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Abstract: Specific features of the human body, such as fingerprint, iris, and face, are extensively used
in biometric authentication. Conversely, the internal structure and material features of the body
have not been explored extensively in biometrics. Bioacoustics technology is suitable for extracting
information about the internal structure and biological and material characteristics of the human
body. Herein, we report a biometric authentication method that enables multichannel bioacoustic
signal acquisition with a systematic approach to study the effects of selectively distilled frequency
features, increasing the number of sensing channels with respect to multiple fingers. The accuracy
of identity recognition according to the number of sensing channels and the number of selectively
chosen frequency features was evaluated using exhaustive combination searches and forward-feature
selection. The technique was applied to test the accuracy of machine learning classification using
5,232 datasets from 54 subjects. By optimizing the scanning frequency and sensing channels, our
method achieved an accuracy of 99.62%, which is comparable to existing biometric methods. Overall,
the proposed biometric method not only provides an unbreakable, inviolable biometric but also can
be applied anywhere in the body and can substantially broaden the use of biometrics by enabling
continuous identity recognition on various body parts for biometric identity authentication.

Keywords: acoustics; biometrics; anti-spoofing; access control; multisensor systems; spectral analysis;
human–machine interactions

1. Introduction

Biometrics is a technology that uses the physical and behavioral characteristics of
the human body to identify individuals and to give them access to systems [1]. Biometric
authentication verifies personal identities without requiring users to remember passwords
or carry physical objects. Physical objects mainly used in the field of traditional biometric
authentication include, for example, personal ID cards, magnetic cards, passports, and
keys. These physical entities must always be present to properly identify an individual,
and there is always a risk of theft or loss. Thus, biometrics can be used to increase user
convenience for cyber transactions, online and physical access, seamless interfacing with
internet-of-things (IoT) devices, and raise the levels of personal, corporate, and national
security [2]. Fingerprint, iris, and facial recognitions are most commonly used in biometrics,
as they provide physical characteristics that are unique to each individual. However, one
can make fake copies of these biometric markers for spoofing because they rely on the
structural features of the acquired image [3,4]. In particular, new fingerprints, faces, or
irises cannot be re-issued to users as new passwords can. Therefore, once a template is
stolen, it becomes a permanent threat for spoofing. Furthermore, stealing this template
is considered as a breach of customer or employee privacy and represents the improper
disclosure of sensitive information. Finger vein technology has been reported to have

Biosensors 2022, 12, 700. https://doi.org/10.3390/bios12090700 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12090700
https://doi.org/10.3390/bios12090700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-6237-0021
https://orcid.org/0000-0002-4115-1345
https://orcid.org/0000-0003-2737-4427
https://orcid.org/0000-0003-3779-7589
https://doi.org/10.3390/bios12090700
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12090700?type=check_update&version=2


Biosensors 2022, 12, 700 2 of 22

advantages over previous technologies, such as reduced risk of theft and inaccuracies
due to skin defects [5]. A. H. Mohsin et al. conducted a review of current technologies
in vein biometric authentication and referred that this technology is more resistant to
counterfeiting and duplication than other types of biometrics because it uses the geometric
information of blood vessels inside the skin [6]. Önsen Toygar et al. have also conducted
research on creating anti-counterfeiting multimodal authentication systems using three
biometric traits of vein: palmar, dorsal and wrist vein [7]. Another recent study introduced
a unique biometric recognition technique based on vein patterns on the back of the hand
obtained from thermal imaging using a vein identification system (VPID) [8]. However, it
has been reported in several studies that it is possible to attack the finger vein recognition
system using fake finger vein images. If a vein image captured by a near-infrared imaging
device is leaked, it can be printed and successfully used for spoofing attacks against
the vein recognition sensor [5,9]. To overcome these challenges, researchers have been
developing techniques to detect spoofing attacks, such as liveness detection [10], devising
new biometric modalities [11,12], and combining two or more biometric modalities to
increase the level of security [13,14].

Different people perceive varying frequencies of sound differently [15,16] because
the cochlear structures and biomaterial characteristics in the ear are different in different
people. This fact led us to explore and utilize the anatomical and biomechanical features of
the human body as identity recognition signatures to distinguish different people. The data
acquired by the bioacoustic measurement system are in spectral forms and exhibit different
features at each frequency. In this case, each frequency exhibits high local correlations
with nearby frequencies and decreasing local correlations with frequencies farther away.
Therefore, using every frequency feature can be inefficient. Certain frequency features
could act as noise, and redundant frequency data can lower the performance because
of the curse of dimensionality [17,18]. For this reason, feature selection is essential for
optimizing frequency–domain bioacoustic systems. In addition, selecting a subset of
relevant features through feature selection can achieve a faster operation time as well as
enhanced generalization by reducing overfitting.

In this work, to achieve an accuracy comparable to that of state-of-the-art fingerprint
and iris biometrics, we designed a multichannel identity authentication system based on
bioacoustic spectroscopy and evaluated how the accuracy changes as a function of the
number of sensing channels. In addition to the number of receiving channels, we investi-
gated individual frequency features by comparing the performances at different numbers
of selected frequencies to the performance obtained using the full-frequency spectra in
conjunction with the use of forward-feature selection and an exhaustive combination search.
The performance of a convolutional neural network (CNN) algorithm that automatically
extracts hierarchical features is compared with those achieved by other machine learning
algorithms based on feature selection.

Our previous study reported the feasibility of bioacoustics as a biometrics technology
using a single bioacoustic finger channel [19]. The performance, however, was insufficient
(accuracy, 95.89% and operation speed, 15 s) compared with the long-established biomet-
rics such as fingerprint, iris, etc. Commercial biometric authentication systems perform
authentication in just a few seconds [20] and are highly accurate in the case of fingerprints
(less than 1% of EER [21]). Therefore, we performed this study with the goal of achieving
high accuracy and fast recognition speed comparable to commercial biometric recognition
system. Furthermore, we provide guidance of the system design trade-off for application
to various practical acoustic biometric authentication fields.

