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1 INTRODUCTION

Analysis of low-energy experimental data has given interesting surprises {1} in spectroscopy
of light mesous. One can see all the unexpectedness to be related mainly with the mul-
tichannel resonances. Above all, this concerns the scalar-meson sector. Therefore, the
problem of getting reliable information about the multichannel resonances is more and
more important at present. However. both the identification of such resonances and the
determination of their QCD nature clash with a number of difficulties many of which are
stimulated by considerable model-dependence of knowledge about these objects.

A model-independent consideration of resonances and their nature can be obtained
on the basis of such general principles, as analyticity and unitarity, and the consistent
halanced account of the nearest (to the considered physical region) singularities on all the
relevant sheets of the Riemann surface of the S-matrix [2]-[6].

Developing our approach it is worth to concentrate on scalar mesons because there are
no kinematical complications related with a spin, and moreover, practically all hypotheses
{and even more. due to quantum numbers of vacuum [7]) about the nature of resonances
concern also the scalar sector (qqqq(8] — [10], gg[11],¢q [12, 13], the mixture of ¢¢ and gg
{14, 15] and the K K-molecule [16, 17]). Note also the surviving intriguing situation in
the 1 GeV-region of the scalar-isoscalar channel, where in the analysis of ISR data on
central production of meson pairs (77 and KK) in pp-collisions [13]. instead of the one
Jo(980) meson three states were obtained: §,(991)-a glueball candidate. S2(988)-a KK
molecule, f,(900)-a meson broad enough in m7-channel. Though after their subsequent
enlarged analysis of the above data and also of data on 77 and AR scattering and on
decays J/p — enn(¢KK), D, — mrr. the authors of work [18] seem to be inclined to one
resonance scenario for fo(980) [19], but also the previous situation is discussed in litera-
ture. especially. in connection with an interesting possibility of supercritical confinement
and “novel” hadrons [7].

Although it was already clear that the multichannel resonance is represented by pole
clusters on the Riemann surface {2],[5], [19], the standard clusters were not yet determined.
This 1s important for identification of resonances. Here, we perform this and indicate the

reasons for of deviation from standard clusters related with the influence of closed channels
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on forming the resonance and with the neglect of the threshold of a coupicd  Lanne

2 N COUPLED CHANNELS FORMALISM

Considering the multichannel problem, we pursue two aims: 1. to obtait o el
independent information about multichannel resonances and an indication anon: 1he:
QCD nature; 1. to describe the experimental data on the coupled procosses ety
purpose is achieved provided the nearest (to the physical region of interest sigitdar e

of the S-matrix are taken into account, and one can see that in this respect wr A iy

channel problem can be effectively reduced to the 2- and 3-channel probicin However o0

realize the second task, the general N-channel formalism cau be usefui

1. Consider the Vo channel S-matrix (all channels are two-particle ones derarnnee o
the 2V -sheeted Ricmann surface. The latter have the right-hand (unitars - cuts arong e
real axis of the s-variable complex plane (4m?. oc) (2 = 1.2, . N means a channel
through which the physical sheet is sewed together wjth other correspunding <heets 11

branch points are at the vanishing values of the channel momenta
. 2y1/2
ko = (s/4 — m2)V2

For the time being. the left-hand (potential) cuts, which are related with the (rossine
channel contributions, will be neglected in the Riemann-surface structure and thes con
tributions will be taken into account in the background of the corresponding amplitndes

It is convenient to use the following enumeration of sheets (see. .o 201 we <hal

denote the physical sheet as Ly and other sheets through L,, . . where R

L
a system of subscripts of those channel-momenta k;, which change signs ar araivt.ca
continuations from the physical sheet onto the indicated one.

Express the analytical continuations of S-matrix elements to the unphysical sheets
(

S‘(il""k) in terms of them on the physical sheet 5‘0:‘, using the reality of the avalyin

functions and the N-channel unitarity. To this end, first, we shall introduce the notat o
Sl ] means a matrix in which all the rows are composed of the vanishing elements bue

the rows 7, - -, 1;. that consist of elements S In the matrix ST ™ onthe conrran

tnim

the rows 73, -+, 1) are zeros. |herefore,
sby el glend — g

Futher Al =l and AV %! denote the diagonal matrices with sero nondiagonal

elements and with the diagonal ones

Toaf e € (- iy
Abend o - ) and Alrwd =

" )
0 for remaining . I for remaining 1,

respectively. Then the analytical continuations of the S-matrix to the sheet L; ., will
be represented as
SOMi e}l g Al

Sl )
5 A SO ] (1)

{from which the corresponding relations for the S-matrix elements can be derived by the
formula for the matrix division.

Generally. the obtained formula (1) is a solution of the N-channel problem in the sense
of giving a chance to predict (on the basis of analysis of one process) the coupled-process
amplitudes on the uniformization plane of the S-matrix at a certain conjecture about the
background. Let us demonstrate this on the basis of the 2- and 3-channel problems.

