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Abstract

Background—Diagnosis of significant coronary artery disease (CAD) in at risk patients can be

challenging, typically including non-invasive imaging modalities and ultimately the gold standard

of coronary angiography. Previous studies suggested that peripheral blood gene expression can

reflect the presence of CAD.

Objective—To validate a previously developed 23-gene expression-based classifier for diagnosis

of obstructive CAD in non-diabetic patients.

Design—Multi-center prospective trial with blood samples drawn prior to coronary angiography.

Setting—Thirty-nine US centers.

Patients—An independent validation cohort of 526 non-diabetic patients clinically-indicated for

coronary angiography

Intervention—None.

Measurements—Receiver-operator characteristics (ROC) analysis of classifier score measured

by real-time polymerase chain reaction (RT-PCR), additivity to clinical factors, and

reclassification of patient disease likelihood vs disease status defined by quantitative coronary

angiography (QCA). Obstructive CAD defined as ≥50% stenosis in ≥1 major coronary artery by

QCA.

Results—The overall ROC curve area (AUC) was 0.70 ±0.02, (p<0.001); the classifier added to

clinical variables (Diamond-Forrester method) (AUC 0.72 with classifier vs 0.66 without, p =
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0.003). Net reclassification was improved by the classifier over Diamond-Forrester and an

expanded clinical model (both p<0.001). At a score threshold corresponding to 20% obstructive

CAD likelihood (14.75), the sensitivity and specificity were 85% and 43%, yielding NPV of 83%

and PPV 46%, with 33% of patient scores below this threshold.

Limitations—The study excluded patients with chronic inflammatory disorders, elevated white

blood counts or cardiac protein markers, and diabetes.

Conclusions—This non-invasive whole blood test, based on gene expression and demographics,

may be useful for assessment of obstructive CAD in non-diabetic patients without known CAD.

Primary Funding Source—CardioDx, Inc.

Chronic coronary artery disease (CAD), including chronic stable angina, afflicts 16.5

million patients in the United States, with approximately 500,000 new patients diagnosed

annually (1). Substantially more patients are evaluated for chest pain or other symptoms

suggestive of CAD, but only a minority are ultimately diagnosed with CAD (2–4). Clinical

evaluation of patients with suspected CAD is variable and includes diagnostic tests of varied

accuracy, reproducibility, ease of use and potential for patient morbidity (5). Many patients

undergoing invasive diagnostic coronary angiography do not have obstructive CAD, despite

widespread availability of non-invasive diagnostic modalities (6).

No simple blood-based biomarker has been validated for diagnosis of obstructive CAD.

Biomarkers such as C-reactive protein (CRP) have been associated with future

cardiovascular event risk (7, 8), but there is no well-defined role for biomarkers in current

assessment of patients with symptoms suggestive of CAD (9). We recently identified

differential blood cell gene expression levels in patients with CAD (10) suggesting that

CAD detection from a peripheral blood sample might be possible. The PREDICT multi-

center study was designed to develop and validate blood-based gene expression tests for

CAD , enrolling both diabetic and non-diabetic patients clinically indicated for invasive

angiography. Differences in plaque morphology have been observed for CAD patients with

and without diabetes (11, 12), and these differences were also reflected at the level of gene

expression (Elashoff et al., submitted). Thus, we have derived an algorithm specifically

relating non-diabetic patient CAD status to expression levels of 23 genes and sex-specific

age functions (Elashoff et al., submitted).

Herein we report initial prospective validation of this gene expression algorithm for

likelihood of obstructive CAD, defined as one or more coronary atherosclerotic lesions

causing ≥50% luminal diameter stenosis, in non-diabetic patients with suspected CAD.

Methods

General Study Design and Study Population

Subjects were enrolled in PREDICT, a 39 center prospective study, between July 2007 and

April 2009. The study was approved by institutional review boards at all centers and all

patients gave written informed consent. Subjects referred for diagnostic coronary

angiography were eligible with a history of chest pain, suspected anginal-equivalent

symptoms, or a high risk of CAD, and no known prior myocardial infarction (MI),

revascularization, or obstructive CAD. Subjects were ineligible if at catheterization, they

had acute MI, high risk unstable angina, severe non-coronary heart disease (congestive heart

failure, cardiomyopathy or valve disease), systemic infectious or inflammatory conditions,

or were taking immunosuppressive or chemotherapeutic agents. Detailed eligibility criteria

are in Appendix 2.
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From 2186 enrolled subjects who met inclusion criteria, 606 diabetic patients were

excluded, as this initial algorithm development and validation was focused on non-diabetics.