2. Related Work
2.1. Liveness Detection Techniques

Liveness detection techniques that have been implemented include time-series analy-
sis [22], material properties analysis [23], data-driven machine learning [24,25], and optical
reflection analysis [26,27]. However, these methods are still at risk of spoofing because these
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characteristics can be mimicked [4]. In addition, studies have been conducted to simulta-
neously perform both liveness detection and identification using electroencephalograms
(EEGs), electrocardiograms (ECGs), and bioimpedance signal patterns [28–31] that can even
overcome the limitations of the image-based features of fingerprints or iris. The liveness
detection methods based on EEG and ECG are useful because it is difficult to reproduce
these signals and make fake copies. However, these methods are not robust enough for
independent identification because the signals can change depending on the emotional
or physiological states of the user [32]. Our proposed method tackles this problem by
extracting the internal anatomical and structural information of the human body, which is
more robust against changes of the physiological and emotional states.

2.2. Acoustic System Identification and Imaging

Similar to structural system identification and ultrasound imaging methods, bioacous-
tics has been applied to the human body to extract and distinguish a subject’s dynamic
frequency response. Our previously reported study used a single bioacoustic finger channel
by employing a transducer and an adjacent sensor to measure the transmitted bioacoustic
signals that reflected the anatomical and biomaterial properties of the human body. How-
ever, this identity recognition method was less accurate than state-of-the-art fingerprint and
iris recognition systems [21]. Nevertheless, there is a potential to increase the accuracy of
bioacoustics by acquiring more information from additional channels at different locations
on the body for both recognition and liveness detection.

2.3. Bioacoustics for Biomechanical Characterization

In this regard, bioacoustics is an ideal method for obtaining the biomechanical charac-
teristics of the human body. For instance, the sound from touching or tapping the skin of
the hand and arm has been used as a gesture input for interacting with smart wearable de-
vices [33–35] that are equipped with ultrasound transducers or accelerometers. In addition,
breathing sounds [36] and shared secret knocks [37] have been employed to demonstrate
user authentication. Bioacoustic sensing has also been used to detect the grasping of objects
based on the sound generated by the touched object and propagated through the hand
and arm [38]. Structural system identification [19] is a technology that is closely related
to the employment of acoustic signals for detecting the internal structural and material
characteristics of structures. This method is used to noninvasively monitor structures and
detect damage by precisely acquiring and analyzing the vibration modes and dynamic
frequency response of the mechanical structure and by detecting changes caused by internal
structural defects and aging [39,40]. Ultrasound imaging is another representative example
that demonstrates the use of acoustic signals to analyze the internal structural features of
the body. Ultrasound imaging extracts the structural information of the internal organs by
analyzing the echo signals reflected back to the transducer [41].

3. Multichannel Bioacoustic Identity Authentication
3.1. Multichannel Bioacoustic Identity Authentication System

The human body can be considered a musical instrument that has a unique shape and
material composition [42,43]. The proposed method evaluates these human body traits by
vibrating a body part, specifically the hand, and listening to the propagating sound as the
excitation frequency is altered. Conventional biometrics compares the structural similarities
between the acquired images (Figure 1a), whereas the proposed biometric authentication
method uses the internal characteristics of the body and extracts the information in the
frequency domain that creates a new higher level of biometric security. Assuming the
existence of a system that consists of numerous masses, springs, and dampers (Figure 1b),
the proposed method applies specific vibrations to these mass–spring–damper systems
to extract their bioacoustic transmittance characteristics and uses these characteristics to
distinguish people. For example, as shown in Figure 1b) (finger cross-section v–v’), each
bone corresponds to an object that transmits vibrations that contribute to the dynamic
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response, as do all the joints that connect the bones and other tendons and ligaments
surrounding the hand. As shown in the cross-section w–w’ of Figure 1b, each bone is
surrounded by fatty tissues, muscle, and skin that act as dampers that determine the
dynamic response characteristics.
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Figure 1. Conceptual diagram of the bioacoustics-based identity authentication approach. (a) Conven-
tional biometrics comparing structural similarities between acquired images. (b) Proposed biometric
authentication method using characteristics inside the body.

As shown in Figure 2a, the proposed system utilizes a transducer (3W, Sparkfun Inc.,
Niwot, CO, USA) to generate a vibration and five sensing microphones (SPU0410LR5H,
Knowles, IL, USA) to receive signals simultaneously. Waveform generation and frequency
selection are performed by a waveform generator (AD9833, Analog Devices, MA, USA).
The AD9833 is a low-power, programmable waveform generator capable of producing
sine wave outputs. The excitation frequency can be modulated by software programming
and can be easily tuned without external components. The generator operates by 3-wire
serial peripheral interface (SPI) communication with the MCU. Specifically, a frequency
selection command is sent from the computer to a microcontroller unit (MCU, Arduino
Nano, Italy), and the required frequency is sent to AD9833 via SPI. The generated waveform
controls the bone conduction transducer via a transducer driver. The transmitted signal
is simultaneously received by each microphone through an independent phase-sensitive
lock-in amplifier configured with an analog demodulator (AD630, Analog Devices) and
a low-pass filter. Lock-in amplifiers can sensitively extract signals of interest, even in the
presence of significant noise [44].
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Figure 2. Design of the multichannel bioacoustic identity authentication system. (a) Schematic of the
acoustic-spectra-based identity authentication system. The acquired data were transmitted to the
user identification module. * Classifiers of choice in our proposed system were Random Forest (RF),
kNN (k Nearest Neighbor), LDA (Linear Discriminant Analysis), SVM (Support Vector Machine),
and CNN (Convolutional Neural Network). (b) Photo of the system simultaneously measuring finger
acoustic-transmitted spectra from five microphones by placing the hand of the subject on the platform.
(c) The shape of the acoustic impedance spectrum applied to a finger through a bone conduction
transducer. (d) The difference in the signal received from the microphone depending on whether the
transducer is in contact with the hand.

