separate SDM

problem, and data relays are selected as described in Section 3.2.

4.3 Edge Splitting Process
Generally, the probabilities for various relays to forward a data

item to the same destination are not independent, due to the pos-

sible overlap of their social forwarding paths on some common

edges. For example, in Figure 5(a), paths from S toD via different

relays A1, ..., Ar share the edge e0 = (C, E) in common2 . Such
overlap makes it difficult to calculate the cumulative data forward-

ing probabilities for multiple relays, and we eliminate such overlap

by exploiting an edge splitting process.

First, due to the commutativity of convolution, we are able to

“move” the common edge e0 to the “end” of the paths, i.e., the last

hop to the destination, without changing the weight of any involved

path. This is illustrated in Figure 5(b). Since a node contacts each

of its neighbors independently, node E shared by multiple paths

does not affect the independence of the paths.

The edge splitting process is illustrated in Figure 5(c). For an

edge e0 with rate λ0 being shared by r paths, we split e0 to r dis-
tinct edges, each of which has rate λ0/r, and each of the r paths
is allocated a splitted edge. Such process is equivalent to create

a virtual destination node for each of the r paths. In Figure 5(c),
letting the weight of the i-th path {S, Ai, Bi, ..., Gi, C, Di} after
the edge splitting process be pi, the cumulative probability for S to

2
The dashed lines in Figure 5(a) indicate multi-hop social forwarding paths.
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Figure 5: Edge splitting process

send data toD within time T can be equivalently calculated as

1 −

r∏

i=1

(1 − pi)

which is the probability that S sends data to at least one node

among the virtual destination nodes Di.

THEOREM 3. Edge splitting process gives a lower bound to

the original data forwarding probability from source to destination.

PROOF. Let the random variable T1 be the time for S to send
data to C with PDF f1(t), and T2 be the time for C to contact D
in Figure 5(b), which has PDF f2(t) = λ0e

−λ0T , we have

P (T1 + T2 ≤ T ) = P (λ0) =

∫ T

0

f1(t) ⊗ f2(t)dt.

Similarly, the probability for S to deliver data to any node Di

within time T in Figure 5(c) is equally P (λ0/r), and therefore the
lower bound is written as

r∏

i=1

(1 − pi) ≥ (1 − P (
λ0

r
))r ≥ (1 − P (λ0)). (10)

The first inequality in Eq. (10) is obvious, because 1 − P (λ0

r
)

is the probability for S to send data to a nodeDi via all the r paths
from S to C in Figure 5(c), and 1 − pi is that probability only via

the i-th path. For the second inequality, let h(r) = (1 − P (λ0

r
))r,

it is equivalent to prove that
∂h(r)

∂r
≥ 0 for all r > 1.

∂h(r)

∂r
=r

(
1 − P (

λ0

r
)

)r−1

·

(
−

∂P (λ0

r
)

∂r

)

= − r

(
1 − P (

λ0

r
)

)r−1

·
∂P (λ0

r
)

∂(λ0

r
)

·
∂(λ0

r
)

∂r

=
λ0

r

(
1 − P (

λ0

r
)

)r−1

·
∂P (λ0)

∂λ0
.
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It is easy to know that the contact rate λ0 between C and D is

negatively proportional to the time needed for C to contact D, and
is therefore positively proportional to the probability that S send

data to D via C, i.e., ∂P (λ0)
∂λ0

≥ 0. So we have ∂h(r)
∂r

≥ 0 for all
r > 1, and the theorem is proved.

4.4 Two-Stage Relay Selections
The data source S selects relays among its contacted neighbors,

based on its knowledge about the destinations. Suppose at S there
are data items d1, ..., dn with sizes s1, ..., sn and destination sets

D1, ..., Dn, and S selects relays among nodes R1, ..., Rm with

buffer sizes B1, ..., Bm. The relay selection problem is formulated

at S as the following knapsack problem:

min

∣∣∣∣{j|
n∑

i=1

xij > 0}

∣∣∣∣

s.t.
n∑

i=1

xijsi ≤ Bj , for j = 1, ..., m

1

|Di|

∑

k∈Di

m∏

j=1

(1 − xijpjk) ≤ (1 − p), for i = 1, ..., n

where xij ∈ {0, 1} indicates that data item di is placed on relay

Rj , and pjk is the probability for S to send data to destination k via
Rj , in the form of the weight of corresponding social forwarding

path from S to k via Rj . The second set of constraints guarantees

that, for each data item, the average probability that it is delivered

to its destinations is higher than p.
Such problem is NP-hard due to the second set of constraints,

and we instead propose an effective heuristic for relay selection

consisting of two stages. First, the optimal data item selection

for each Rj is calculated, based on the node buffer constraint of

Rj . Such optimal data item selection leads to the maximal aver-

age probability that a data item is forwarded to its destinations via

Rj . Second, relay selection is conducted using the optimized data

forwarding probabilities in the first phase as node weights.