Consider the 3-channel problem and, for definiteness, the channels =x — 1, KK —
2. nn —3. [t 1s clear that the elements of the 3-channel S-matrix 5. where ¢,k = 1,2,3,
have the right-hand (unitary) cuts along the real axis of the s variable complex plane
starting at 4m?. 4mj 4m? (as 1115 mentioned above, the left-hand cuts will be neglected
for the present in the Riemann-surface structure), and the S-matrix is determined on the 8-
sheeted Riemann surface. Then. using formula (1), we derive the analytical continuations
of tne S-matnx elements to the unphysical sheets [6] (Table 1: index (7 is omitted,
besides the notation of the Riemann-surface sheets accepted here, their notation by the
Roman numerals which has been used in our previous works [2]-[6] is indicated; Di; are
the minors corresponding to the S-matrix element S, , for example, Dy, = 533833 —
SEo Dy o= S1Ss — SE L Dy = 81185 — 512513, ete. ). The left upper subtable of
[able 1. corresponding to the processes 1 — 1, 1 — 2, 2 — 2 and to the sheets Lo

dlic Ly (), Lyg (ITD), Ly (IV). gives the 2-channel problem. Now one can see from



Table 1.

Lo L L2 1y Ly Lias [ .
1 11 I IV V V1 AV VT
. 1 522 [);;;; det S [)Il N /)“
[l —1 Si —_ - . . . -
Sn D3y Sa2 Dy det S 1, S
. 1512 —S12 151, 1Dy - Dy, i 1,
=2 Sie - o TG .
Si D3 S» Dy det S 11, S
; S 1 Sy 2 det S j
)y o, PeoooSw L fm Dad Dy
Sn Dy S22 Dy det S {2y, W
Ly omy, e e R
Sty D3y det S Dy, N
9,3 S 1323 103 ;1)2;} iy, N
S D33 det S [ S,
. . . Doy det S Dy, Sou Dy o f
3—3 Ny P — s B ‘
Si Das Sp Dy det 8 i “,

Table 1 how the singularities and zeros of the one-process amplitude (e.g o S0 on abi ihe
Riemann-surface sheets are carried over to the corresponding sheets for otner armphitudes
of the coupled scattering processes determining completely the latter 1 the considered
energy region. Iu practice this can be realized on the uniformization plane of the > matu

To derive, by this method, the matrix elements of the processes of transinions hetween

chanuels ( 5,;. ¢ # j ), one should consider the analytical continuations of the expressions

SuS;; — SE to all sheets. With Table 1, this can be easily made in terns of siple

algebraic operations (Table 2), and one can see that one amplitude of scattering i 5y
determines also the transition amplitudes. This method has been applied by ns i the
2-channel approach [4]) for obtaining the KK scattering amplitude and the prediction

on the 7w — KK process on the basis of data on 7 scattering. For this. i1 addition

to uniformization of the S-matrix, it was necessary to use a certain representation of

multichannel resonances on the Riemann surfaces.

l'able 2.
Lo Ly Ly, L, Ly Lygy Ly Ly
1 11 111 v \% VI VI VIII
Saz 1 S Daz S3s Dy detS

S8, - 8L = Dy o — — B — -
e 1 ¥ Su Dy S22 Du det & Doy Sas

.o G =D 933 Dy det S Dy Sz 1 St
s e Si D33 S22 Dy det & Dy Sa3
d(‘t H l)'” 533 1 S“ [7)11 Szz

L -2
SNy o SE = D

S Dy S22 Dy det 5 Dy S3s

Y Fhe latter issue can be clarified but again with formulae (1) (in particular, Tables 1
and 2) expressing the analytical continuations of the S-matrix elements to the unphysical
sheets in terms of them on the physical sheet. These expressions are suitable because
the matrix elements on the physical sheet Lo have, except for the real axis, only zeros
corresponding to resonances, at least. around the physical region.

Provided a resonance has the only decay mode (1-channel case). the general statement
about a behaviour of the process amplitude is that at energy values in a proximity to the
resonant one it describes the propagation of a resonance as if the latter were a free particle.
This means that in the matrix element the resonance (in the limit of its narrow width)
is represented by a pair of complex conjugate poles on the sheet L, and by a pair of
conjugate zeros on the physical sheet at the same points of complex energy. This model-
independent statement about the poles as the nearest singularities holds also when taking
account of the finite width of a resonance.

In the 2-channel case, formulae of Table 1 immediately give the resonance represen-
tation by poles and zeros on the 4-sheeted Riemann surface. Here one must discriminate
between three types of resonances -which are described: (a) by a pair of complex con-
jngate poles on the sheet L, and therefore by a pair of complex conjugate zeros on the

sheet Ly in Sy1. (b) by a pair of conjugate poles on the sheet L, and therefore by a pair



of complex conjugate zeros on Ly in Sy. (¢) by one pair of conjugate poles iy vact o
sheets Ly and L. that is by one pair of conjugate zeros on the physical shect 1 cact
matrix element 5\, and S,,.