Therefore, to extract a signal corresponding to a specific frequency from the region
of interest, a homodyne detector composed of a modulator and a demodulator followed
by low-pass filters with a cut-off frequency of 20 Hz, which is sufficient to reject the AC
signal from the excitation, is used as shown in Figure 2, varying the excitation frequency
for phase-sensitive detection. The dc level of the output (obtained by low pass filtering) is
proportional to the amplitude of the excitation signal and the phase difference between the
signal received by the sensor. Therefore, the better the signal transmission at a specific fre-
quency, the larger the output signal. Then, the output signal is analog-to-digital converted
(ADC) with a sample frequency of 18.8 Hz by the MCU and then sent to the computer.
This is achieved via a custom-built code in MATLAB (R2019b, MathWorks, Natick, MA,
USA) that also stores the data. The data acquisition unit was controlled by communication
between MCU and a computer and interfaced with a user identification module. The
computational module was comprised of user interface, data storage, and classification
algorithm. The classification models were trained and tested to distinguish one from the
others in closed-set scenarios. Figure 2b shows a photo of the system in use, and the insets
show the microphones and a vibrational transducer. One of the advantages of this configu-
ration is that the transducer can simultaneously emit signals to multiple sensors, that is, the
single-input–multi-output configuration is possible [45,46]. In the current configuration,
the addition of a sensing channel allows the simultaneous acquisition of various patterns
of signals without weakening the signal strength. Additionally, each channel is equipped
with an independent frequency demodulator that selectively extracts and stores the signal
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at each frequency, thereby minimizing external noise and improving reproducibility. A
thimble design in the measurement setup shown in Figure 2b minimizes changes in finger
positioning for every measurement, thus improving reproducibility. Figure 2c,d shows
transmitted and received signals with and without a hand on the system, respectively.
The microphone is covered with a polydimethylsiloxane (PDMS) layer as an impedance
matching layer to achieve a large signal-to-noise ratio. Supplementary Figure S1 in the
Supplementary Materials shows that the signal received by a microphone covered with
an impedance matching layer is increased almost ten times compared with an uncovered
microphone. The experiment was conducted by modulating the frequency from 200 Hz to
3 kHz at 20 Hz intervals. Therefore, in total, 141 acoustic impedance values were obtained
for each finger, and 705 feature vectors were used directly as inputs to the classifier algo-
rithms. Fifty-four human subjects underwent clinical trials. The subjects participated in
three to five independent sessions over 4 months and provided 20 measurements per day.
The measurement data were used to evaluate the identification performance of bioacoustic
spectroscopy. To characterize the acoustic spectrum of different fingers, all of the five
fingers (thumb, index, middle, ring, and little) were tested simultaneously. For each finger
measurement, five sensors were placed on the center of each fingertip. The transducer was
positioned between the palm and carpal bones near the wrist (Figure 2b), allowing the
signal to be transmitted from the transducer to each of the five sensors through each finger
bone. The transmitted acoustic signal contains anatomical information about the fingers
(bone, cartilage, tendon, and muscle tissues) and relies on their geometries as well as their
biomaterials and biomechanical properties [47,48]. Principal component analysis (PCA) of
the acoustic spectrum of each finger was conducted using MATLAB.

3.2. Multichannel Biodynamic Response

The differences in the shape, length, and the anatomical structure of each finger are
expected to produce different acoustic transmission characteristics for each finger. The
acoustic transmission spectra of each finger (thumb, index, middle, ring, and little) were
measured, and various discriminative machine learning models were tested to verify if
the acoustic spectrum for each finger is distinguishable. The acoustic transmitted signal
was acquired for one subject 20 times per day, and data were collected on three indepen-
dent days. The measured signals of each finger varied considerably with frequency, as
shown in Figure 3a, and because the magnitude and slope of the signals for each finger
were different, fingers could be visually distinguished using the spectra. PCA [49] was
conducted on the acquired data from all five fingers to visualize the distinguishability of
the acoustic transmission signal from each finger. The first three principal components of
the spectra are displayed in Figure 3b and are clearly grouped for each finger, thus enabling
finger classification. To classify the five fingers, discriminative classification models were
utilized. Multiple machine learning algorithms of k-nearest neighbor (kNN), linear support
vector machine (SVM), random forest (RF), and linear discriminant analysis (LDA) in
Figure 3c were tested because these machine learning models were previously reported as
baseline models [19].
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Figure 3. Acoustic spectral variations and classifications between fingers. (a) Acoustic spectra
of each finger (thumb, index, middle, ring, and little) of a subject. The error bars in the figure
indicate the relative standard deviation. (b) Scatter plot of the first three principal components of the
acoustic spectra for each finger from principal component analysis (PCA). (c) Comparison of finger
classification accuracy from four different classifiers.

The experimental results indicate that the discernible spectral differences between
the fingers can be used as biometric features. This result agrees with that of a previously
reported bioacoustics identity recognition system. Note that the measurement of each finger
channel was implemented simultaneously in contrast with the previous work, wherein the
measurement was repeated by changing the finger on the same device. For visualization
purposes, the graph is plotted from 200 Hz to 1 kHz, and the full-spectral pattern (200 Hz
to 3 kHz) is shown in Supplementary Figure S2.

3.3. Interpersonal Variation of Multichannel Biodynamic Response

In order to test the interpersonal variation of the acoustic signal transmission char-
acteristics for each finger channel, the acoustic transmitted signal was acquired for five
subject 20 times per day, and data were collected on three independent days. The signals
from each finger channel were recorded from five subjects to determine the differences
in the signal transmission characteristics of each person. Acoustic transmittance data for
each finger channel are shown in Figure 4a and Supplementary Figure S3 (full-spectral
pattern from 200 Hz to 3 kHz). For each finger channel, spectral pattern data from all five
subjects exhibit differences in both the slope and magnitude. The spectra from each subject
have unique patterns and slopes characteristic for each finger channel that show clear
differences among subjects. Similar patterns can be observed in certain finger channels and
frequencies among different subjects, but each subject is clearly different in another channel
and frequency that can eventually increase the accuracy of interpersonal classification. For
instance, the trends in the frequency range at around 400 Hz measured from the middle
fingers of subjects 3 and 4 appear to be similar but are very clearly distinguished in other
finger channels (e.g., thumb and ring fingers). To visualize the distinguishability of the
acoustic spectra from each subject, PCA was conducted on the data obtained from five
different subjects using merged channel data from each of the subjects’ five fingers, and
the first three principal components of the spectra are displayed in Figure 4b. The acoustic
spectrum for each subject is distinctly clustered, proving the clear distinguishability of
different subjects. To verify the temporal stability of the acoustic transmission signal, the
finger acoustic spectra of the five participants were acquired on three different days at
two-week intervals.



