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Abstract—Due to a system-inherent limitation, conventional
synthetic aperture radar (SAR) is incapable of imaging a wide
swath with high geometric resolution. This restriction can be
overcome by systems with multiple receive channels in combina-
tion with an additional digital signal processing network. So far,
the application of such digital beamforming algorithms for high-
resolution wide-swath SAR imaging has been restricted to multi-
channel systems in stripmap operation. However, in stripmap
mode, the overall azimuth antenna length restricts the achievable
swath width, thus preventing very wide swaths as requested by
future SAR missions. Consequently, new concepts for ultrawide-
swath imaging are needed. A promising candidate is a SAR system
with multiple azimuth channels being operated in burst mode.
This paper analyzes innovative ScanSAR and Terrain Observation
by Progressive Scans (TOPS) system concepts with regard to mul-
tichannel azimuth processing. For this, the theoretical analyses,
performance figures, and SAR signal processing, which had previ-
ously been derived for multichannel stripmap mode, are extended
to systems operating in burst modes. The investigations reveal that
multichannel ScanSAR systems enable the imaging of ultrawide
swaths with high azimuth resolution and compact antenna lengths.
These considerations are embedded in a multichannel ScanSAR
system design example to demonstrate its capability to image an
ultrawide swath of 400 km with a high geometric resolution of
5 m. In a next step, this system is adapted to TOPS mode oper-
ation, including an innovative “staircase” multichannel processing
approach optimized for TOPS.

Index Terms—High-resolution ultrawide-swath synthetic aper-
ture radar (SAR) imaging, multichannel azimuth processing,
multichannel burst-mode operation, ScanSAR, TOPS.

I. INTRODUCTION

IN CONVENTIONAL synthetic aperture radar (SAR) sys-

tems, a high geometric resolution in azimuth and a wide-

swath coverage impose contradicting requirements on system

design: A high azimuth resolution requires a large Doppler

bandwidth, which has to be sampled with a sufficiently high

pulse repetition frequency (PRF). In contrast, the unambiguous

swath width is directly related to the separation of subsequently

transmitted pulses, meaning that a required swath width limits

the PRF value. This system-inherent limitation can be over-
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come by innovative SAR systems with multiple receive aper-

tures. The basic idea is then to collect for each transmitted pulse

additional samples. If the receivers are arranged in along-track

direction, this directly translates into an increased effective

sampling rate on receive. This allows for a higher Doppler

bandwidth and thus an improved geometric resolution, or a

reduced PRF on transmit enabling a wider swath can be em-

ployed without degrading the resolution. Independently of the

chosen approach, the specific PRF imposes a certain azimuth

antenna length which limits the illuminated Doppler spectrum

to the sampling rate. In addition, in multichannel systems, the

timing requirement for uniform sampling further constrains

the antenna length as it has to ensure spatial sample positions

that deviate not too strongly from the uniform distribution [1],

[2]. As an example, the studies in [2] and [3] presented a

multichannel SAR system design which enabled to image a

swath of 100 km with 1 m geometric resolution in stripmap

mode. This allowed for a maximum PRF of ∼1.4 kHz leading

to an antenna length of 11.2 m.