To the resonances of types (a) and (b) one has to make correspond a pair of coripie s
conjugate poles on the sheet L3 which are shifted relative to a pair of poles on the sheet 1
and Ly, respectively (if the coupling among channels were absent. i.c. 5, . fhe poles
on L1z would lay exactly (a) under the poles on ;. (b) above the poles on the sheer [
To the resonances of type (¢} one must make correspond two pairs of compgate pofes
on Ly, which are reasonably expected to be a pair of the complex conzingate <o
formations of poles. Thus, here we have three types of resonance clusters

In the 3-channel problem, formulae of Table 1 give the resonance TCDICSCLT Al
the 8-sheeted Riemann surface.  Here, one must distinguish seven types o tesonan es
(respectively seven clusters) with zeros on the physical sheet in {al S;. b~ ¢~
(d) Sy and Sy,. () Sy, and Sa, {(f) S11 and Sy, (g) Sii. S and S bor Cnampie
the case of the resonance of type (g) there are one pair of complex conjiieate poies
each of sheets I.,, L, and L, at the same points of s-variable where the seros e o g
also two pairs of complex conjugate poles on each of sheets Lz, Loy aint . anel hiee
pairs of complex conjugate poles on Lip; (i.e. the resonance is FEPLesCi Lot ot s
conjugate clusters of poles and zeros).

Generally. in the N-channel problem, when zeros corresponding 1o e v
resonance are present on the sheet Ly in the S-matrix elements, for cxa pde 0 ar A
considered coupled processes of scattering Sy;, there are one pair of conjugate wlos o
each of the sheets L, (k= 1,--- V), two pairs of conjugate poles on each of 11¢ <hecrs
Ly;, three pairs of poles on the sheets Lk, ete. and. finally, N pans pUies ot
sheet L, n. However, the first two considered (2- and 3-channel} cases seernis 1o exhiana
the multichannel-resonance division into types (as model-independent harvacternstios
because always the problem of the representation of the N(> 3)-channel resorances 1o
the nearest singularities can be effectively reduced to the above cases winh Qive 1l
standard resonance clusters of poles and zeros on the Riemann surfaces. Note diees o

this resonance division into types is not formal. For mstance, in the scajar mesor e

tor the resonance fo(975) seems to correspond to type (a). and the resonance fo(1590)
corresponds to one of types without zeros on Ly in S;;. These two resonances have very
different QCD natures. Further investigation of this matter can possibly give rise to the
model-independent indications of the multichannel-resonance nature ori the basis of their
pole representation on the Riemann surfaces.

1 Let us indicate one reason that causes a deviation from standard clusters describing
the resonance. Consider the K-matrix in the N-channel case which i~ related with the

S matrix as follows
7[;Jr Z'pl/2Kpl/2 (2)
[ —iplZK /2’
where p, = 002 # 7). po = 2k/Vs. From (2) it is easy to obtain that K = K7, ie..
the K-matrix has no discontinuity when going across the two-particle unitary cuts, and
the poles corresponding 1o a resonance lie on the real axis. The sole pole on the real
axis corresponds to a resonance of the simplest type (only with the sole pair of complex
conjugate poles on each of the corresponding sheets, i.e. with a pair of zeros on sheet Ly
only in the one-matrix element S,,). Resonances (c) in the 2-channel case and (d), (e),
(f) 1n the 3-channel case are described by two poles in the K -matrix. Resonance (g) has
three poles.

However, the many-pole representation of a resonance in the A matrix arises also as
a result of influence of the important energetical-closed channels. Let us explain this in
more detail. In practice we deal usually with a reduced K-matrix. K. corresponding to

the M open channels whereas the remaining ¥ — M channels are energetical-closed. A

connection between the reduced matrix K and the complete K-matrix 1s given by [21]
(Kr)i, = K., + i [(] — i7K) ' lagKs,. (3)

Here p and K denote the submatrices being related to the closed channels, 1,j =1,--- | M
refer to open channels and a, 8 = M +1,--- N correspond to closed ones. It is clear
that the resonances can arise both owing to the resonant interaction of particles in the
open channels and by virtue of the processes in the closed channels. In the first case, each

element of the complete K-matrix has a pole at a certain real value of energy s = m? In



proximity to this pole one can write

K, = ﬂ'z + gr(s). I
s—m

where ¢,,g, are constants of the resonance couplings with particles of open and closed
channels (a.7 = 1.-- | N), a,.(s) are the background smooth function~ However this
pole is absent in the A g-matrix, since the residue at this pole in (3) is equal 10 210 and
the position of a pole corresponding to a resonance is renormalized due to the wmtnen .
of the closed channels, moreover the resonance is described by a number of poles. For
example, at the conjecture of negligible background (o, = 0) we obtam from 3w
(4):
9:9,

(Kr), = . N . :
s—m?+ Zu:M+] 92 pal

Consideration of the background does not change the conclusion about the powe at -

m?. For instance. in the 2-channel case with closed channel 2 we should have, with 11

background.