Biosensors 2022, 12, 700 8 of 22

Biosensors 2022, 12, 700 7 of 22 
 

The experimental results indicate that the discernible spectral differences between 
the fingers can be used as biometric features. This result agrees with that of a previously 
reported bioacoustics identity recognition system. Note that the measurement of each fin-
ger channel was implemented simultaneously in contrast with the previous work, 
wherein the measurement was repeated by changing the finger on the same device. For 
visualization purposes, the graph is plotted from 200 Hz to 1 kHz, and the full-spectral 
pattern (200 Hz to 3 kHz) is shown in Supplementary Figure S2. 

3.3. Interpersonal Variation of Multichannel Biodynamic Response 
In order to test the interpersonal variation of the acoustic signal transmission charac-

teristics for each finger channel, the acoustic transmitted signal was acquired for five sub-
ject 20 times per day, and data were collected on three independent days. The signals from 
each finger channel were recorded from five subjects to determine the differences in the 
signal transmission characteristics of each person. Acoustic transmittance data for each 
finger channel are shown in Figure 4a and Supplementary Figure S3 (full-spectral pattern 
from 200 Hz to 3 kHz). For each finger channel, spectral pattern data from all five subjects 
exhibit differences in both the slope and magnitude. The spectra from each subject have 
unique patterns and slopes characteristic for each finger channel that show clear differ-
ences among subjects. Similar patterns can be observed in certain finger channels and fre-
quencies among different subjects, but each subject is clearly different in another channel 
and frequency that can eventually increase the accuracy of interpersonal classification. For 
instance, the trends in the frequency range at around 400 Hz measured from the middle 
fingers of subjects 3 and 4 appear to be similar but are very clearly distinguished in other 
finger channels (e.g., thumb and ring fingers). To visualize the distinguishability of the 
acoustic spectra from each subject, PCA was conducted on the data obtained from five 
different subjects using merged channel data from each of the subjects’ five fingers, and 
the first three principal components of the spectra are displayed in Figure 4b. The acoustic 
spectrum for each subject is distinctly clustered, proving the clear distinguishability of 
different subjects. To verify the temporal stability of the acoustic transmission signal, the 
finger acoustic spectra of the five participants were acquired on three different days at 
two-week intervals. 

 
Figure 4. Interpersonal discernibility of multichannel bioacoustics signals. (a) Finger acoustic spec-
tra from five individual subjects used to assess interpersonal variation. The error bars in the figure 
indicate the relative standard deviation. (b) Scatter plot of the first three principal components of 
the acoustic spectra for five subjects from PCA. 

Figure 4. Interpersonal discernibility of multichannel bioacoustics signals. (a) Finger acoustic spectra
from five individual subjects used to assess interpersonal variation. The error bars in the figure
indicate the relative standard deviation. (b) Scatter plot of the first three principal components of the
acoustic spectra for five subjects from PCA.

3.4. Temporal Changes of Multichannel Biodynamic Response

As shown in Figure 5a, the interpersonal differences of the finger acoustic transmis-
sion spectra were larger than the four-week temporal changes (i.e., after two two-week
intervals). The intensity images for the bioacoustic signal are shown in Figure 5b, wherein
different channels are concatenated across the width of the two-dimensional image to
qualitatively visualize the intrapersonal similarities and differences. The measured spec-
tra of the subjects had different morphological shapes, patterns, and slopes, and varied
considerably depending on frequency. These results imply that the acoustic transmission
signals provide interpersonal differences as well as excellent temporal stability. Thus,
the acoustic transmission spectrum has promising potential as a biometric trait and can
provide excellent permanence and uniqueness. In the case of iris recognition, Das et al. [50]
and Johnson et al. [51] performed longitudinal studies for up to 1.5 years and 3 years,
respectively, and found that a statistically significant loss of accuracy occurred in a period
of 3 years, but it was not at a level that prevented practical use. In the case of face recog-
nition, it is known that it causes a greater reduction in accuracy than iris. For instance,
Deb et al. [52] reported that the true acceptance rate at 0.1% false acceptance rate decreased
from 81.94% to 49.33% when the interval was extended from one year to three years for
children. In our previous study [19], we evaluated the permanence of the bioacoustics
features of a finger over two months and found that the features maintained at least over
two months. In this present work, we assessed the discriminative power over four months
and found that the features of each finger were preserved and still discriminative among
subjects. Since our methods were evaluated from 2 months to 4 months, it is necessary to
additionally conduct longer longitudinal studies in future work to evaluate characteristic
changes over several years as such existing longitudinal studies on face and iris recognition.



Biosensors 2022, 12, 700 9 of 22Biosensors 2022, 12, 700 9 of 22 
 

 
Figure 5. Temporal variation in each finger acoustic spectra in five subjects for three days. (a) The 
acoustic spectra of the fingers were measured at two-week intervals. (b) Two-dimensional image 
intensity of five-finger channel acoustic spectra of five subjects for three days. 