The limitation to non-diabetic patients was based on the significant differences observed in

CAD classifier gene sets dependent on diabetic status (Elashoff et al., submitted). Of the

remaining 1580 patients, 5 had angiographic images unsuitable for QCA and 6 had unusable

blood samples. For the remaining 1569 subjects, 226 were used in gene discovery; the

remaining 1343 were divided into independent algorithm development and validation

cohorts (Figure 1) sequentially based on date of enrollment.

Clinical Evaluation and Quantitative Coronary Angiography

Pre-specified clinical data, including demographics, medications, clinical history and

presentation, and myocardial perfusion imaging results were obtained by research study

coordinators using standardized data collection methods and data verified by independent

study monitors.

Coronary angiograms were analyzed by computer-assisted QCA. Specifically, clinically-

indicated coronary angiograms performed according to site protocols were digitized, de-

identified and analyzed with a validated quantitative protocol at Cardiovascular Research

Foundation, New York, NY (13). Trained technicians, blinded to clinical and gene

expression data, visually identified all lesions >10% diameter stenosis (DS) in vessels with

diameter >1.5mm. Using the CMS Medis system, (Medis, version 7.1, Leiden, the

Netherlands), technicians traced the vessel lumen across the lesion between the nearest

proximal and distal non-diseased locations. The minimal lumen diameter (MLD), reference

lumen diameter (RLD = average diameter of normal segments proximal and distal of lesion)

and %DS (%DS = (1 - MLD/RLD) x 100) were then calculated.

The Diamond-Forrester (D–F) risk score, comprised of age, sex, and chest pain type, was

prospectively chosen to evaluate the added value of the gene expression score to clinical

factors (14). D–F classifications of chest pain type (typical angina, atypical angina and non-

anginal chest pain) were assigned based on subject interviews as described (Appendix 2)

(14), and D–F scores assigned (15). For this classification, subjects without chest pain

symptoms were classified as non-anginal chest pain. Myocardial perfusion imaging was

performed as clinically indicated, with local protocols, and interpreted by local readers with

access to clinical data but not gene expression or catheterization data. Imaging results were

defined as positive if ≥1 reversible or fixed defect consistent with obstructive CAD was

reported. Indeterminate or intermediate defects were considered negative.

Obstructive CAD and Disease Group Definitions

Patients with obstructive CAD (N=192) were defined prospectively as subjects with ≥1

atherosclerotic plaque in a major coronary artery (≥1.5mm lumen diameter) causing ≥50%

luminal diameter stenosis by QCA; non-obstructive CAD (N=334) had no lesions >50%.

Blood Samples

Prior to coronary angiography, venous blood samples were collected in PAXgene® RNA-

preservation tubes. Samples were treated according to manufacturer’s instructions, then

frozen at −20°C.

RNA Purification and RT-PCR

Automated RNA purification from whole blood samples using the Agencourt RNAdvance

system, cDNA synthesis, and RT-PCR were performed as described (Elashoff et al.,

submitted). All PCR reactions were run in triplicate and median values used for analysis.

Genomic DNA contamination was detected by comparison of expression values for splice-
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junction spanning and intronic ADORA3 assays normalized to values of TFCP2 and

HNRPF. The RPS4Y1 assay was run as confirmation of sex for all patients; patients were

excluded if there was an apparent mismatch with clinical data. Sample QC metrics and pass-

fail criteria were pre-defined and applied prior to evaluation of results as described (Elashoff

et al., submitted).

Statistical Methods

The analyses for comparison of demographic and clinical factors (Table 1) used SAS

Version 9.1 (SAS Institute Inc, Cary, NC, USA). All other analysis was performed using R

Version 2.7 (R Foundation for Statistical Computing, Vienna, Austria). Unless otherwise

specified, univariate comparisons for continuous variables were done by t-test and

categorical variables by Chi-square test. All reported p-values are two-sided.

Gene Expression Algorithm Score

The gene expression algorithm was developed with obstructive CAD defined by QCA as

≥50% stenosis in >1 major coronary artery, corresponding approximately to 65–70%

stenosis based on clinical angiographic read. The algorithm was locked prior to the

validation study. Raw algorithm scores were computed from median expression values for

the 23 algorithm genes, age and sex as described (Appendix 3) and used in all statistical

analyses; scores were linearly transformed to a 0–40 scale for ease of reporting.