~gi + |pafana) — [p2l[29192012 + (s — mP)a

Z
(Krhn = _ !
(KA r)n s —m? + |pa][g} + (s — m¥)ay)

»

t

From (5) and ({6) one can see that only when a resonance is not coupicd with closed
channels in the K j-matrix there is a pole at s = m?*. But even at small conplings ot o
resonance with particles of closed channels the resonance is represented by a number of
poles. A successive explicit consideration of a larger number of channels wonld reduce e
number of poles corresponding to the given multichannel resonance. In particular. for 1he
2-channel resonance in the l1-channel consideration (formula (6)) at least two poles onine
real axis in the vicinity of m? describe this resonance. In the 2-channel consideration o
the “complete” K -matrix) there would be. of course, one pole at s = 1% as distinct tron
the above-discussed case with a resonance (c). To understand this situation. we shonld
investigate the pole representation of resonances on the Riemann surface-

Note that, as is seen from (3), a pole in the K g-matrix may arise also 1 tne case wher

the elements of complete K-matrix are nonsingular. The condition for this pole s that
det( + [pIK) = 0. 7

This pole in the Kg-matrix exists, e. g., if particles in the lowest closed channel attract

each other strongly enough to form a bound state provided the coupling between the

9

closed and open channel is weak. Notice, however, that the same condition (7] is required
for existing the resonances due to processes both in the open and closed channels. To dis-

tinguish these cases, one must again study the pole arrangement on the Riemann surface.

1. So. using formula (1) one can obtain the representation of multichannel resonances
on the Riemann surfaces and all the coupled-process amplitudes on their uniformization
plane through analyzing one of them [4]. However, it is convenient (especially, meaning
to rarry out. in future, the joint analysis of the data on amplitudes the coupled processes)
10 use the Le Couteur  Newton relations [22] expressing the S-matrix elements of all
coupled processes in terms of the Jost matrix determinant d(k;,-- . kvi = d(s) being a

real analytical function with the only square-root branch-points at the process thresholds

[Nk
L d(')(s)
So(s) = R (8)
1 ‘S‘HH(S) T ‘q‘l‘k(s)

(9)
‘S‘kil(‘s) ‘q‘k‘k(s)

The analytical structure of the S-matrix on all Riemann sheets given by formula (1) is

thus expressed in a compact way by these relations. The real analyticity implies
d(s*) = d*(s) (10)

for all s, and the unitarity condition requires further restrictions on the d-function for phys-
ical s-values which will be discussed below in the examples of 2- and 3-channel S-matrices.
Further. in our approach of a consistent account of the nearest (to the considered physi-
cal region) singularities on all the relevant Riemann sheets, one should find a w-variable
uniformizing the d-function on the w-plane. When there are more than two unitarity
branch-points, this is impossible to do with the help of simple functions. Therefore, one
can act as we shall do below in the 3-channel approach, namely, construct (if possible) a
model of the Riemann surface approximating the initial Riemann surface in accordance

with our approach and suitable for mapping onto a plane. In the last resort, there exists

10



always a possibility of the local uniformization, though in this case a parametnization nias

turn out 1o be not simple. Then the d-function can be represented as
d = dBdrr3~

where d,,,(w) is responsible for describing the resonance or hound states and «ontane

only zeros corresponding to these states (the kinematical poles can be present oniv at the

point w = 0). The function dp describes the hackgronnd and in the generar case s ol the

form:
N

dy = o(s)eap{ =1y Pigu)}.

k=1

Here @ is a certain analytical function, and 88 is the phase shift of the olasts part of 1

background in the k-th channel:
B(-ge) = ~ 6.

For the channel with the relative angular momentum [, one can take

6 (qx) = agi™.

Then, for example, for the m-th channel we obtain

P st

w(s) dres”

Smm -

where U™ (s)/5(s) is the elasticity parameter of the background in the r 11 e b

the completely elastic background it is equal to one

3 ANALYSIS OF EXPERIMENTAL DATA

1. The 2-channel approach.

We have applied this method before to the 2-channel consideration [4-[61of the expertnien
tal isoscalar s-wave of the wr scattering from the threshold to 1.9 Ge\'. [he untornizing,
variable used

z=(k +lc2)/(m?\r -mz)l/z i
maps the whole 4-sheeted Riemann surface onto the z-plane (Fig.1). On :plane the Le

11

Fig.1: Planc of the uniformiz-

Im 2 ing variable z. I'he Roman nu-
merals (I,.. . ,I\"} denote images

I 1 of the corresponding sheets of
L] the Riemann surface; the thick

line represents the physical re-
gion (the points i and 1 are the
77 and K K thresholds, respec-
* x tively). The depicted positions

- ° > of poles (*) and of zeros (o) give
"N\° ¥ L Rez the representation of the type
* * (a) resonance in S;;. The pole

and zero on the imaginary axis
o m approxinate the background.

Couteur-Newton relations are (4. 20]

oo dl=2Th) o dzT) 2 dloz .
5” = d(;T Spp = d(z) s 311522 - 5122 = ;17( ;‘7 (ID)

Ihen the condition of the real analyticity implies
d{—27) = d"(2) (16)

for all 2. and the 2-channel unitarity requires the following relations to hold for the physical
s values:

d(~27")] < Jd(=)].