Figure 5. Temporal variation in each finger acoustic spectra in five subjects for three days.
(a) The acoustic spectra of the fingers were measured at two-week intervals. (b) Two-dimensional
image intensity of five-finger channel acoustic spectra of five subjects for three days.
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4. Biometric Authentication Using Multichannel Bioacoustic Signals
4.1. Machine Learning Algorithms

For the performance evaluations, several classifiers (RF, kNN, LDA, and SVM) were
configured in MATLAB with an error-correcting output code [19]. The kNN classifier that
yielded the highest accuracy in our other previous study [31] was also tested. The kNN
classifier estimates the class label of a new observation by using the majority class of the
k-nearest neighbors [31]. The nearest neighbor number was set to 1 after a parametric
search from 1 to 20, and the Euclidean distance metric was used. The SVM was also tested,
the second polynomial kernel function was used, and the tuning parameter was set to
1.0 [53]. The RF consisted of 705 trees, and the Gini diversity index was used. Other features
were set to the default setting, and LDA was configured using the default settings. Using
the threshold values of the latent variables of the classifier, the measured spectral data
were assigned a subject class only when the data had a posterior probability larger than
the threshold. The performance of each discriminant model can be evaluated based on
closed-set identification so that it can assign a given observation to the certain class with
the highest latent variable that can distinguish it from others. If the feature vectors obtained
from biometrics do not give a sufficient probability, the system should be able to reject it.
Using the classifier’s latent threshold, the measured data was assigned to a class only if
the posterior probability is larger than the threshold. In addition, the sensitivity (1–false
acceptance rate, FAR) and specificity (1–false rejection rate) were assessed by changing
the thresholds of posterior probabilities. Then, AUC and EER were also obtained and
evaluated from the receiver operating characteristic (ROC) curve. To verify the classification
accuracy, each classifier was evaluated using five-fold cross-validation on 5232 datasets
from 54 subjects. The data from one subject on the same date tend to be more similar than
data measured on another date. The effects of the measurement environmental factors
such as posture, temperature, and humidity may vary from day to day. Thus, if the data
measured on the same date are included in both the train-set and the test-set, the test data
become easier to predict. However, in reality, we should predict data on a day different
from the measurement date of the data used in the model. Therefore, to mutually exclude
each subject’s data measured on the same date, each subject’s data were divided into five
groups by indexing data from 1 to 5 according to the measurement date. Through this
process, the original dataset was partitioned into five almost equal-sized subgroups, and
five-fold cross-validation was performed on each group of data.

4.2. Biometric Authentication with Increasing Finger Channels

To investigate the effect of finger channel selection on performance, the accuracy of
each possible finger channel combination was compared using the classification models.
The highest classification accuracy of 99.08% was achieved with the RF classifier, and all
models yielded accuracies > 90% as shown in Figure 6. To compare the identity recognition
performance of different numbers of finger channels, the accuracy corresponding to each
channel combination was evaluated using the mean and standard deviation, as shown
in Figure 6a. The classification performance using the RF classifier showed an average
performance of 92.61%, even if only two finger channels were used. The accuracy initially
increased from 79.17% to 92.61% as the number of channels increased from one to two, and
it further increased to 96.72%, 98.26%, and 99.08% for three, four, and five channels, respec-
tively. Overall, the multichannel bioacoustic identity authentication system increased the
classification accuracy of 54 subjects from 79.17% to 99.08% and reduced the classification
error rate from 20.83% to 0.92% (a factor of 22). Notably, the increase in the classification
accuracy decelerated as the number of finger channels increased. This trend indicates that
there is a trade-off between the additions of more channels and the increase in accuracy.
Figure 6b shows the accuracy of each finger channel combination in the RF model that
achieved the highest accuracy among the four classifier models. We assigned numbers 1
to 5 from the thumb to the little finger (in this order), and these numbers were marked on
each bar to indicate the combined finger channels. As expected, the accuracy gradually
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increased with an increasing number of finger channels. This emphasizes the trade-off
between system complexity, i.e., the number of channels used and accuracy.
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according to finger channel combination.

Moreover, different channel combinations with the same number of fingers yielded
mostly similar performances, thus indicating that the accuracy of the system is independent
of the selected fingers. The detailed results of Figure 6a,b are shown in Supplementary
Tables S1 and S2, respectively.

4.3. Frequency Feature Selection

In addition to the comparison of the accuracy of the finger channel combinations,
the changes in accuracy for different acoustic frequency selections were also analyzed.
The measurement frequency ranged from 0.2 kHz to 3 kHz in all 54 subjects. This range
was divided into ten frequency sections, and the classification accuracies with all possible
combinations of frequency sections were evaluated by selecting three out of ten sections
(i.e., 120 combinations). The accuracy of each selected frequency combination is shown as
an intensity image map in Figure 7a, wherein higher accuracy combinations are presented
at the upper position of the intensity map, whereas unselected frequencies are marked in
blue. The combination of the three selected frequency sections of 0.2–0.3 kHz, 2.1–2.4 kHz
and 2.7–3.0 kHz resulted in the highest classification accuracy of 98.93% as located at the
top of the intensity map. This row-wise sequential rank of classification accuracies in
Figure 7a suggests that simultaneously selecting the low- and high-frequency sections
is advantageous for achieving a higher accuracy. The middle-frequency ranges were
related to increased accuracy to a lower extent compared with the low- and high-frequency
sections. This result indicates that the frequencies’ regions below 0.6 kHz and above
1.8 kHz are salient regions for classification. To illustrate the relative importance of the
frequency sections to the classification accuracy when using three frequency sections, we
evaluated the average classification accuracy of the predictions from all combination cases
(Figure 7b). As expected, the mean accuracy based on the frequency sections from 0.6
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to 1.2 kHz decreased before they increased from 1.2 to 3 kHz. The forward-selection
method was used to test how the increase in the number of selected frequencies affects the
classification accuracy [54]. This method increases the number of frequencies one-by-one
by selecting the frequency that has the most distinctive performance from 141 measured
frequencies (Figure 7c). The detailed performance values of Figure 7b,c are represented
in Supplementary Tables S3 and S4, respectively. Remarkably, the highest accuracy was
achieved by using only one-third of the frequency range.
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Figure 7. Identity recognition feature optimization using selective frequency scan. (a) The accuracy
of each selected frequency combination. The more accurate combination is located at higher positions
in the image, and lighter yellow indicates higher accuracy. (b) Average classification accuracy of each
frequency sections in all combinations. (c) Classification accuracy with the increasing number of
frequencies using the forward-selection method.