ROC Estimation and AUC Comparisons

The prospectively defined primary endpoint was the ROC curve area for algorithm score

prediction of disease status. ROC curves were estimated for the a) gene expression

algorithm score, b) the D–F risk score, c) a combined model of algorithm score and D–F risk

score, d) Myocardial perfusion imaging, and e) a combined model of algorithm score and

imaging. Standard methods (16) were used to estimate empirical ROC curves and associated

AUCs and AUC standard errors. The Z-test was used to test AUCs versus random (AUC = .

50).

Paired AUC comparisons: i) gene expression algorithm score plus D–F risk score vs D–F

risk score, and ii) gene expression algorithm score plus myocardial perfusion imaging vs

imaging alone; were performed by bootstrap. For each comparison, 10,000 bootstrap

iterations were run, and observed AUC differences computed. The median bootstrapped

AUC difference was used to estimate the AUC difference, and the p-value estimated using

the empirical distribution of bootstrapped AUC differences (i.e. the observed quantile for 0

AUC difference in the empirical distribution).

Logistic Regression

A series of logistic regression models were fit with disease status as the binary dependent

variable, and compared using a likelihood ratio test between nested models. Comparisons

were: i) gene expression algorithm score plus D–F risk score versus D–F risk score alone; ii)

gene expression algorithm score plus myocardial perfusion imaging versus imaging alone;

iii) gene expression algorithm score versus the demographic component of the gene

expression algorithm score; iv) algorithm score plus expanded clinical model vs expanded

clinical model alone.

Correlation of Algorithm Score with Maximum Percent Stenosis

The correlation between algorithm score and percent maximum stenosis as continuous

variables was assessed by linear regression. Stenosis values were grouped into five

increasing categories (no measurable disease, 1–24%, 25–49% in ≥1 vessel, 1 vessel ≥50%,
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and >1 vessel ≥50%) and ANOVA was used to test for a linear trend in algorithm score

across categories.

Expanded Clinical Model

An expanded clinical factor model was developed that incorporated the 11 clinical factors

that showed univariate significance (p<.05) between obstructive CAD and no obstructive

CAD patients in the development set (sex, age, chest pain type, race, statin, aspirin, anti-

platelet, and ACE inhibitor use, systolic blood pressure, hypertension, and dyslipidemia). A

logistic regression model was fit using disease status as the dependent variable and these 11

clinical factors as predictor variables. A subject’s ‘expanded clinical model score’ was the

subject’s predicted value from this model.

Reclassification of Disease Status

Gene expression algorithm score and D–F risk scores were defined as low (0% to <20%),

intermediate (≥20%,<50%), and high risk (≥50%) obstructive CAD likelihoods. Myocardial

perfusion imaging results were classified as negative (no defect/possible fixed or reversible

defect) or positive (fixed or reversible defect). For the D–F risk score analysis, a reclassified

subject was defined as i) D–F intermediate risk to low or high algorithm score, ii) D–F high

risk to algorithm low, or iii) D–F low risk to algorithm high. For the myocardial perfusion

imaging analysis, a reclassified subject included i) imaging positive to algorithm score low

risk, or ii) imaging negative to algorithm score high risk. Net reclassification improvement

of the gene expression algorithm score (and associated p-value) compared to the D–F risk

score, expanded clinical model, or myocardial perfusion imaging result was computed as

described in Supplementary methods, with the definition of reclassifications shown above

(17). Net reclassification improvement is a measure of reclassification clinical benefit, and is

sensitive to both the fraction and accuracy of reclassification. Conceptually, it is the

difference between a) the fraction of subjects who are reclassified correctly from an

incorrect initial classification, and b) the fraction of subjects who are reclassified incorrectly

from a correct initial classification.

Results

A total of 1343 non-diabetic patients from the PREDICT trial, enrolled between July 2007

and April 2009, were sequentially allocated to independent development (N= 694) and

validation (N= 649) sets, as shown in Figure 1. The clinical characteristics of the

development and validation sets were similar. Overall, subjects were 57% male, 37% had

obstructive CAD and 26% had no detectable CAD. Significant clinical or demographic

variables that were associated with obstructive CAD in both cohorts were increased age,

male sex, chest pain type, elevated systolic blood pressure (all p< 0.001), hypertension

(p=0.001), and white ethnicity (p=0.015), as summarized in Table 1.