Future SAR missions will require a complete and frequent

coverage of the Earth with a reasonably high geometric reso-

lution. To enable such a “mapping machine,” a resolution of

well below 10 m is required in combination with a swath of

several hundred kilometers. As an example, a complete imaging

of the Earth with a weekly revisit time requires a swath width of

400 km. A timing analysis of such a system in stripmap mode

operation reveals a maximum PRF around ∼400 Hz, which is

directly driven by the required swath width. In such a case,

a suitable antenna length for stripmap operation would be on

the order of ∼35–40 m, which is, of course, far too long to be

realized. Consequently, conventionally operated multichannel

SAR systems provide a high resolution, but the antenna length

limits the achievable swath width (cf. Fig. 1, left). On the

other hand, burst modes, e.g., ScanSAR [4], [5], TOPS [6],

or the multibeam burst mode (MBBM) [7], achieve a very

wide swath by continuously switching the antenna footprint

between several subswaths. In ScanSAR mode, the footprint is

steered in range dimension to cover all subswaths subsequently

(cf. Fig. 1, middle left). A more sophisticated burst mode is

TOPS (cf. Fig. 1, middle right), where, in addition to the switch-

ing in range, a steering of the footprint in azimuth dimension is

done. Both modes provide an overall swath width that consists

of all subswaths. Unfortunately, this is at the cost of reduced

illumination time per subswath entailing a coarsened azimuth

resolution, thus excluding the capability of high-resolution

imaging.

In conclusion, advanced concepts are needed for the imag-

ing of an ultrawide swath of several hundred kilometers with
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Fig. 1. (Left) Multichannel reception for high-resolution wide-swath imaging. Each Rx subaperture and the single transmitter illuminate the region marked by
the bright (yellow) footprint. After digital combination of all received signals, the dark (red) pencil beam can be formed. Middle shows the ultrawide swaths
obtained by burst-mode systems as ScanSAR (middle, left) and TOPS (middle, right) with effectively a single Rx and Tx aperture. The shaded (yellow) area
indicates the jointly steered Tx/Rx beam, while the dotted area represents the steering range. (Right) Multichannel system in burst-mode operation (exemplarily
ScanSAR) combining high resolution with ultrawide swaths.

high azimuth resolution well below 10 m. In this regard, the

innovative operation of multichannel SAR systems in burst

modes was suggested in [7]–[10] and is shown in Fig. 1 on

the right. A detailed investigation of the multichannel burst

modes with focus on ScanSAR and a later extension to TOPS

mode will be given in this paper. In the following, multichannel

configurations with a single transmit (“Tx”) antenna and several

receiving (“Rx”) antennas are considered, where Tx and Rx

can be realized on separate platforms as well as separately on

the same platform or even integrated in the same antenna by

transmit-and-receive (T/R) module technology.

This paper is organized as follows. Section II briefly sum-

marizes the multichannel azimuth processing, integrates the

1-D processing approach into a regular 2-D SAR scheme, and

recalls the analytic expressions for the most important perfor-

mance parameters in stripmap operation. Then, Section III turns

the focus to burst modes and starts with recalling the timing as

well as the characteristic relation between the target’s position

and its reflected Doppler signal spectrum. As a novelty, thor-

ough theoretical analysis extends the analytic expressions for

multichannel performance parameters to burst-mode operation.

In this regard, in particular, the dependence of the reflected

Doppler spectrum on the target’s position will be investigated

with respect to the Doppler-frequency-dependent multichannel

processing network (cf. Sections III-B–E). This is followed

by a system design example of an innovative multichannel

ScanSAR system in Section IV which enables the imaging of a

400-km-wide swath with a geometric resolution of 5 m. In this

context, the intricate connection between multichannel system

design and the various parameters becomes clear. In a next

step, the multichannel TOPS mode is investigated, starting with

the presentation of an adapted multichannel processing strategy

which is followed by a performance analysis (Section V). This

paper closes with a discussion containing an outlook on future

issues like the application to reflector-based systems with a

feed array and the extension to fully active SAR systems with

multiple transmit apertures.

Fig. 2. Block diagram of a multichannel SAR system with “reconstruction”
of N subsampled channels by filters Pj(f).

II. MULTICHANNEL STRIPMAP OPERATION

This section briefly recalls the multichannel reconstruction

algorithm and embeds the 1-D azimuth processing into a reg-

ular 2-D processing scheme as given in Section II-B. The

following sections then summarize the theoretical description

of multichannel SAR performance in stripmap operation. In

this context, a figure of merit for the mapping capability can

be defined by the image size and its geometric resolution. The

image quality is then quantified by the azimuth ambiguity-

to-signal ratio (AASR) and the noise-equivalent sigma zero

(NESZ) which directly depends on the signal-to-noise ratio

(SNR). The AASR gives a measure of how strong ambiguous

contributions of a specific target disturb the image, while the

NESZ describes how system noise limits the system’s capabil-

ity to image weakly reflecting targets.

