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Multichannel Active Control of Random 
Noise in a Small Reverberant Room 

S@ren Laugesen and Stephen J. Elliott, Member, ZEEE 

Absfruct-In this study an algorithm for multichannel adaptive 
IIR filtering is presented and applied to the active control of 
broadband random noise in a small reverberant room. Assum- 
ing complete knowledge of the primary noise, the theoretically 
optimal reductions of acoustic energy are initially calculated by 
means of a frequency-domain modal model. These results are 
contrasted with results of a causality constrained theoretical time- 
domain optimization, which are then compared with experimental 
results, the latter two results showing good agreement. The 
experimental performance of adaptive multichannel FIR and 
IIR filters are then compared for a 4-secondary source, &?mor 
microphone active control system, indicating that for the present 
application FIR filters are sufficient when the primary noise 
source is a loudspeaker. Some experiments are then presented 
with the primary noise field generated by a panel excited by a 
loudspeaker in an adjoining room. These results show that far 
better performances are provided by IIR than FIR filters when 
the primary source has a lightly damped dynamic behavior which 
the active controller must model. 

I. INTRODUCTION 

N single channel active systems for the control of broad- I band acoustic plane waves propagating in a duct, it is well 
known that IIR filters are capable of matching the complicated 
response of the desired controller with fewer filter coefficients 
than FIR filters [l], [2]. Despite the potential stability problems 
associated with IIR filters [3], successful practical applications 
have been reported [ll,  [21, [41. 

In rooms and enclosures, where the sound field is more 
complicated, multichannel active methods must generally be 
used when global control of the sound field is the objective. 
Practical versions of such systems so far have demonstrated 
only substantial and reliable reductions in the case of repetitive 
noise with few harmonics. The best known applications are 
the control of “boom” noise in cars [5] and the control of 
propeller-induced noise in flight cabin interiors [6]. 

There is, however, also a need to control broadband non- 
repetitive (random) noise at low frequencies in rooms. Most 
structures have a small transmission loss at low frequencies, 
and there are several low-frequency noise sources in our 
environment with random waveforms, such as passing traffic 
and trains, noisy neighbors etc. There are many issues to be 
addressed before it can be decided whether such problems are 
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amenable to active control. However, active noise control is 
known to work best at low frequencies, and with the rapid 
developments in DSP devices it seems timely to begin such 
an enquiry. 

The objective of this investigation is to demonstrate that 
an adaptive algorithm for multichannel IIR filters can be 
used for the active control of a broadband non-repetitive 
noise in a reverberant room. Practical implementation of true 
multichannel adaptive IIR filtering in acoustic applications 
had, to the authors’ knowledge, not been reported prior to the 
first report of the current work [15], although an active control 
system with two independent IIR filters for control of higher 
order modes in a duct had been described by Eriksson et al. [7]. 
Apart from some experimental results on the control of road 
noise in cars using adaptive FIR filters presented by McDonald 
et al. [8], active control of broadband noise in enclosures had 
previously been treated only theoretically [9]-[ 1 13. 

Based on the experience gained from the duct problem 
mentioned above, it would be expected that a multichannel 
active control system for broadband noise featuring IIR control 
filters would stand a better chance of globally controlling the 
sound field than a system featuring the FIR filters that have 
been used previously in multichannel systems for repetitive 
noise [12]. 

For the practical demonstration a small rectangular rever- 
berant room was chosen. The room measured 2.53 m x2.51 
m x2.08 m and had a reverberation time of about 1 s in 
the low-frequency range. The room was actually the receiver 
room in a transmission loss suite, and hence it was connected 
to another small reverberant room by a square window (side 
length 0.685 m) in the centre of one of the 2.53 m x2.51 m 
walls. All simulations presented in this study pertain to this 
particular room, although the theory of course applies to any 
room or enclosure. 