The final algorithm, consisting of 23 genes, grouped in the 6 terms, 4 sex-independent and 2

sex-specific, is shown schematically in Figure 2. The subsequent analyses are for the

independent validation set only.

ROC Analysis

The primary endpoint AUC was 0.70 ±0.02, (p<0.001) with independently significant

performance in male (0.66) and female subsets (0.65) (p <0.001 for each). For the primary

clinical comparator of the Diamond-Forrester (D–F) risk score, ROC analysis showed a

higher AUC for the algorithm score and D–F risk score combination, compared to D–F risk

score alone (AUC 0.72 versus 0.66, p=0.003, Figure 3).
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The most prevalent form of non-invasive imaging in PREDICT was myocardial perfusion

imaging. In the validation set 310 patients had clinically-indicated imaging performed, of

which 72% were positive. Comparative ROC analysis showed an increased AUC for the

combined algorithm score and myocardial perfusion imaging results versus imaging alone

(AUC 0.70 versus 0.54, p <0.001).

Sensitivity, Specificity

We calculated the sensitivity and specificity for a score threshold of 14.75, corresponding to

a disease likelihood of 20% from the validation set data. At this threshold, the sensitivity

was 85% with a specificity of 43%, corresponding to negative and positive predictive values

of 83% and 46%, respectively, with 33% of patients having scores below this value.

Association with Disease Severity

The algorithm score was moderately correlated with maximum percent stenosis (R=0.34,

p<0.001), and the average algorithm score increased monotonically with increasing percent

maximum stenosis (p< 0.001, Figure 4). The average scores for patients with and without

obstructive CAD were 25 and 17, respectively.

Reclassification

Reclassification may be a more clinically relevant measure of comparative predictor

performance than standard measures such as AUC (18). Table 2A shows reclassification

results for the gene expression algorithm compared to D–F risk score. In the validation

cohort 27% of patients were reclassified and the net reclassification improvement for the

gene expression algorithm score was 20% (p<0.001). The majority of reclassified subjects

(75/141) were those with intermediate D–F risk scores. The gene expression algorithm

reclassified 78% (75/96) of these patients, with 47 reclassified correctly to low or high risk

versus 28 reclassified incorrectly; the incorrect reclassifications were predominantly to high

risk (21/28). Additionally, 38 D–F low risk subjects (15%) were reclassified as high risk,

and 28 high risk subjects (16%) reclassified as low risk.

Classification by the expanded clinical model alone and with the addition of the gene

expression score was also analyzed. A total of 22% of the patients were reclassified by the

gene expression score and the net reclassification improvement was 16% (p<0.001, Table

2B). The vast majority of reclassified patients were intermediate risk by the expanded

clinical model alone (112/118) and of these 74 were reclassified correctly and 38

incorrectly; incorrect reclassifications were preferentially to high risk (22/38). The AUC of

the expanded clinical model alone was 0.732, and the AUC for the gene expression

algorithm plus the full clinical model was 0.745 (p=0.089). For both clinical models overall,

when reclassification errors occurred they were more likely to the high risk category,

consistent with the gene expression algorithm having a higher negative predictive value than

positive predictive value at this threshold.

A comparison of myocardial perfusion imaging versus gene expression algorithm results

yielded a net reclassification improvement of 21% (p<0.001, Table 2C).

Discussion

This study prospectively validates in non-diabetic patients, clinically referred for invasive

angiography, a non-invasive test for obstructive CAD defined by QCA, that is based on gene

expression in circulating whole blood cells, age and gender. This study extends our previous

work on correlation of gene expression changes in blood with CAD (10) to prospective

validation of a classifier for non-diabetic patients with obstructive CAD by ROC analysis.
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The test yields a numeric score (0–40) with higher scores corresponding to higher likelihood

of obstructive CAD and higher maximum percent stenosis (Supplementary Figure 1).