A. Multichannel Azimuth Processing

It was shown in [1] that a multichannel SAR in azimuth

can be interpreted as a linear system of filter functions which

characterize the individual apertures’ impulse responses in am-

plitude and phase in dependence on the Doppler frequency f .

Assuming the same azimuth signal envelope pattern A(f) for

all N channels j and applying quadratic phase approximation

of the azimuth signals then lead to the system model in Fig. 2.
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Us(f) characterizes the scene, while Hs(f) is the azimuth

impulse response of a single-aperture system, yielding U(f)
which gives the equivalent monostatic SAR signal. The func-

tions Hj(f) represent the channel between the transmitter

(Tx) and each receiver j (Rxj) with respect to the monosta-

tic impulse response, resulting in the respective multichannel

SAR signal Uj(f). Assuming a single transmitter and several

receiver channels, the physical along-track distance between

Rxj and Tx is given by ∆xj , while λ represents the carrier

wavelength, R0 represents the slant range, and vs and vg

represent the velocities of the sensor and the beam on ground,

respectively

Hj(f)=exp

[

−j ·
vg

vs

·
π · ∆x2

j

2 · λ · R0

]

· exp

[

−j · 2π · f ·
∆xj

2 · vs

]

.

(1)

After reception, each signal is sampled in azimuth by the

PRF, and hence, the maximum signal bandwidth is N · PRF
according to the effective sampling rate. A compact character-

ization of the whole system is then given by the matrix H(f),
where one should note the dependence on the parameter PRF .

See (2) at the bottom of the page.

According to a generalized sampling theorem, N indepen-

dent representations of a signal, each subsampled at 1/N of

the signal’s Nyquist frequency, allow for the unambiguous

“reconstruction” of the original signal from the aliased Doppler

spectra of the N representations. This means that any band-

limited signal U(f) is uniquely determined in terms of the

responses Uj(f) or, equivalently, by the respective functions

Hj(f). This is valid independently of the spatial sample dis-

tribution as long as the samples do not coincide in space [11],

[12]. Then, the inversion of H(f) yields a matrix P(f) that

contains in its rows N functions Pj(f) each representing the

filter for the multichannel processing of channel j

P(f) = H
−1(f). (3)

The original signal U(f) is then recovered by filtering each

channel j with its appropriate “reconstruction” filter Pj(f)
and subsequent coherent combination of all weighted receiver

channels (cf. Fig. 2). To complete Fig. 2, the conventional

monostatic SAR focusing filter Pmf(f) is included.

B. Two-Dimensional Multichannel Reconstruction

Section II-A investigated the unambiguous reconstruction of

the 1-D azimuth signal, which has to be embedded in a 2-D data

reconstruction approach to derive a valid 2-D SAR processing

scheme [13]. In this context, one has to consider that recon-

struction of the aliased receive signals has to be applied before

range cell migration correction (RCMC) as this requires a

nonambiguous Doppler spectrum. This will unavoidably result

in a reconstruction error, which is governed by the following

two aspects: First, possible differences between the channels’

range histories have to be taken into account, and second, the

impact of range migration on the reconstruction is analyzed.

As derived in detail in the Appendix, the different range

histories and the errors introduced by applying the azimuth

reconstruction subsequently for each range line are negligible

in single-platform systems. Thus, a direct application of the 1-D

multichannel reconstruction algorithm in a 2-D processing ap-

proach is possible to such systems without further correction

steps. In multiplatform constellations, a large receiver sepa-

ration might lead to a nonnegligible slant-range offset. This

requires compensation which can be achieved by an appropriate

range shift of the data which can, e.g., be incorporated in the

range compression. After correction, multichannel reconstruc-

tion can be applied with minor errors similar to single-platform

systems. In summary, the isolated 1-D consideration of the

multichannel reconstruction represents a valid approximation

for the application of the algorithm to 2-D data, according to

the following processing flow: After range compression and—if

necessary—applying a shift to each channel’s data, line-by-

line reconstruction is carried out. After complete reconstruction

of all range bins, conventional SAR processing follows, i.e.,

single-channel RCMC is performed, and finally, monostatic

azimuth focusing results in the SAR image [13].