The remaining parts of this paper are set out as follows. 
First, the theoretical maximum reductions of the sum of 
the squares of the pressures at the error sensors after ac- 
tive control are calculated from a frequency-domain modal 
model, and compared with the resulting reduction in acoustic 
potential energy in the room. Since the optimal complex 
source strengths obtained from this minimization correspond 
to noncausal time functions, these results are compared with 
the results of an optimization performed under the constraint 
of a causal controller. Secondly, the multichannel adaptive IIR 
filter algorithm is derived, and finally the experimental results, 
obtained using the aforementioned algorithm, are presented 
and discussed. 
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11. THEORETICAL PREDICTIONS 
The performance of a practical active noise control system 

will depend on both the fundamental physical constraints 
imposed by the acoustic arrangement, and on the behavior of 
the control algorithm used. In order to establish a benchmark 
for the reductions in sound level obtained experimentally, 
theoretical predictions of the acoustic limitations of active 
control will be considered in this section. 

The foundation of the theoretical predictions is a frequency- 
domain modal model of the sound field in the room, as 
described by Nelson et al. [13]. The complex sound pressure 
at a point in the room, due to a harmonic source with a certain 
velocity distribution, is expressed as the sum of a number 
of modal resonance terms. The sources are divided into a 
“primary” source, generating the undesired noise, and “sec- 
ondary” sources, which are controlled such that the primary 
and secondary fields interfere destructively. Each source is 
modeled as a square piston mounted in one of the walls in 
the room and driven at an angular frequency w. By means 
of this model the pressure at the error microphones can be 
expressed as 

where p E ( w )  is the vector of the total complex sound pressures 
at the L error sensors, p P ( w )  is the vector of sound pressures 
at the error sensors due to the primary source alone, ~ ( w )  is the 
vector of M complex secondary source strengths, and the Z ( w )  
matrix consists of acoustic transfer impedances calculated 
from the model outlined above. 

A. Unconstrained Optimization 
When carrying out this unconstrained optimization, the 

system is considered to be in the steady state excited at a 
single frequency (w) .  The problem will then be to choose the 
complex secondary source strengths q(w) that minimize the 
sum of the squares of the pressures at the error sensors, that 
is, the quantity [14]: 

J A W )  = P E ( 4 H P E ( 4  

= IPP(W) + Z(w> . &4IHbP(4 + Z ( w )  . d w ) l  (2) 

where denotes the Hermitian complex transpose. This 
minimization problem is clearly quadratic, and has the unique 
solution [14]: 

According to [14] the resulting minimum value of Jp is 

However, in terms of the physical effect of control the sum of 
squared pressures at the error microphones does not constitute 
the entire story, since a reduction in Jp,  based on an unfor- 
tunate distribution of error sensors and/or secondary sources, 

might well be accompanied by an increase in the acoustic 
potential energy in the enclosure. This has been demonstrated 
by Bullmore et al. [14] and by Laugesen and Elliott [15]. 
The real test of the optimization is to calculate the residual 
acoustic potential energy resulting from the introduction of 
the secondary source strengths calculated in (3). In [13] it was 
demonstrated how the total time averaged acoustic potential 
energy in the enclosure, 

could be calculated from the modal model. In (6), p is the 
density of air, c the speed of sound, and V the volume of 
the room. In a fashion similar to that above, the theoretical 
minimization of Ep can be carried out [13]. Thus it can be 
investigated how close minimizing the sum of the squared 
pressures at the microphones ( J p )  comes to the true objective 
of minimizing the total acoustic potential energy ( E p ) .  

The number of error sensors and secondary sources used 
for the control system will in practice be limited by the 
capability of the signal processing hardware. Bearing in mind 
the hardware which was available for the present experiments, 
and acknowledging that a sensible proportion of secondary 
sources to error sensors is around 1 : 2 [14], a system with 
M = 4 secondary sources and L = 8 error sensors was chosen 
for the simulations. Following the investigations of Bullmore 
et al. [ 141, the error sensors were positioned one in each comer 
of the rectangular room. The primary source was positioned in 
the window opening, slightly off the centre of one of the 2.51 
m x 2.53 m walls. After considering 12 different distributions 
of the secondary sources in the room, the secondary sources 
were positioned on the floor, one near each comer a distance 
of 30-50 cm away from the walls. This arrangement was easy 
to use in practice, and gave reductions which were nearly as 
good as any other distribution tried. 