A=) < [d(z)], ld(-2)] = dis), (17)

I'he d function has been taken as d = dpd,.,, where
dg =iz (1 + iyoz) (18)

describes the background, and the resonance part has the form
M
dyey = 27 M H(l =) 1+ 2,2)(1 = 2072)(1 + 2.z (19)
n=1

with M being the number of resonances, 2, and z; denoting the positions of zeros of
Sn for the type (a) resonance “n” on the upper and lower z-half-plane. respectively (one
value of the index n corresponds to one resonance). Now it is easy to obtain an expression
for Si; and the amplitudes of other coupled processes. As is knowrn, the 77 interaction

15 practically elastic up to the KK threshold, the contribution of the multiparticle states

12



(7. 6m) is negligible within the up-to-date experiment accuracy. This properis of 1he ==
interaction is satisfied by the background {18) and by the resonance part 191 wee Fio |
due to the symmetry of the poles and zeros with respect to the unit circie 11 the
scattering were elastic also above the KK threshold, there would be the syinnieri of 1o
poles and zeros with respect to the real axis. The symmetry of the whole picture rejari
to the imaginary axis ensures the property of the real analyticity. The function o, o
the form (19) gives resonances of the type (a). Modifications for the resorances of orer
types are evident from the discussion in section 1.1 and Table 1.

With formulae (15)-(19) we have analyzed the mr-scattering data in the enerps regions
0.6-1.89 GeV and from the threshold to 1.89 GeV [4]-[6 . In the first case the data of work
[23] are used, in the second case the experimental points of many works 23 21 wvarlabi
are taken. [n both the cases, we have obtained a satisfactory description (< it = 0o

and y?/ndf = 1.04. respectively) of the phase shift 89 and the elasticity paranicti:

AR

two resonances of the type (a) (fo(975) and f3(1500)). The following ze10 posinion- o
the z-plane corresponding to resonances “17 and 2”7 have been established 1o the s

analysis (0.6-1.89 GeV):

z = 1,2281 +0,15318:, zp = 0,72981 — 0. 24136
2y 2.8933 4 0, 59804z, 2y = 0.34796 — 0,05662 1.

(zero corresponding to the background, yo = 1.2634).

in the second analysis (from the threshold to 1.839 GeV):

2y = 1,2083 4 0, 17813, 21 =0,31163 — 0. 14893:.
2 = 3, 1173 + 0,85304:, 7y = 0,31332 — 0.097095:.

(yo = 4,2928).

So, in these analyses, the influence of the K'K threshold is taken into account expiicitiy
with the help of uniformizing variable 2. However, in the analysed energy region. there
are the threshold of the 77 channel, considerable couplings with which of the nvest
gated resonances are indicated by many quark models. and thresholds of other channeis
(n’, pp,ww), with which these resonances may be coupled. To take account of then effe:s

and also the effects of such phenomena, as the isospin breaking due to the A7 A 1miass

13

difference, the mixing of the fu(930) — «1(9830) masses and of the fu states. we have some-
what violated one of the conditions of the “elastic” 2-channel unitarity. namely, the third
condition. provided the first two are satisfied. In Table 3 the obtained parameter values of
poles on sheets Ly and Ly, are cited on the complex energy plane (/s = F, —iI',/2). The
value y*/ndf =~ 1.04 in the analysis from the threshold to 1.89 GeV is obtained if {from
157 used experimental points one rejects three points at energies 0.285. 03656 and 0.730

Ge\ which give an anomalously large contribution to x?. The description of the phase

Table 3.
Fnergy : J0(980) fo(1500)
: region Sheet EMeV | I'MeV E MeV I"MeV | \?/ndf

‘ 0,6-1.89 Li(11) [ 1000+5 18+6 155215 | 494+35 1,00
| 1
L Gev LI | 97148 | 152415 | 1516115 | 369+32

|
L0228 1.89 | Ly(11) 9962 5343 1640+£22 | 720134 1,32

1(le\r’ Lip(1T) | 1352£12 | 857446 | 155114 | 751138 | (1.,04)

shift og 1s practically the same in both the analyses (the curve in the first analysis starts
at 0.6 GeV and actually is laid on the depicted one), however, the elasticily-parameter
description seems to be somewhat worse in the second analysis (Iig.2). It should be
pointed out that the pole cluster of the f,(980) resonance is somewhat eroded, although
the quality of description is approximately the same in both the analyses and the second
describes satisfactorily the phase shift also near the threshold.