The accuracy exceeded 90% when five frequencies were included, and the accuracy
using 15 frequencies was almost the same as that of using all 141 frequencies. The highest
performance of 99.62% was achieved when 47 to 83 frequencies were selected (except the
99.54% accuracy when 71 were frequencies selected), which was higher than that when
all frequencies were used. Specifically, in addition to the RF method, the other classifiers
(kNN, LDA, and SVM) also performed best when 47 selected frequency features were used
compared with the case at which other numbers of frequencies were used (Table 1). Using
the frequency optimization method and including only 47 frequency features reduces the
measurement time by one third, requiring only 2.5 s. These results indicate that selecting
the appropriate frequencies can reliably increase system performance. Accordingly, the use
of a small subset of the spectrum can reduce the acquisition time while also outperforming
the full-frequency scan.

Table 1. Accuracy, EER, and AUC of Discriminative Classification Models According to Four Different
Numbers of Frequencies.

Classifier

Fn* Accuracy [%] EER [%] AUC

5 15 47 141 5 15 47 141 5 15 47 141
RF 92.28 98.55 99.62 99.08 1.7584 0.4479 0.0887 0.2423 0.9975 0.9993 0.9996 0.9998

kNN 87.54 92.20 93.43 92.20 3.9755 2.6758 2.4465 2.9052 0.9930 0.9963 0.9967 0.9957
LDA 93.35 98.78 99.24 96.64 1.5291 0.3823 0.2135 0.6203 0.9986 0.9996 0.9997 0.9994
SVM 85.17 93.20 94.57 93.27 4.5107 2.8901 2.7501 2.5828 0.9908 0.9955 0.9959 0.9956

SB-CNN 88.99 96.18 98.17 99.08 2.5871 0.7645 0.3109 0.3058 0.9974 0.9997 0.9997 0.9999

Fn*: The number of frequencies.
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4.4. Deep Learning Implementation of Multichannel Bioacoustic Identity Authentication

To analyze the predictions for acoustic signal classification based on frequency selec-
tion, we applied a modified CNN algorithm proposed by Salamon and Bello (SB-CNN) [55].
Deep CNN is a multilayered architecture that creates categories by progressively learning
higher-level features on a layer-by-layer basis [56]. A CNN is a type of artificial neural
network that is usually designed to extract features and classify high-dimensional data [57].
A typical CNN includes an input and an output layer, as well as the number of convo-
lutional and subsampling layers optionally followed by fully connected layers [58]. The
SB-CNN has three convolutional layers, two max-pooling layers, and two fully connected
layers. The CNN is specifically designed for 2D time–frequency patch data. In our study,
the transmitted acoustic signals of each channel were one-dimensional vector signals of
each finger that consisted of 141 samples, and the five-finger channel data were reshaped
into 2D (141 × 5) inputs. Figure 8 illustrates the detailed architecture of the modified
SB-CNN with the reshaped input shape. The first two convolutional layers were followed
by max-pooling with a stride size equal to the pooling dimensions, reducing the dimension
of the spatial maps. The model was trained on 2000 epochs with an Adam optimizer [59],
a constant learning rate of 0.0001, a mini-batch size of 128, and a dropout of probability
0.5 between dense layers [60]. We thus performed CNN training on these four cases with
selected frequencies of 5, 15, 47, and 141. The detailed input data for the altered number of
frequencies of the CNN are in Supplementary Figure S4. The ROC curves for the classifier
models for each case of selected frequencies are shown in Figure 9. LDA and RF classifiers
outperformed kNN and SVM in all frequency selection cases.
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When fewer frequencies were selected, SB-CNN demonstrated relatively poorer perfor-
mance than other machine learning models. However, as more frequencies were selected,
the accuracy increased to values that were almost equal to that of the RF classifier. In
the RF model, the highest accuracy was obtained when 47 frequencies were selected by
forward selection, whereas in the CNN model, as the number of frequencies used increased,
the accuracy increased. We speculate that the main reason for these results is that deep-
learning-based networks incrementally learn complex and abstract, hierarchical high-level
features from data as opposed to machine learning models that require manual feature
extraction [61]. Nevertheless, the accuracy of the RF classifier with 47 forward-selected
frequencies was 99.62% (the highest overall). The accuracy, EER, and AUC for the tested
classifiers are listed in Table 1.
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Figure 9. ROC of the acoustic spectra for five classifiers of RF, kNN, LDA, SVM, and SB-CNN for
each number of frequencies.

When 47 optimal frequencies were selected, the RF model achieved the highest classifi-
cation accuracy of 99.62% and the lowest EER of 0.0887%, whereas when all 141 frequencies
were used, the SB-CNN classifier produced a better AUC value. The SB-CNN has an
output layer composed of 54 soft-max nodes corresponding to the subjects enrolled in
the dataset, which performs closed-set identification. For closed-set identification, the
cumulative matching characteristic (CMC) curve is commonly used [62–65]. Whereas the
ROC curve represents the quality of a 1:1 matcher, the CMC curve judges the ranking
capabilities of the identification system [66]. Therefore, we further validated our system
using the CMC curve to clearly evaluate the performance of closed-set identification. The
CMC curves for the classifier models for each case of selected frequencies are shown in
Figure 10a. The horizontal axis represents the number of top ranks considered, and the
vertical axis represents the probability of the correct identity within the considered top
ranks. The identification rate is an estimate of the probability that the subject is correctly
identified, at least at rank-k. Test data is given rank-k when the actual subject is ranked
in position k by the identification system. The area above the CMC curve effected by the
number of subjects is considered as a percentage of the total number of subjects. Figure 10b
shows the confusion matrix of 54 subjects in the RF model in which 47 forward-selected
frequencies were used as input features. The blue boxes represent accurate predictions with
the increasing color intensity representing higher accuracy, while the red boxes represent
false predictions. Most of the predictions are located in the blue-colored diagonal matrix.
As shown in Figure 10a, the curves depended on the number of the selected frequency
as well as the classification models. The biometric features that showed better results in
ROC produced a lower area above the CMC curve. For example, when the number of
frequencies is 5, the LDA model shows the best performance in the ROC and is also the
closest to the upper left corner in the CMC curve. In addition, when 47 frequencies are
selected, the RF model, which shows the best performance in the ROC curve, also has the
highest identification rate for all ranks in the CMC curve. The results show that the ROC
curve and CMC curve are highly correlated as performance indicators.
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4.5. Computational Time for Classifiers