4.4.1 Data Item Selection

On each node Rj , searching for the optimal data item selection

leads to solving the following 0-1 knapsack problem:

max
n∑

i=1

∑

k∈Di

xijpjk

|Di|

s.t.
n∑

i=1

xijsi ≤ Bj

where 1
|Di|

∑
k∈Di

pjk is the average probability that data item di is

delivered to its destinations from S via Rj .

SinceBj and si can be represented as integers (numbers of bytes),

this knapsack problem can be solved in pseudo-polynomial time

using a dynamic programming approach [15]. The solution to this

problem maximizes the average probability that a data item is de-

livered to its destinations via Rj within T .

4.4.2 Relay Selection

According to the optimal data item selection on Rj , we define

the node weight wj for Rj as

wj = 1 −
1

n

n∑

i=1

∑

k∈Di

xijpjk

|Di|

which indicates the average probability that a data item cannot be

delivered to its destinations by Rj within T . Such probability is
minimized for Rj at the data item selection stage.

Then, the node weight wj is used for relay selection, satisfying

the following performance requirement

m∏

j=1

w
xj

j ≤ 1 − p (11)

where xj ∈ {0, 1} indicates whether Rj is selected as the relay.

Similar to the relay selection scheme in SDM, Eq. (11) can also be

unified to the knapsack formulation in Eq. (1) by taking logarithms

on both sides of the inequality.

5. PERFORMANCE EVALUATIONS
In this section, we compare the performance of our SDM and

MDM schemes, with the flooding-based approach (Epidemic rout-

ing) [22] and the mobility-based approach (PROPHET) [13]. We

also compare our SDM scheme with other social-based data for-

warding schemes including SimBet [4] and BUBBLE Rap [9] to

show the essential difference between multicast and unicast in DTNs.

In Epidemic routing, each relay forwards the data to all the con-

tacted nodes. In PROPHET, each data item is forwarded to the

nodes with higher delivery predictability, and each of the specified

destination is handled separately. We use the default PROPHET

parameter settings recommended in [13].

The following metrics are used in our simulations. We only

count delivered destinations, which are the destinations that have

received the data. Each simulation is repeated 500 times with ran-

dom data sources and destinations for statistical convergence.

1. Delivery ratio, the ratio of the number of delivered destina-

tions to the total number of destinations.

2. Actual delay, the average delay for all the delivered destina-

tions to receive the data.

3. Average cost, the average number of relays used for one de-

livered destination to receive a data item.

5.1 Performance of SDM
We use the Infocom trace with higher contact rates to evaluate

our SDM scheme. In all simulations, we fix the required delivery

ratio p = 80%. The data source multicasts a data item to 10 ran-
domly selected destinations, with various time constraints T . For
PROPHET, multicast is handled as separate unicast processes for

each destination. We also evaluate the performance of our MDM

scheme to the SDM problem, by setting the number of data items

to be 1. These results are indicated as “S-MDM” in Figure 6.

Due to the low rates of node contacts in DTNs, the selected re-

lays may not be able to contact the destinations if the time con-

straints are short. As a result, the actual delivery ratio shown in

Figure 6(a) is tightly related to the time constraint. When the time

constraint becomes longer, such ratio increases dramatically be-

cause the selected relays have more chances to contact destinations,

and the average delay increases accordingly.

The delivery ratio of our centrality-based SDM scheme is also

limited by the time constraint, as the required delivery ratio p can-
not be achieved when the time constraint is shorter than 14 hours.

In such cases, it is most likely that all the available relays for the

data source together cannot satisfy the performance requirements

in Eq. (5), and the source therefore can only forward the data with

best effort by selecting all the available relays. Nevertheless, under

various time constraints, our SDM scheme shows only 5% degra-

dation in delivery ratio and delay, compared with Epidemic, and

outperforms PROPHET by 20%. Similar results are shown in Fig-
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Figure 6: Performance of SDM on the Infocom trace: (a) Delivery ratio, (b) Actual delivery delay, (c) Average cost
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Figure 7: Delivery ratio and cost of SDM with different re-

quirements on delivery ratio

ure 6(b) in terms of delay. The actual delay of SDM is 5% longer

than that of Epidemic, but is over 10% shorter than PROPHET.

Figure 6(c) shows that our approach has much less cost than

Epidemic and PROPHET. In Epidemic routing, since the data is

flooded, the average cost remains at 4 relays for each delivered

destination when the time constraint changes. When the time con-

straint increases from 15 minutes to 22 hours, the average cost of

SDM is reduced from 1.0 relays to 0.25 relays. When the time

constraint is 22 hours, the cost of SDM is only 25% of the cost of

PROPHET, and 6.25% of the cost of Epidemic.