On the basis of formulae (15) with the parametrization (18) and (19). one can obtain
the predictions for coupled processes of the K'K scattering and =r -+ KK. In this
case, using the dp-function (18) assumes that the background of the isoscalar s-wave
KK scattering is completely defined by the background of the 7= scattering. In the
first approximation this supposition turns out to be reasonable, whereas in the enlarged
analysis of the data on these coupled processes a more detailed description may be required
6]

So. we have satisfactorily predicted the behaviour of the s-wave of the 77 — KK

14



360° § (Ma—aw)

270° ]
180° ]
90% /)

1.0 12 14
\s

Fig.2: The energy dependences of the phase shift (6 = 89) of the amplituie and
the elasticity parameter (1) in the scalar-isoscalar channel obtained on 1he basis of 1he
experimental data processing in the regions from 0.6 to 1.89 GeV (dashed (urvel and
from the wz-threshold to 1.89 GeV (solid curves). In the figure only certain 1ypica
experimental points are depicted.

process approximately up to 1.25 GeV (see Fig.3: experimental puints are taken from
works [25]-[27]). However, above 1.25 GeV, a considerable deviation from the experimental
data in the prediction for this process is seen where the influence of the 57 channel begins
to be noticeable. This indicates the necessity of explicit consideration of the 7 threshold.
Note also that the prediction on the basis of the second analysis gives the overestimated
values for [Sy,] even in the region from the KK threshold to 1.2 GeV However, a definite
success in the description of the rz -+ K'K process on the basis of the trst analysis gives
a chance to determine the constants of the f4(980) coupling with the 77 and K'K systems
through the residue of amplitndes at the pole on the sheet ;. Expressig the T-matrix

Cla the N matrix as

S = [ 4 2p"2Tp' 7, (20)

we write down the analytical continuations of their elements to £, 1 1erms of them on

the phvsical sheet L

'1‘(0) (1(0))2 /‘”‘
(1 g1} (V) a- (1) 2 ‘
= Hse 1 =1 - 2ip v YR (21)
S Ty S
Ihen. 1aking account of (21). we obtain
2 .2
Yar e . . 1 dgn . . . e
Tr/ =lpie; B Hm (1= 252)(1 + 20205, (22)
i< zaz]

For calculating g5, it is convenient to use the amplitude Ty then from the second

expression (217 it is seen that the desired residue is proportional to (y,.,.fugkﬁfo)z, lLe.

‘12 (12 8(]2 :
Jrrfo THRK - x 1 L3
fo VA K fo I 1( ; 1)72(71 ])’ < >

ir Ar [21]2

limﬁ(l —z27z2)(1 + 5,2)S9]. (23)

On the basis of formulac (22) and (23). the following values of the coupling constants
were obtained:
2

9z 9kE
TR 0.8 Gel? %& ~ 3,164 GeV? . (24)
m

4w
B Yrrfo/9kw g, 2 0,52, which corresponds to both the gqgg nature of f,(980) [8]-[10]

and the unitarized gg model [12].

2. The 3-channel approach.

Above we have already concluded that it is necessary to consider explicitly the g thresh-
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220°

180°

140"

(1/2) 1Sy,

Fig.3: Predictions for the phase (8;;) and the modulus of the isoscalar ~ wave matrix
element of the 7r — KK process as compared with the experimental data (1 23], 2

[26), 3 - [27]).

old that slightly affects the parameters of the f3(975) resonance (though gives further
information on it); however, it is of vital importance for higher-lving resonances.

Since in the 3-channel consideration it is impossible to map the % sheeted Riemann
surface onto a plane with the help of a simple function, we construct a -1-sheeted model of
the Riemann surface approximating the initial Riemann surface in accordance with our
approach of a consistent account of the nearest singularities on all the relevant Riemann
sheets. We neglect the influence of the rr-threshold branch point (however, unitarity on
the 77 cut is taken into account). In this case, the uniformizing variable can be chosen

das

w = ks + ka)/(mE — mi)"? (25)

It maps the model of the 8-sheeted Riemann surface onto the w-plane (Fig.4), divided

A Imes Fig.4: w-plane. The Roman
Wy numerals (L1I,... .VIII) denote
I I the images of the corresponding

sheets of the Riemann surface;

the thick line represents the

physical region (the points w,,

1and 1 are the 77, KK and ny

thresholds, respectively). The
—>- depicted positions of poles (%)
and of zeros (o) give the repre-
sentation of the type (a) reso-
nance in S;. The dashed lines
indicate a “pole-zero” symme-
try required for elastic unitarity
in the (wx, i)-region.

into two parts by a unit circle centered at the origin. The sheets Lo (1.12), L; (La), Las
iL13) and Lyyy (Ly) are mapped onto the exterior (interior) of the unit disk in the Ist,
2nd. 3rd and 4th quadrants, respectively. The physical region extends from the point
w, on the imaginary axis (7 threshold, |w,| > 1) down this axis to the point i on the
unit circle (KK threshold), further along the unit circle clockwise in the lst quadrant to
point 1 on the real axis (77 threshold) and then along the real axis to oc. The type (a)
resonance is represented in 51y by the pole on the images of Ly, L,;, L1335 and L3 and by

zeros symmetric to these poles with respect to the imaginary axis. The last “pole-zero”
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syminetry is required for elastic unitarity on the (w,. H-interval. In Fig i our oo notar o
of the sheets of the Riemann surface by the Roman numerals is used.