Our machine learning models’ training took 2.11 s for RF, 0.10 s for kNN, 0.26 s for
LDA, and 17.41 s for SVM, which took the longest time for training among machine learning
models. In the SB-CNN, it took 1.23 s for 1 epoch training, and the total training time of
2000 epochs was 41 min. SB-CNN required longer training time to achieve optimal perfor-
mance compared with machine learning models. However, in the case of machine learning,
for feature optimization, preprocessing such as frequency selection may be necessary to
improve performance, which may take additional time. However, since training in deep
learning models such as CNN automatically learns well-distilled features, better models
can be trained without additional preprocessing. The prediction time listed in Table 2
shows how fast each classifier can process input data and yield authentication results.

Table 2. Processing Time of Train and Prediction for Each Classifier.

Classifier
Processing Time

Training (s) Prediction (ms)

RF 2.1114 40.54
kNN 0.1028 2.34
LDA 0.2623 24.60
SVM 17.4162 212.16

SB-CNN 2460 (41 min)/2000 epoch 0.16

It is crucial that the model has a short enough prediction time in order to perform
real-time authentication. The time required for prediction in each classification model was
all within 212 ms, and the shortest prediction time (0.16 ms) was required in the deep
learning model, SB-CNN.

4.6. Scalability Analysis

Although the accuracy obtained by our proposed system was comparable to state-
of-the-art biometric technologies, we further investigated the scalability of our system to
larger population. We analyzed the variation in classification accuracy with changes in
the number of subjects and obtained an accuracy prediction curve based on experimental
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data. We changed the number of subjects by five intervals, and each dataset was randomly
selected from a total of 54 subjects. Each classification accuracy was extracted using the RF
model from each selected dataset.

These processes were repeated 10 times to extract average accuracy and standard
deviation. In existing biometric authentication methods, performance may decrease linearly
as the number of users increases [67,68], or the rate of decrease in performance can be
decelerated non-linearly [69]. As shown in Figure 11, the results of the analysis were
presented as boxplots, and the accuracy was shown to decrease as the number of selected
subjects increased. We note that the decrease in the classification accuracy was decelerated
with the increasing number of subjects. The slowdown of the accuracy degeneration led
us to assume that the accuracy prediction curve as the number of subjects increased is
non-linear and can be extrapolated by fitting a log-scale exponential function to the data.
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b, and c, respectively.

As shown in the change in the slope of the prediction curve, the curve converged to
98.96%, and these results provide evidence that our system has the potential to provide
the accuracy to be used for a practical biometric authentication application for over thou-
sands of individuals. To support further, we additionally analyzed the variation in signal
amplitude for each frequency for intra-class versus inter-classes in order to statistically
compare the effect of each acoustic spectrum, as shown in Supplementary Figure S5a.
Intra-class variability was expressed as the mean and standard deviation of all subjects
after calculating the standard deviation for each frequency of the data within each class. In
the case of inter-class variability, the signal amplitude within each class was averaged for
each frequency, and the mean and standard deviation were calculated for all classes. To
investigate statistical differences between classes, we divided the inter-class variation by
the intra-class variation to obtain a quantitative pattern for each frequency, which is shown
in Supplementary Figure S5b. The largest difference between classes is in the low-frequency
region, followed by a slightly higher inter-class difference in the high-frequency than in
the mid-frequency region, which is highly correlated with the results shown in Figure 7.
In future work, we will validate our method on a large population to provide direct evi-
dence that the method can perform on a large-scale with accuracy as high as conventional
biometrics (e.g., face, fingerprints, or iris recognition).
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5. Discussion

In order to improve the accuracy as much as state-of-the-art biometrics, we performed
optimization to derive various feature combinations through finger channel increase and
frequency combination search. By increasing the finger channels, we converted multi-
channel signals into 2D images, compared them visually, and performed 2D CNN analysis
to evaluate and compare performance. In addition, all the accuracies of each combination
of finger channels and spectral features were evaluated and compared. We also found
that frequency selection optimization not only increased the efficiency of learning and
authentication speed but also improved accuracy. Compared with using all frequency
features that resulted in an accuracy of 99.08%, the highest accuracy was 99.62% when
47 frequencies (1/3 of the original features) were selected. Our work improved the accuracy
of previously reported methods [19] from 95.89% (41 subjects) to 99.62% (54 subjects) and
EER from 1.08% to 0.089%. Our proposed method provides promising results comparable
to state-of-the-art biometrics approaches.

Our approach holds considerable potential as it analyzes the internal mechanical
properties of the fingers and hands. The anatomical constituents of the fingers and hands
include numerous cells and muscles, fat, ligaments and cartilage, and multiple layers of
tissues, and thus a model of tremendous complexity is required to explain those constituents.
In particular, the 3D location-specific signal mapping results of the fingers and hands in
our previous study suggest that the anatomical features are reflected, especially for the
bones and joints [19]. Based on these data, it can be expected that the obtained features will
have permanence under the assumption that the anatomical features, including the bones
of our hands, do not change significantly over a certain period.