We also apply MDM (S-MDM in the figure) to the SDM problem

by selecting relays based on the social forwarding paths to the des-

tinations. Figures 6(a) and 6(b) show that the improvements on the

delivery ratio and delay is less than 10%, but the average cost in-

creases by 50%, because the data is going to be forwarded along the

social forwarding paths. In practice, the average cost is even higher

due to the maintenance of social forwarding paths and community

structures. Therefore for the SDM problem, our centrality-based

localized heuristic is cost-effective.

In Figure 7, the effects of different delivery requirements (p) on
SDM are investigated. When p is low, increasing p leads to a con-
siderable improvement of the actual delivery ratio, as shown by

Figure 7(a). When p increases from 0.3 to 0.6, the actual delivery
ratio increases by 15%-25%. Such improvement becomes smaller

when p is high. Correspondingly, higher p requires the data source
to select more relays. Figure 7(b) shows that when p increases from
0.3 to 0.9, the average cost increases by 25%-30%.

5.2 Performance of MDM
We use the MIT Reality trace with larger network scale to evalu-

ate our MDM scheme. We fix the required delivery ratio p = 60%,

and 5 data items are generated at the source node. The number

of destinations for each data item is uniformly randomized in the

range [3, 9]. Letting the total size of all the data items be S, the
buffer size of each node is uniformly randomized in [ 1

2
S, S].

In Epidemic routing, each data item is flooded in the network.

In PROPHET, each data item is forwarded to each destination as a

separate unicast process. We also evaluate the performance of our

SDM scheme to the MDM problem by multicasting each data item

separately, and such results are indicated as “M-SDM” in Figure 8.

In the three cases, data items are randomly selected at a relay when

it cannot carry all the data items simultaneously.

Since the pairwise node contact rates in the MIT Reality trace

is much lower (see Table 1), the time constraint and actual delay

are much longer correspondingly. Similar to the results in SDM

performance evaluation, the delivery ratio shown in Figure 8(a) is

also highly related with the time constraint. Our MDM scheme can

only achieve the required delivery ratio p = 60% when the time

constraint is longer than 6 weeks, but it keeps similar delivery ra-

tio with Epidemic routing, and outperforms PROPHET over 100%

when the time constraint is longer than 1 week. Meanwhile, the

average cost of our approach is much lower than that of Epidemic

and PROPHET, as shown in Figure 8(c). For the longest time con-

straint (6 months), the average cost of our approach is only 50% of

that of PROPHET, and 11% of that of Epidemic.

The major difference between SDM and MDM is maintaining

destination-awareness due to buffer constraints. When being used

for the MDM problem, our SDM scheme selects data items for each

relay at random, and therefore a selected relay may have low for-

warding probabilities to the destinations of the data items it carries.

Such random data item selection leads to reduction on the delivery

ratio by 10%-20% and slight increase on the actual delay, as shown

in Figures 8(a) and 8(b). The average cost is also 20%-25% higher

in Figure 8(c), because the average number of destinations that a re-

lay can deliver is smaller. Therefore, our MDM scheme shows the

advantage of maintaining destination-awareness which helps select

data items optimally for each relay.

5.3 Comparison with other social-based schemes
In this section, we compare the performance of our SDM scheme

with other social-based forwarding schemes including SimBet [4]

and BUBBLE Rap [9]. We fix the required delivery ratio of our

SDM scheme as 80%, and 10 destinations are randomly selected.

In SimBet and BUBBLE Rap, each destination is handled sepa-

rately as unicast. We use the same parameter settings for commu-

nity detection in BUBBLE Rap as in our MDM scheme.

SimBet calculates the betweenness and similarity metrics for
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Figure 8: Performance of MDM on theMIT Reality trace: (a) Delivery ratio, (b) Actual delay, (c) Average cost

mobile nodes, and exchanges data between nodes based on their

SimBet utilities. It does not consider contact frequencies between

node pairs, and therefore leads to lower delivery ratio and longer

delay, as shown in Figures 9(a) and 9(b). Comparatively, BUBBLE

Rap benefits from the consideration of social community struc-

ture and hierarchical forwarding. It has similar delay to our SDM

scheme, but still has a 20% lower delivery ratio. This is mainly

because BUBBLE Rap also uses betweenness as centrality metric.

The essential difference between multicast and unicast in DTNs

is illustrated in Figure 9(c). For multicast, a relay is required to de-

liver data to as many destinations as possible, and such requirement

leads to different considerations in relay selection. Therefore, Sim-

Bet and BUBBLE Rap produces larger cost than our SDM scheme,

because they select relays for each destination separately. The cost

of BUBBLE Rap is smaller than that of SimBet because of exploit-

ing hierarchical forwarding architecture, but its cost is still 50%

higher than that of our SDM scheme. These results show that uni-

cast schemes cannot be simply exploited for effective multicast.