The model and the optimization routines discussed above 
was implemented in a simulation program running on a PC 
and are detailed in [15]. The results of the optimizations for 
sinusoidal excitation over a range of frequencies are presented 
in Figs. 1 and 2. Note that there is a fairly good agreement 
between the reduction at the microphones Jp and the reduction 
in the energy in the room Ep below 120 Hz, whereas the 
reduction at the microphones is not followed by a similar 
reduction in energy for higher frequencies. Furthermore, it is 
seen from Fig. 2 that for frequencies under 150 Hz, similar 
reductions in Ep are obtained whether the actual energy in 
the room or the sum of the squared pressures at the error 
sensors is minimized, whereas for higher frequencies better 
reductions result from minimizing the energy. This indicates 
that for frequencies below 150 Hz, 8 microphones positioned 
in the comers of the room provide a good estimate of the 
energy in the room in this case. The results shown are typical 
for a “well-conditioned’ distribution of secondary sources, in 
the sense that no substantial increase in the energy occurs 
in any frequency range, and in the sense that the secondary 
source strengths are of reasonable magnitudes compared to 
the strength of the primary source, as can be seen in Fig. 3. 
In this figure, 0 dB corresponds to the level of the strength of 
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__, 

Fig. 1 .  The predicted sum of the squares of the sound pressures at the 8 error 
sensor positions in the room ( J p )  before and - - - after minimization at each 
frequency using the computer model, with 4 secondary sources positioned on 
the floor. 

7 0 ,  I 

Fig. 2. The predicted total acoustic potential energy ( E p )  in the room before 
and - - - after control with 4 secondary sources acting so as to minimize 
the sum of the squares of the sound pressures at the 8 error sensors, and 
. . . . . .  after minimization of the energy (E,,) with the same secondary source 
configuration. 

1 
50 100 150 200 

-60 1 
f requency (Hz )  

Fig. 3. The modulus of the source strengths of the 4 secondary sources 
relative to that of the primary source, corresponding to Fig. 1. 

the primary source, and it is apparent that all the secondary 
source strengths are below that level at nearly all frequencies. 

B. Causality Constrained Optimization 
It is shown in [14]-[16] that if the optimal complex 

secondary source strengths that result from the unconstrained 
frequency-domain optimization over the whole frequency 
range, were derived from the primary source via filters, then 

these filters would have highly noncausal impulse responses. 
Hence, it is important also to carry out an optimization under 
the constraint of causality. This has previously been done 
by Nelson et al. [lo] and Joplin and Nelson [ l l ]  for the 
continuous-time case, and by Hough [ 161 for the discrete-time 
case. The theory used here can be found in Elliott er al. [12], 
and was implemented in a suite of programs developed by 
Sutton [17], parts of which were used in this study. 

In order to facilitate this optimization it is necessary to 
assume that the signal driving the primary source is available 
as an electrical input ~ ( n ) ,  called the reference signal. The 
starting point of the time-domain optimization is then the 
discrete time-domain equivalent of (l),  separated into L scalar 
equations, one for each sample error signal el(n):  

The first term in the right side of (7) is the contribution of the 
primary source to the Ith error microphone. The second term 
is the contribution from the secondary sources, where clmj 
are the coefficients of the Jth-order FIR filters representing 
the impulse response from the mth secondary source to the 
Ith error microphone and am( i )  are the coefficients of the Zth- 
order causal FIR filters, which are assumed to constitute the 
controllers in this case. The expectation of the sum of the 
squares of the error signals, 

can now be minimized with respect to all the filter coefficients 
am(i) .  This is another quadratic minimization problem [ 121, 
[16], again with a unique optimal solution denoted c ~ ~ , ~ ( i ) .  

An important point is that the optimal filters depend on 
the autocorrelation function of the reference signal; hence it 
should be emphasized that after introducing the constraint of 
causality in the optimization, it has no meaning to speak of 
the attenuation at a single frequency without specifying the 
waveform of the reference signal. 