The Le Couteur-Newton relations are somewhat modified with takine acconnr o 1y
used model of the Riemann surface (note that on the w-plane the pomts o,

—wg, wy' correspond to the s-variable point so on sheets Lo(1). L,(IN . 7 N 1yl
0 f 2

[+]
respectively): 360 -
, d*(~w") , d{—w™ ) ) diw o
Sppo= - ( — . Sy = Sy = - - e 60
dlw) d{w) dive 0
( (w) 270°L ]
d*(w=h) d"{—w ) di s =3
Dy = ——— = Dyy = —- . D= = | |
d(w) d{w) dires + ]
Since the used model Riemann surface means only the consideration v the serp) <her - 180°|
of the initial Riemann surface nearest to the physical region. then in 1his case there « . "
point in saying for the property of the real analyticity of the amplitude~ [he 308 e ol
A 30 - gfo
unitarity requires the following relations to hold for physical w valies 4 7‘—&"1 X L X . ) N
07 0.9 1 13 15
di- ) < Jdiw)l, di-wty < ()l e ) < o n
|d(w™ ") = Jd(—w*™")| = |d(—w)| = |d(w)]. N
Taking the d-function as d = dgd,., where the resonance part has the forn. s rz°

=1 i=1 F

05L

et = T [ + g : { IR -

(M is the number of resonances: —wy, (¢ =1.---,4) are pole positions cortesponding

the type (a) resonance) it is easy to obtain expressions for the matrix clement -

On the basis of formulae (26) and (29) we analysed all available data on e oo i

07 09 11 13 15

s-wave mw scattering in the energy region 0.7-1.6 GeV [3] with taking aceonmt o0 AR ard i
7 thresholds. The background was taken in the elastic form:

2B 2i68(s) By — .
Si=e ’ ) = at b Fig.5: The phase shift and the elasticity parameter of the scalar isoscalar channel of the

77 scattering obtained on the basis of the x? analysis of the experimental data. Separate
(from the analysis: a = —1,376 + 0,056, b= 0,6 £ 0.0025).

characteristic experimental points are depicted.
Satisfactory description (x?/ndf & 1.12 if the point at 0.91 GeV that gives ai anvimajon.sis
large contribution to x? is rejected) of experimental data is achieved for the phase st
and the elasticity parameter with two resonances (Fig.5). The pole positions of resotan es
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on different sheets in the energy plane ( /s, = E, =1 /2 ) are presented o Lante

4. Note that the parameters of the f3(980) meson were changed somewhat as conipaied

Table 4.
f(980) Fo(1500)
Sheet E MeV I'MeV . MeV IoMed
Ly(11) 1017 £ 5 3BT 1496 + 16 [0 T S )

Ly (1) ] 1031 £ 16 128 + 30 1156 £ 36 [RIUEEEE R
Lyas(V1) | 1025 £ 8 23+ 10 1502 £ 20 6111 du

Li(VIL) | 1139 £ 60 108 + 42

to our 2-channel analysis {4] (to make the f,(980) cluster more compact — As '~ alrcady
discussed in work {4], this should not influence the qualitative conclusion about 11 fo 986
nature but shows a rather strong coupling of this resonance with the oy ~vstem and the
importance of taking account of the nzn-channel influence to obtain the reliable values
of the f,(980) parameters. The considerable coupling of the fo(980) meson with the oy
system can manifest itself experimentally, e.g.. in crossing processes. such a~ =1 and Ay
scattering, in the exchanges of this meson. The considerable shift of tne fouR0 pole
on sheet Ly is stipulated by a great coupling between =x and 77y channcls whereas the
coupling between 77 and KK channels is suppressed strongly by the phase-space volume
(owing to proximity of the fo(980) mass to the KK threshold) wherebyv 1t s acconnted
for a smaller shift of the pole on Lj;. A displacement of the pole on L. refated with
influence of the ny channel, is compensated by the effect of coupling hetween the A A
and n7n channels which displaces the pole to the opposite direction {which 1< explained by
the corresponding signs of the channel momenta when continuing onto sheet £, Man
authors have already noted that the f5(980) width cited in tables [1] is a visible vne. the
total width of this resonance is ~ 500 MeV.

As to the second resonance, which we denoted symbolically as fu(1500}. the analvsis
of experimental data shows obviously a resonance manifestation. To discuss reallyv i1s

parameters, one must explicitly take account of the 7’ threshold (and possiblv pp and

21

<w . Notice also that this analysis does not reveal the f3(1590) resonaunce by virtue of its
comparatively weak coupling with the == channel though, of course. this resonance must
affect the results due 1o its rather considerable couplings with the 5y and ' channels.
Other scalar resonances in the considered energy region (if they existi should have a
relatively weak coupling with the 77 system, i.e. they should be described by clusters
without zeros on the sheet Ly in Sp;.