6. RELATED WORK
In [22], the authors studied Epidemic routing in DTNs. The ba-

sic idea is to select all nodes in the network as relays. Some later

work studied relay selection strategies based on node mobility pat-

terns. For example, PROPHET [13] calculates the delivery pre-

dictability at each node by using encounter history, [25] employs

some nodes with desirable mobility patterns as message ferries,

[20, 3] analyze the performance of mobility-assisted schemes the-

oretically, and [5] provides a unified approach on mobility-based

metrics. Some works make efforts on improving data forwarding

performance by either determining the data delivery likelihood [2]

or spraying data to relays waiting for contacts with destinations

[19], which is similar with our SDM scheme. However, only sim-

ple heuristics are provided for selecting relays in these approaches.

Since node mobility patterns are highly volatile and hard to con-

trol, attempts on exploiting stable social network structure for data

forwarding have emerged. Most social-based forwarding schemes

exploit sociological centrality metrics [14] for relay selections. Sim-

Bet routing [4] uses ego-centric betweenness metric and forwards

data to nodes with higher SimBet utility. Later work [9] consid-

ers node centrality in a hierarchical manner based on social com-

munity knowledge. Social communities are also investigated in a

decentralized way [10] for publisher/subscriber applications [24].

The network contact graph in most social-based data forwarding

schemes is considered as binary. Hui et al. [9] used cumulative

contact length as edge weights for community detection in social

networks, but did not exploit such weights for data forwarding.

The binary social network model considers node pairs with dif-

ferent contact frequencies as equivalent ones, and limits the perfor-

mance of centrality-based data forwarding schemes because node

centrality values do not really characterize the nodes’ capabilities

of contacting other nodes.

Some other work [1, 11] focus on modeling the content dis-

semination process in DTNs in an epidemic manner. In [1], effi-

cient utility functions are developed for content dissemination, and

[11] investigates optimal rate allocation schemes to maximize the

data dissemination speed. However, the content dissemination pro-

cesses are not oriented for specified destinations as in our work.

As a result, research on content dissemination focuses on the opti-

mal network design for improving dissemination speed, rather than

relay selection schemes for better cost-effectiveness.

7. CONCLUSIONS
In this paper, we studied multicast in DTNs from the social net-

work perspective, and exploited social network concepts, including

centrality and social community, to improve the cost-effectiveness

of multicast in DTNs. We investigated the essential difference be-

tween multicast and unicast in DTNs, and developed relay selection

schemes considering the forwarding probabilities to multiple des-

tinations simultaneously. Trace driven simulation results show that

our approach achieves similar delivery ratio and delay to Epidemic

routing, but significantly reduces the forwarding cost. We believe

that this paper presents the first step in exploiting social network

methods for efficient multi-party communication in DTNs. Further

research can benefit from our results by developing specific appli-

cations based on the provided multicast architecture.
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APPENDIX

Proof of Theorem 2: We prove this theorem by induction. First,

consider P2 = p1(x) ⊗ p2(x), we have

P2 = λ1λ2

∫ x

0

e−(λ1−λ2)te−λ2xdt

=
λ1λ2

λ2 − λ1
(e−λ1x − e−λ2x) = −C

(2)
1 p1(x) − C

(2)
2 p2(x)

This result can also be applied to two arbitrary functions pi(x)⊗

pj(x). Suppose Pk−1 =
k−1∑
i=1

C
(k−1)
i pi(x), then

Pk = Pk−1 ⊗ pk(x) =

k−1∑

i=1

C
(k−1)
i pi(x) ⊗ pk(x)

=

k−1∑

i=1

C
(k−1)
i · (

λk

λk − λi
pi(x) +

λi

λi − λk
pk(x))

Consider that C
(k)
i = C

(k−1)
i · λk

λk−λi
, we have

Pk =

k−1∑

i=1

C
(k)
i pi(x) +

k−1∑

i=1

C
(k−1)
i

λi

λi − λk
pk(x) (12)

For the second term in Eq. (12), we have

k−1∑

i=1

C
(k−1)
i

λi

λi − λk
=

k−1∑

i=1

λi

λi − λk
·
( k−1∏

j=1,j �=i

λj

λj − λi

)

=

k−1∏

j=1

λj ·

k−1∑

i=1

k∏

j=1,j �=i

1

λj − λi
=

k−1∏

j=1

λj

λj − λk
= C

(k)
k

Therefore, we have

Pk =

k−1∑

i=1

C
(k)
i pi(x) + C

(k)
k pk(x) =

k∑

i=1

C
(k)
i pi(x)

which proves the theorem.
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