For the configuration of loudspeakers and microphones used 
above and a sampling frequency of fs = 400 Hz, the primary 
path and error path frequency responses calculated from the 
modal model were Fourier transformed into impulse responses 
and used to generate d l ( n )  and clmj. In the case of a white 
noise primary signal ~ ( n ) ,  the sum of the squared error signals 
(see (8)) was minimized by adjusting the 128 coefficient of 
each of the four causal FIR control filters. The result is shown 
in Fig. 4 where each optimal filter occupies a 128 sample block 
on the horizontal axis. It is clearly sufficient to use only 128 
coefficients for each filter, in order for them to decay nearly to 
zero in this white noise excitation case, indicating that further 
increases in filter length would not significantly decrease the 
cost function. 

The sum of the power spectral densities at the 8 micro- 
phones (denoted PSD8) was calculated, since that is what 
will actually be measured in the experiments. This quantity is 
plotted in Fig. 5.  It should be emphasized that in contrast to the 
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Fig. 4. The impulse responses of the 4 optimal 128-point causal FIR control 
filters, found by minimization of the expectation of the sum of the squared 
error signals with the computer model in the case of a white noise reference 
signal. 

I -40 

I 
50 1 0 0  150 200 -70‘ 

f requency (Hz) 

Fig. 5. The predicted sum of the power spectral densities of the 8 error 
signals (PSDII) before and - - - after control with causality constrained FIR 
filters (Fig. 4) and a white noise reference signal. 

reductions predicted from the frequency-domain optimization 
above, the reductions at all frequencies shown in Fig. 5 are 
obtained simultaneously, with a single broadband random 
excitation signal. Furthermore, the optimal causal filters were 
transformed back to the frequency domain, and then used in 
the modal model to also calculate the residual energy Ep, with 
the result shown in Fig. 6. From both Figs. 5 and 6 it can be 
seen that the constraint of causality somewhat degrades the 
performance of the active control system compared with that 
of the unconstrained minimization, cf. Figs. 1 and 2. How- 
ever, there is still a considerable reduction of the resonance 
peaks, and only slight increases in two of the gaps between 
resonances. It is encouraging to notice that the reductions at 
the microphones (PSDS) are very close to the reductions in 
the total acoustic potential energy in the room (Ep) .  

In order to demonstrate the significance of the “predictabil- 
ity” of the reference signal, and to obtain a result from the 
simulations which is comparable with the experimental results 
to be presented below, the causality constrained optimization 
was repeated with a number of different reference signals. 
These reference signals were taken to be white noise filtered 
through a specified transfer function, so that the power spectral 
density of the noise was simply the squared modulus of 
the transfer function in question. By Fourier transforming 
the power spectral densities, the autocorrelation function of 
the reference signal was found and used in the constrained 
optimization described above. The result calculated in this 

I O ,  I 

I 
50 100 150 200 
f requency (Hz) 

Fig. 6. The predicted total acoustic potential energy ( E p )  in the room before 
and - - - after control with causality constrained FIR filters and a white noise 
reference signal as in Fig. 5. 

U 
I 

-90; 50 100 150 

f requency (Hz) 
Fig. 7. The predicted sum of the power spectral densities of the 8 error 
signals (PSD8) calculated from the computer simulation before and - - - 
after control with causality constrained FIR filters and a “colored” reference 
signal, with a spectrum similar to that used experimentally. 

way that most resembled the results obtained in the initial 
experiments (presented in Section IV-B), in terms of the 
uncontrolled value of PSDS, is shown in Fig. 7. Note that 
the frequency scale has been somewhat expanded in this case 
for comparison with the experimental results below. It can be 
seen that the reductions for this “colored” noise are somewhat 
better in the 20-100-Hz range than those obtained in the white 
noise case, because the filters can expend more “effort” in the 
frequency range that contributes more to the mean square error. 