The gene expression score increases classification accuracy by ROC analysis compared to

clinical factors (Diamond-Forrester), which has been challenging to achieve with genetic or

biomarker approaches, at least for cardiovascular event prognosis (19, 20). It has also been

suggested that reclassification of patient clinical risk or status, as captured by net

reclassification improvement, may be a more appropriate measure than comparative ROC

analysis for evaluating potential biomarkers (17, 18). The gene expression algorithm score

improves the accuracy of clinical CAD assessment as shown by a net reclassification

improvement of 20% relative to D–F score and 16% relative to an expanded clinical model

(Tables 2A,B). For the most prevalent non-invasive test, myocardial perfusion imaging, the

improvement was 21% (Table 2C), although these results are likely exaggerated in this

angiographically referred population. The contributions to the reclassification improvements

were 2%, 20%, and 6% from subjects without obstructive CAD and 18%, 1%, and 10% for

subjects with obstructive CAD for Diamond-Forrester, myocardial perfusion, and the

expanded clinical model, respectively. Overall, independent of imaging result or clinical risk

category, increasing gene expression score leads to monotonically increased obstructive

CAD risk. This is at least partially a reflection of the correlation of gene expression score

with the extent of CAD, as measured here by maximum percent stenosis.

This gene-expression test could have clinical advantages over current non-invasive CAD

diagnostic modalities since it requires only a standard venous blood draw, and no need for

radiation, intravenous contrast, or physiologic and pharmacologic stressors. In the validation

cohort, for example, only 37% of patients undergoing invasive angiography had obstructive

CAD and the rate was particularly low in women (26%). A similar overall rate of

obstructive CAD in an angiography registry for patients without prior known CAD was

recently reported, with little sensitivity to the exact definition of obstructive CAD (6). The

gene-expression test described here identified a low-likelihood (<20%) of obstructive CAD

in 33% of patients referred for invasive angiography, although the majority of these patients

were also at low risk by clinical factor analysis (Table 2A). After excluding low risk D–F

score patients, an additional 11% (56/525) were classified as low risk by the gene expression

algorithm. These patients had an observed risk of 23% as compared to 49% overall for the

D–F intermediate and high risks groups.

Relationship of the Gene Expression Algorithm to Prior Studies

The algorithm consists of two types of terms: sex-specific age functions of obstructive CAD

likelihood and gene expression terms that reflect changes in gene expression within a cell

type, changes in cell type proportions, or a combination of the two. The sex-specific

differences in cardiovascular risk and presentation are well known and largely reflect

reduced risk in pre-menopausal women (21, 22). The gene expression terms appear to reflect

an innate immune response, as illustrated by the preponderance of up-regulated genes

preferentially expressed in granulocytes/neutrophils and natural killer cells. This is at first

view surprising as the cell types most consistently found in atherosclerotic plaque are

monocytes and T-cells. However, roles for a variety of circulating cells and both innate and

adaptive immunity in atherosclerosis have been described (23, 24).

The significance of changes in specific cell-type distributions in whole blood with respect to

cardiovascular events has been investigated in both angiographically evaluated and post-PCI

populations, with neutrophil/lymphocyte ratio being the most significant predictor (25, 26).

Algorithm Term 2 consists of three genes expressed predominantly in granulocytes/

neutrophils (27, 28). In men term 2 is normalized to RPL28, one of the ribosomal proteins,

which are preferentially expressed in lymphocytes (27). Thus, this term reflects the
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neutrophil/lymphocyte ratio in men. In women, this term is normalized to genes highly

correlated with neutrophil count, rather than RPL28, consistent with reduced significance of

neutrophil count in predicting CAD in women (29). The common upregulated genes in term

2 (S100A8, S100A12, and CLEC4E) are highly correlated with the 11 gene signature we

described previously, including the most significant gene from that study, S100A12 (10).

Limitations

This study has a number of limitations. First, the gene expression changes observed likely

represent disease-correlated effects or disease-responsive effects, and not a causal role in

disease pathogenesis. These changes may reflect overall disease burden, the inflammatory

activity of the patient, or both, and not a specific level of stenosis.

From a clinical perspective the validation study patient population is limited to a non-

diabetic US-based population with chest pain or asymptomatic high-risk presentation who

have been referred for invasive angiography, and does not address test performance in low-

risk, asymptomatic individuals, patients with high risk unstable angina or acute MI or

diabetics. Further studies will be needed to refine the test negative predictive value, and to

examine directly test performance relative to non-invasive imaging modalities as the current

population of patients clinically referred for angiography likely over-estimates disease

prevalence. In particular, the present myocardial perfusion imaging comparisons are affected

by referral bias, especially for the negative patients. Thus, the clinical utility of the gene

expression algorithm will need additional validation in lower risk populations.