Another key aspect of our work is that we suggest a method to increase the overall
operation speed in comparison with our previous study. Compared with the previous study,
we optimized the hardware operation by decreasing the frequency scanning points by half
and reducing the acquisition time at each frequency by half. In addition, through frequency
feature selection, acquisition frequency features were reduced without loss of accuracy,
thus shortening the authentication time of the overall system. Through all these processes,
the authentication time could be drastically reduced from 15 s to 2.5 s. By selecting fewer
numbers of frequency features, the operation time can be further reduced to less than a
second. This could suggest a method to overcome the limitations of acoustic biometric
authentication research for commercialization. In addition, through the hardware design
of the 1:5 (1 send: 5 receive) method, a system capable of simultaneously acquiring five
multi-channel signals from one acoustic selection was implemented. Therefore, despite
the further increase in the number of channels and the number of features of the acquired
signal, authentication can be performed without slowing down the operation speed.

It can be a reasonable strategy to use our proposed method as a complementary tool
for existing biometrics, as previously demonstrated in fingerprint, ECG, iris, heartbeat, and
others. The multimodal approach can not only increase the level of security by detecting
the liveness of the user attempting to meet the requirements of real-world applications [70]
but also improve the accuracy by using score-level or feature-level fusions. Here, our
approach provides unique advantages such as (a) inherent liveness detection by employing
the characteristics obtained from the live biological tissues, (b) less susceptibility to changes
in illumination and pose unlike other biometric traits such as fingerprint, iris, vein, and
face, and (c) difficulty to counterfeit because of the need to reproduce the mechanical
properties of internal body structures. Despite the unique advantages of our approach,
there is a limitation in that the range of efficacy demonstrated through this study may be
limited in terms of the demographics of the subjects participating in this study and the total
period of data acquisition and evaluation. It may be difficult to guarantee the validity of
the results for groups that are not included in the range of race or age groups convened
in this study. Additionally, undesirable physiological changes due to variability in body
mass index which were not investigated in this study may cause another artifact in the
characteristics of biometric features. This study reports the results of analysis only based on
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data obtained through experiments conducted for up to several months, but if time changes
for a period longer than several years may cause fluctuations due to undesired effect on the
mechanical characteristics of the body. To address these limitations, it may be necessary to
retrain the classification model by methods such as incremental learning that continuously
use input data to extend the learning model to reflect temporal variability. In addition, in
order to defend against unregistered intruders, it may be necessary to conduct research
on anomaly detection that can detect a difference from the secured normal data pattern.
Therefore, additional experiments and evaluations may be necessary in the long term along
with physiological changes through sufficient datasets obtained from subjects of various
ages and races. Additionally, a multimodal approach combined with well-established
methods (e.g., iris, fingerprint) can overcome the shortcomings of our suggested method.
Future work toward multimodal biometrics may allow comparative studies of the proposed
method from different perspectives to be conducted. For example, comparative studies of
various other approaches such as classical sum rule, weighted sum rule, and fuzzy logic in
each authentication method would be essential for the development of multimodal-based
high-performance biometric authentication with other modalities [71].

There are aspects of tradeoff between convenience and high security in biometric
authentication. The ideal identity authentication has high security as well as convenience,
but in reality, biometric systems either have higher convenience but lower security or vice
versa. Therefore, for a wide range of practical applications, we need to choose a biometric
system design that compromises between accuracy and convenience. For example, increas-
ing the number of sensors or combining multiple biometric traits may cause not only user
inconvenience but also the complexity of the hardware design. Moreover, the tradeoff can
be significant depending on applications such as mobile and wearable authentications.
This type of applications requires a compact and simple design, so the increasing size, cost,
power requirements, sensing channels, and processing logics may be a potential drawback.
In contrast, in areas requiring robust security such as financial transactions, higher accuracy
is required rather than convenience. To properly quantify the security and convenience
characteristics for different biometric applications, a general baseline of how such systems
are to be made will be beneficial. In our study, various feature combinations that optimize
the authentication process, such as combining finger channels or measurement frequencies,
were derived and thoroughly evaluated. For example, in terms of authentication time,
accuracy, cost, and convenience according to the number of sensing channels and optimal
frequency selection, this study can provide a guidance for designing a well-suited system
in a specific application field.

6. Conclusions

Bioacoustic-based biometric applications can provide precise and robust identity au-
thentication with accuracies comparable to those of conventional biometric methods. For
a broad range of practical applications, such as unobtrusive and continuous identity au-
thentication based on wearable bioacoustics, various feature combinations that optimize
the authentication process, such as the combination of finger channels or measurement
frequencies, were derived. The classification accuracies according to these design parame-
ters were analyzed with the use of multiple machine learning models and compared with
CNN. The experimental results show that a deep CNN algorithm can automatically and
adaptively learn and optimize the spatial hierarchies of features, and traditional machine
learning algorithms with suitable parameters and well-refined manual feature extraction
can perform as well as CNN or better. Accordingly, our study could be used for design-
ing systems that needs to balance system complexity and accuracy. Existing biometric
recognition technologies utilize specific parts of the human body (e.g., fingerprint, face,
and iris) and require the cognitive action of a user to place the body part on or in front of
the biometric sensor. However, this is inconvenient for mobile and wearable devices (e.g.,
unlocking a mobile phone or logging into a website). In contrast, our technology can be
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applied to any part of the human body, allowing continuous identity recognition using
wearable and mobile devices, and can thus enable seamless human–computer interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios12090700/s1. Figure S1: Effect of PDMS impedance matching layer; Figure S2: Acoustic
spectra of each finger (thumb, index, middle, ring, and little) of the subject up to 3 kHz; Figure S3:
Finger acoustic spectra up to 3 khz of five subjects for assessing interpersonal variation; Figure S4:
2D intensity images of five-finger channel acoustic spectra of five subjects for four different numbers
of selected frequencies; and Figure S5: The variability of transmitted acoustic signal amplitude for
each frequency. Table S1: Comparison of performance for four models according to the number of
channels. Table S2: Identification accuracy in the rf model according to finger channel combination.
Table S3: Average classification accuracy of each frequency section. Table S4: Classification accuracy
with the increasing number of frequencies.
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