It is clear that the potential reductions which could be 
obtained in the sound field would increase if it was possible 
to introduce additional delay into the primary paths. This 
could be achieved, for example, by obtaining the reference 
signal from further upstream in an air conditioning duct, if 
this was the primary source of the noise. The performance of 
the active control system could then be improved, up to the 
limits imposed by the unconstrained optimization (Fig. 1). If, 
however, an additional delay is introduced in the secondary 
paths ( ~ 1 ~ ) .  the performance will be degraded, as described 
by Sutton er al. [ 171. Such an additional delay in the secondary 
paths would be introduced, for example, if detection sensors 
needed to be used to indirectly measure the output of the 
primary source, in which case the additional anti-aliasing filters 
and data converters would introduce delays in the control 
chain. 
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111. ADAF'TIVE CONTROLLER 

In this section we develop an algorithm for adapting the 
coefficients of an array of IIR control filters in a multichannel 
active control system 1181. The algorithm uses an approximate 
steepest descent (stochastic gradient) method to minimize a 
cost function given by the instantaneous sum of the squared 
outputs from the L error sensors 

L 

J = c e : ( n )  (9) 
1=1 

where each error signal, as in (7), is the superposition of 
contributions from the primary source d l ( n )  and each of the 
outputs from the M secondary sources ym(n), so that 

M J - 1  

e l ( n )  = &(n) + E clmjYm(n - j )  (10) 
m=l j = O  

where q m j  are the coefficients of the Jth-order FIR filter 
representing the impulse response from the mth secondary 
source to the Ith error sensor, as in (7), (although IIR filters 
could also be used to model this response). 

In this general case the output of the mth secondary source is 
made up of recursively filtered versions of P reference signals, 
which may for example represent the outputs of P primary 
sources, so that 

where 
I - 1  

K 

+ E bpmk(n - 1)Ypm(n - k) (12) 
k = l  

in which z p ( n )  is the pth reference signal, ypm(n)  is the 
filtered version of this reference signal used to drive the mth 
secondary source, apmi(n) is the direct coefficients of this 
filter, and bpmk(n) is the recursive coefficients of this filter, 
all at the nth sample time. 

In deriving practical approximations to the required gra- 
dients of the cost function with respect to each of the filter 
coefficients, a number of rather sweeping assumptions must 
be made. To begin with, we assume that the control filter 
coefficients are time invariant so that the derivative of the cost 
function, with respect to a direct coefficient, can be written: 

which follows from (9)-(11). This assumption is valid as long 
as the filter coefficients vary slowly compared to the impulse 

response of the acoustical system, which is always the case in 
practice. Using (12), we can now write 

The approximation in (14) arises because we ignore the 
acoustic feedback path which may, in the most general case, 
exist between the outputs of the secondary sources and the 
reference signals. Such feedback would make the reference 
signals themselves a function of the control filter coefficients. 
We now adapt the approach of Feintuch [ 191 in approximating 
the recursive form of (14) by the first term only, so that the 
gradient estimate from (1 3) can be written as 

h 

where the filtered reference signals, as introduced for the 
filtered-x LMS algorithm described, for example, by Widrow 
and Steams [20], is defined to be 

.I-1 

In a similar way, the derivative of the cost function with 
respect to the recursive filter coefficients can be written 

in which case, again from (12), 

If we again approximate the recursive form of this derivative 
by the first term ypm(n - k), the gradient estimate from (17) 
can be written as 

L h 

In this case the signal spl, is the filtered output signal, defined 
by 

J - 1  

j = O  

The gradient estimates of (15) and (19) are now used to 
update the control filter coefficients every sample using the 
method of steepest descent, so that 

apma(n + 1) = 71 . apmi(n> 
L 

- a1 el(n)rptm(n - 2) ( 2 ~  
1=1 

bpmk(n  + 1) = 7 2  . bpmk(n) 
L 

1=1 
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where cy1 and a2 are the convergence coefficients for the two 
sets of update equations. The quantities y1 and 72 are numbers 
slightly less than unity that cause the coefficients of the filter 
to “leak” away if the update term is small [20]. Their effect 
is similar to minimizing a cost function that includes control 
effort as well as total error [12]. It has been found that the 
inclusion of a leak has a very important stabilizing effect on 
the adaptive algorithm when implemented in practice. 