The maximum stenosis endpoint is anatomical rather than functional; correlation to

fractional flow reserve might be more informative. In addition, the influence of non-

coronary atherosclerosis on the test score has not been determined, although this is less

likely to have impact in a chest-pain population.

Finally, prognosis of future cardiac events has not been evaluated. While coronary

inflammation is widely accepted as a cause of plaque progression, rupture, and MI (30, 31),

a possible relationship between the test result and future events remains unexplored. It is

intriguing that some of the algorithm terms may reflect cell-type ratios that have been

implicated in major coronary event prediction (25, 32).

From a molecular and cellular perspective, defining disease risk from circulating blood cell

RNA levels and reported age and gender only partially reflects the molecular changes in

coronary atherosclerosis observable in blood. Analysis of protein or lipid biomarker levels,

secreted by smooth muscle, endothelial, and inflammatory cells in the diseased vessel wall,

or other sources of inflammatory markers (such as liver) might yield complementary

information (33). In addition, gene expression based measures of physiological rather than

chronological age may yield improved predictive information (34).

Conclusions

We describe the prospective multi-center validation of a peripheral blood-based gene

expression test to determine the likelihood of obstructive CAD in non-diabetic patients as

defined by invasive angiography. This test provides a statistically significant but modest

improvement in patient classification as compared to clinical factors and non-invasive

imaging as defined by patient CAD status. Further studies are needed to define the

performance characteristics and clinical utility in populations with lower pre-test probability.
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Figure 1.
Allocation of Patients from the PREDICT trial for algorithm development and validation.

From a total of 1569 subjects meeting the study inclusion/exclusion criteria 226 were used

for gene discovery. The remaining 1343 were divided into independent cohorts for algorithm

development (694) and validation (649) as shown; 94% of patients in these cohorts came

from the same centers. For algorithm development a total of 640 patient samples were used;

54 were excluded due to incomplete data (13), inadequate blood volume (19), sex mismatch

between experimental and clinical records (5), or statistical outlier assessment (17) (see

Supplement for details). For the validation cohort a total of 123 samples were excluded

based on: inadequate blood volume or RNA yield (43), significant contamination with

genomic DNA (78), or prespecified statistical outlier assessment (2).
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Figure 2.
Schematic of the Algorithm Structure and Genes. The algorithm consists of overlapping

gene expression functions for males and females with a sex-specific linear age function for

the former and a non-linear age function for the latter. For the gene expression components

shown 16/23 genes in 4 terms are gender independent: term 1 – neutrophil activation and

apoptosis, term 3 – NK cell activation to T cell ratio, term 4, B to T cell ratio, and term 5 –

expression of gene AF289562 normalized to the mean of TFCP2 and HNRPF. In addition,

Term 2 consists of 3 sex-independent neutrophil/innate immunity genes normalized in a sex-

specific way to neutrophil gene expression (AQP9,NCF4) for females and to RPL28

(lymphocytes) in males. The final male specific term is the normalized expression of

TSPAN16. The raw algorithm score is calculated from RT-PCR data as described

(Appendix 3); for clinical use, the raw score was converted to a 0–40 scale by linear

transformation.

Rosenberg et al. Page 14

Ann Intern Med. Author manuscript; available in PMC 2013 September 30.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.
ROC analysis of Validation Cohort Performance For Algorithm and Clinical Variables.

Algorithm performance adds to Clinical Factors by Diamond-Forrester. Comparison of the

combination of D–F score and algorithm score (heavy solid line) to D–F score alone (---) in

ROC analysis is shown. The AUC=0.50 line (light solid line) is shown for reference. A total

of 525 of the 526 validation cohort patients had information available to calculate D–F

scores. The AUCs for the two ROC curves are 0.721 ± 0.023 and 0.663 ±0.025, p = 0.003.
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Figure 4.
Dependence of Algorithm Score on % Maximum Stenosis in the Validation Cohort. The

extent of disease for each patient was quantified by QCA maximum % stenosis and grouped

into 5 categories: no measurable disease, 1–24%, 25–49% in ≥1 vessel, 1 vessel >50%, and

>1 vessel >50%. The average algorithm score for each group is illustrated; error bars

correspond to 95% confidence intervals. The complete relationship of algorithm score to

obstructive CAD likelihood is depicted in Supplementary Figure 1; in Figure 4 scores of 10,

20, and 30 correspond to 15, 30, and 57% disease likelihood. A score of 15, corresponding

to a 20% likelihood was used for dichotomous analyses as described in the text.
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