Note that processing experimental data we ensured the fulfilment of the unitarity
conditions (27) allowing certain violations in conditions (28). This breakdown of the
“elastic” 3-channel unitarity results in additional branch points in the matrix elements
S le #7) outside of the physical region but it gives a chance to take into account
effectively the influence of effects not included explicitly and to avoid the apearance of
fictitious states. Notice that if one disregards the iy threshold, i.e. sheets Lys, Ly, Ly
and 4. then poles on the neglected sheets Lz and Ligz turn out to lie on Ly and La,

respectively. imitating a supplementary state [3].

4 CONCLUSIONS

In the present work, the multichannel approach to studying resonances in the coupled
processes 1s given with the aim of determining their QCD nature. The V-channel for-
m s {and. as examples, 2- and 3-channel} is presented, the more so as in the approach
of the consistent account of the nearest (to the considered physical region) singularities
on all the Riemann sheets an N(> 3)-channel problem always can be effectively reduced
to the 2- and 3-channel problem. The given consideration is required because it gives
a possibility to apply such first principles, as analyticity and unitaritv. immediately to
analvzing the experimental data and. as a consequence, to obtain a model-independent
information on multichannel resonances and their coupling constants. The formula of an-
alytical continuation of the N-channel S-matrix to the unphysical sheets of the Riemann
surface is given which is a solution of the N-channel problem in the sense of offering a
chance to predict (on the basis of analysis of one process) the coupled-process amplitudes
on the uniformization plane of the S-matrix at a certain conjecture about the background.

Aunother possibility to have such a solution of the N-channel is the Le Couteur - New-
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ton relations [22] used also in this work. This is demonstrated for the 2 and 3 channe;
problems.

The resonance representations by pairs of complex-conjugate clusiers ot poles an
zeros on the Riemann surface are discussed. and the conception of standard clustiis ax

model-independent characteristics of the resonance is developed. The fact that the ptias

shift crosses the value nr /2 is not a sufficient condition for the state existence tan example

is the old ¢(750)). This condition provides the description in terms of one of <tanedara
clusters. The cluster kind is determined by the analvsis of experimenta dati and ~ s
to be related to the nature of a resonance. Falling out a pole (or polesi fron: o ciuster 1
the analysis requires a further explicit consideration of some effects. It is <hown that 11
pole-cluster representation gives not only a qualitative characteristic of the resonans os
also a chance of a quantitative description of the coupled-process amplitndes [ 1tis  aae
all the complifications of the analytical structure related with a finite wicth of resonances
and with the influence of crossing channels and of high-energy “tails™ ar accunmia e
In a quite smooth background, at least, in the scalar sector of the psemdoscilar nieon-
scattering.

Both open and closed channels participate in forming the resonance poie cbisiere v
shown that the neglect of the important (even energetic-closed} channel i the Ricrnan,
surface structure gives rise to the imitation of supplementary states of 4 ~onietnes nia
miliar nature (such as a glueball); in the (practically used in analyses) reduced A i
[21] this leads to an additional pole on the real axis. Note that depending on *he « fnste
type the resonance may be represented in the A-matrix also by poles more thict
{for example, when zeros on the physical sheet are in S-matrix elements o twe o e
processes, by two poles on the real axis). To distinguish these cases. one st < e
pole arrangement on the Riemann surface. The multisheeted structure o e Rier apos
surface is taken into account through the choice of proper uniformizing variabies

The method is exemplified with the isoscalar s-wave channel of (oupicd processes
71 — 7, KK and scalar resonances. It is shown that for a physicaliv: sazisfa .
description of these processes in the energy region below 1.5 GeV. the yr ~hiest o -

be taken into account explicitly. In the 2- and 3-channel considerations of 16e = <catter 1w

in the energy region 0.6-1.39 Ge\ and 0.7-1.6 GeV, respectively, two resonances ( fo(980)
and f,(1500)) turned out to be sufficient. The obtained values of the fo(975) coupling
constants with the 77 and AR systems correspond to the qggg nature of fo(975) [8, 9]
or the unitarized gg model [12]. To discuss the f3(1500) parameters. one must explicitly
take into account at least the nn’ threshold. Other scalar resonances 1 the considered
energy region should have a relatively weak coupling with the mr svstenii.e. they should
be deseribed by clusters without zeros on the sheet Lg in Syy.

A few words also about the conjectural scalar state below 900 Me\' A relatively recent
amplitude analysis (28] of data on the 7*ny — 7¥%x7p process suggests the existence of
the scalar meson with a mass 750 MeV and a width of 100-150 MeV. Models of the
Nambu  Jona-Lasinio type (see, c.g.. [29, 30]) also predicl a meson with mass ~ 700,
admnttedly. very wide. 1t is amusing that if this object were identified as a glueball, then
e w7 width according to the Ellis-Lanik formula [31] obtained in an approach similar to
the NJL approach would be ~ 150 MeV. Our analyses do not see this state. Evidently,
(s worth 1o carry out a special analvsis with an explicit account of the near left-hand
branch poimnt

It seems also that the described test of the resonance presence must be applied to a
number of particle sectors, above all, to the scalar one at higher energies.

Note in conclusion that the pole-cluster representation of resonances was used also in

~tudying nucleon isobars in work [32).
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