In the single channel case, P = M = L = 1, with a1 = cyz 

and y1 = y~ = 1, the algorithm reduces to the “RLMS” 
active control algorithm used by Eriksson [l], [2]. If there 
are no recursive coefficients, so that only FIR control filters 
are used, the algorithm also reduces to the Multiple Error 
LMS algorithm [12]. Equation (21) could thus be termed the 
Multiple Error RLMS algorithm. 

A number of approximations have had to be made in 
the derivation above, some of which have been discussed 
in [21]-[24]. It is important to note, however, that exactly 
the same approximations are inherent in the single channel 
case [l], which has been found to perform well in a number 
of practical active control applications [2]. No additional 
approximations are required in the derivation of the multiple 
channel version of the algorithm, and our experience has 
been that provided a small leak is included, the algorithm is 
reasonably robust. 

IV. EXPERIMENTAL RESULTS 
After a brief description of the experimental arrangement, 

we firstly present the results from experiments that should be 
directly comparable with the simulations carried out in Section 
11. Secondly, a more realistic case, where the primary noise is 
generated by a panel excited by a loudspeaker in an adjoining 
room, is investigated. 

A. Experimental Arrangement 

The heart of the arrangement was a TMS320c30 PC System 
Board and two 4 Channel Analog Interface Cards (from 
Loughborough Sound Images Ltd.) fitted into a PC, which 
was running the software controlling the c30 card. The two 4 
Channel Cards, with a total of 8 inputs and 4 outputs, were 
used for the error sensors and secondary sources, respectively, 
whereas the reference signal was acquired with one of the 
BB PCM78 AD converters on the c30 board. All inputs and 
outputs from the signal processing cards were low-pass filtered 
through a set of programmable filters with a cutoff frequency 
of 170 Hz. The sources, both primary and secondary, were 4” 
loudspeakers in 2,21 closed boxes, driven by power amplifiers, 
and the error sensors were 1/4 in electret microphones. For 
the primary noise, the output from a pink noise generator 
was filtered through a high-pass and a low-pass filter section 
in order to obtain the desired shape of the primary noise 
spectrum. 

Since the adaptive algorithm described above is rather com- 
plicated to implement in a computer program, it was decided to 
write the program for the c30 card in C, and then handoptimize 
the generated assembler code. After some optimization it was 
possible to run a system with four secondary sources (M = 4), 

eight error sensors ( L  = S), and with I = J = K = 32 
coefficients at a sampling frequency of 400 Hz. 

A typical experiment was carried out in three steps. First, the 
identification of the error paths was performed. All M .  L = 32 
error paths were modeled at the same time using 32 coefficient 
FIR filters, by means of four independent modeling noise 
generators feeding each secondary source, and the simple 
LMS adaptive identification algorithm. In prior comparisons 
of the 32-coefficient FIR estimate of an error path response 
with a 256-coefficient FIR estimate, it had been established 
that 32 coefficients was sufficient to model the error path 
to the accuracy required. Secondly, the control filters were 
adapted, using the previously identified error path models. 
Thirdly, the control filters were “frozen,” by omitting the 
control filter update subroutine in the program, thus giving 
sufficient processing time for measurements of the residual 
signals to be taken by the PC. 

The sum of the power spectral densities of each of the error 
signals was measured, while the controllers were “frozen,” by 
Fourier transforming blocks of 512 contiguous samples of all 8 
error signals, and adding together the square modulus of each 
spectrum. A specified number (generally 64) of added squared 
spectrums were averaged, finally converted to decibels, stored 
and denoted PSD8. 

B. Primary Source in the Receiving Room 

For the experiments reported on in this paragraph the 
window connecting the two rooms of the transmission loss 
measurement suite was filled with a box full of sand, and all 
sources and sensors were positioned in the receiving room 
as in the simulations presented above. Furthermore, it was 
ensured that the delay in the primary path was equal to the 
delay in the secondary paths so that the results from these 
experiments should be directly comparable with the results 
from the causality constrained theoretical optimization. Both 
FIR and IIR control filters were implemented in different 
experiments. The FIR control filters each had 32 coefficients 
and the IIR control filters each had 32 direct coefficients and 
32 recursive coefficients. 

The results in the “colored” noise case, after the control 
filters had been allowed to converge (which took about 20 
seconds), are shown in Figs. 8 and 9. The first observation 
from these figures is that reductions are obtained which are 
comparable with the reductions predicted by the causality 
constrained optimization, cf. Fig. 7. The largest difference 
between the experimental and predicted reductions occurs in 
the control of the zeroth-order model below about 10 Hz, 
which is negligibly excited experimentally and, therefore, does 
not significantly contribute to the mean square error. At higher 
frequencies the experimental system tends to reduce only the 
peaks in the spectra, at the cost of increasing the levels in the 
gaps between the peaks. However, this effect is in agreement 
with the simulations reported above and those reported by 
Joplin and Nelson [ 1 11. 

At a second glance, the results in Figs. 8 and 9, obtained 
using the FIR and IIR control filters, may seem disappointingly 
alike. In order to stabilize the system with the IIR filters it 
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Fig. 8. Measurements of the sum of the power spectral densities of the 8 
error signals (PSDI) before and - - - after control with FIR filters with 32 
coefficients. 
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Fig. 9. Measurements of the sum of the power spectral densities of the 8 
error signals (PSD8) before and - - - after control with IIR filters with 32 
direct and 32 recursive coefficients. 

was necessary to use a leak factor which was significantly 
less than unity (72 x 0.98) in the recursive coefficient 
update equation. The recursive part of the filter thus never 
became very significant, as can be seen from the very modest 
improvement from Fig. 8 to Fig. 9, and from the magnitude of 
the recursive part of the converged filter coefficients, as shown 
in Fig. 10. The magnitude of the direct coefficients are of 
course dependent on all the gains in the control loop, whereas 
the recursive coefficients are relative to unity since they appear 
in the denominator of the controller transfer functions H,  (2) 
in the following way: 

The recursive coefficients seen from Fig. 10 are all quite 
small compared to unity and hence hardly contribute to the 
resulting controller transfer functions. Since a considerable 
restraint need to be placed on the recursive filter coefficients to 
ensure stability of the system, it seems as if the IIR filters are 
trying to converge to transfer functions with poles outside the 
unit circle. This is not entirely surprising, since the optimal 
unconstrained controllers are known to be noncausal. There 
are of course other, more sophisticated methods of stabilizing 
recursive filters than using a leak in the update equation, but 
unfortunately they are all rather expensive with respect to 
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computation time, and hence they were not considered in this 
investigation. 

It could be argued that the comparison between FIR filters 
with 32 coefficients and IIR filters with 32 direct and 32 
recursive coefficients-64 coefficients altogether-is unfair 
and that FIR filters with 64 coefficients should have been used 
instead, in order to have the same computational complexity 
in both filter types. However, the conclusion seems to be that 
FIR filters with 32 coefficients possess sufficient complexity 
to realize the optimal causal filters reasonably well, so that 
neither using 32/32-tap IIR filters nor @-tap FIR filters would 
significantly improve the performance of the control system. 

C. Primary Source in the Adjoining Room 

In these experiments the primary noise field was generated 
by a loudspeaker in the adjoining source room and transmitted 
into the receiving room through a 2-mm plywood panel 
inserted in the window between the two rooms. The dynamic 
characteristics of the panel now had a large influence on the 
sound field in the receiver room, and so the velocity distri- 
bution on the panel was measured [15]. These measurements 
suggested that at 20 Hz the panel had a resonance in which 
it moved as a piston in its mounting, whereas at 65 Hz the 
panel had a resonance which was similar to the first mode of 
a simply supported panel. An examination of the uncontrolled 
level measured at the microphones in the receiving room (solid 
curve in Fig. 11) reveals that the 20-Hz piston mode of the 
panel is especially evident in the uncontrolled spectrum. This 
was expected to cause problems for several reasons. First, 
20 Hz is between the natural frequencies of the (O,O,O) and 
the (0,0,1) acoustic modes of the receiving room, and from 
Fig. 1 it can be seen that only a limited reduction is possible 
at this frequency even in the unconstrained case. This is due 
to the fact that the sound field consists of contributions from 
many acoustic modes when excited at frequencies between 
resonances. Secondly, the algorithm was expected to expend 
a lot of “effort” on trying to control the large peak at 20 Hz, 
without having any real chance of doing so, hence leaving the 
remaining field unaltered or perhaps even amplified. These 
expectations were confirmed by the initial experiments. 

In order to be able to get better control of the 20-Hz peak, 
one of the secondary sources was moved to the comer of 
the window, thus allowing it to couple into the room in a 
way similar to that of the primary source. The reductions at 
the control microphones for the “coloured” noise excitation 
using this secondary source arrangement are shown in Figs. 11 
and 12, for the FIR and IIR controller cases, respectively. 
Several interesting observations can be made from these 
results. First, the reductions in both cases are not as large 
as those presented in the previous section, and in the areas 
between the peaks somewhat larger increases in noise levels 
are seen, unfortunately, probably due to the more complicated 
primary path. Secondly, it appears that the IIR filters perform 
far better than the FIR filters in this case. To verify that 
the IIR filters really were implementing impulse responses 
substantially longer than the 32 samples of the FIR filters, 
the impulse responses of two of the IIR control filters werre 
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Fig. 11. Measurements of the sum of the power spectral densities of the 8 
error signals (PSDS) before and - - - after control with FIR filters. The noise 
was generated by a panel excited from the adjoining room. 

Fig. 13. Impulse response h( t )  of an W control filter feeding a secondary 
source on the floor, corresponding to the situation on Fig. 12. Ts is the 
sampling period (2.5 ms). 
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Fig. 14. Impulse response h( t )  of the IIR control filter feeding the secondary 
source positioned in the window close to the panel, corresponding to the 
situation on Fig. 12. T, is the sampling period (2.5 ms). - 
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Fig. 12. Measurements of the sum of the power spectral densities of the 8 
error signals (PSD8) before and - - - after control with W filters. The noise 
was generated by a panel excited from the adjoining room. 

calculated and are shown in Figs. 13 and 14. Note that the 
two figures have different axes. Clearly the IIR filters are 
realizing filters with impulse responses significantly longer 
than 32 samples, especially for the secondary source in the 
window comer (corresponding to the impulse response shown 
in Fig. 14). This impulse response appears to be modeling 
the lightly damped impulse response of the panel, so that 
this secondary source can generate an acoustic output whose 
waveform best matches an inverted version of the waveform 
of the acoustic output of the panel. 

Again it can be argued that the 32/32-tap IIR filters should 
have been compared with @-tap FIR filters, which undoubt- 
edly would perform better than the 32-tap FIR filters, cf. Figs. 
13 and 14. However, the exceptionally long response in Fig. 14 
indicates that an IIR filter is still needed, at least for this 
secondary source. 

V. CONCLUSIONS 
In this paper an adaptive multichannel algorithm for IIR 

filters has been derived, and its application to active control 
of broadband random noise in a small reverberant room has 
been investigated experimentally. 

The main conclusion is that adaptive multichannel active 
control using IIR filters is possible in practice. This has been 
demonstrated by the agreement between theoretical predictions 
of multichannel active control of broadband noise in a room 
and experimental results obtained by means of the derived 
algorithm. 
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It appears, however, that when the noise in the controlled 
room is generated by a simple source, such as a loudspeaker, 
no substantial benefit is gained from using IIR filters instead of 
the more reliable FIR filters. However, if the noise is generated 
in a more complicated way which the controllers must mimic, 
such as when the noise is produced in an adjoining room and 
transmitted into the controlled room through a panel with a 
lightly damped dynamic behavior, then IIR filters have been 
found to be superior to FIR filters. 

Furthermore, the derived algorithm has proved to be ro- 
bust despite the stability problems inherent in the IIR filter 
structure. The stability has been achieved by introducing leak 
factors in the coefficient update equations. 

It should finally be noted, however, that it is important to 
understand the physics of the problem for which multichannel 
active noise control is being considered, as was achieved in 
this case using the theoretical models described in section 11. 
A great deal of time can be otherwise wasted in trying to 
solve a noise control problem using a method that is inherently 
incapable of providing the required noise reduction. 
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