C. Signal Power

The signal power ps is defined as the mean energy of the

unambiguous azimuth signal U(f), which is limited by the

system bandwidth in azimuth IS = N · PRF . This spectral

limitation is expressed by the rectangular window function

rect(f/IS), and the calculation of the mean value is indicated

by the operator E[·]1

ps = E

[

∣

∣

∣

∣

U(f) · rect

(

f

IS

)∣

∣

∣

∣

2
]

. (4)

Assuming azimuth focusing with a processing function of

unity gain on a defined Doppler bandwidth BD ≤ IS, the signal

power is described by ps,BD
, where the mean value is still

calculated on the original interval IS

ps,BD
= E

[

∣

∣

∣

∣

U(f) · rect

(

f

BD

)∣

∣

∣

∣

2
]

, BD ≤ IS. (5)

1For deterministic signals, the mathematical operator E[·] is identical to
an integration over the interval IS, normalized by its width N · PRF or the
respective number of samples. For stochastic processes, E[·] represents the
expectation value. As in both cases E[·] gives a measure of the power
the same operator symbol is used.

H(f) =

⎡

⎢

⎢

⎣

H1(f) · · · HN (f)
H1(f + PRF ) · · · HN (f + PRF )

...
. . .

...

H1 (f + (N − 1) · PRF ) · · · HN (f + (N − 1) · PRF )

⎤

⎥

⎥

⎦

(2)
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D. Residual Reconstruction Error and Azimuth Ambiguities

As discussed in [2], energy outside the band IS =
[−N · PRF/2, N · PRF/2] of the original signal spectrum is

not cancelled by the algorithm and disturbs the unambiguous

reconstruction of the multichannel SAR signal. After focusing,

this will give rise to azimuth ambiguities in the SAR image,

which are governed by the aliasing components of the signal

and the weighting by the reconstruction filter functions Pj(f).
The system band IS is split into N intervals Im on which

the filters Pj(f) are defined. In order to calculate the residual

ambiguities, all subbands Im with m > m0, where the signal is

not properly reconstructed, have to be included. The complete

ambiguous energy due to aliasing pa is obtained by considering

all individual ambiguous contributions after reconstruction,

where the factor two accounts for both signs of k. The index k
indicates a shift by f = k · PRF caused by the sampling. Note

that Pj(f) varies with the PRF, thus introducing a dependence

of the ambiguous power on this parameter

pa = E

⎡

⎣

∣

∣

∣

∣

∣

∣

2 ·

∞
∑

k=1

⎛

⎝Uk(f) ·

N
∑

m=m0

N
∑

j=1

Hjk(f) · Pjm(f)

⎞

⎠

∣

∣

∣

∣

∣

∣

2⎤

⎦ .

(6)

After focusing, the respective processed Doppler bandwidth

BD and the associated low-pass filtering are included, yielding

the ambiguous power in the image pa,BD

pa,BD
= E

[∣

∣

∣

∣

∣

2 ·
∞

∑

k=1

⎛

⎝Uk(f) ·
N

∑

m=m0

N
∑

j=1

Hjk(f) · Pjm(f)

⎞

⎠

·rect

(

f

BD

)

∣

∣

∣

∣

∣

2]

. (7)

The AASR (AASRN ) is then obtained straightforward by

combining (7) with (5).

E. SNR Scaling Factor Φbf and NESZ

The reconstruction algorithm is based on an inverse network

of filters. Depending on the spatial sample distribution defined

by sensor velocity vs, antenna dimensions, and PRF, this might

result in a degradation of the SNR. This influence of the digital

processing network on signal and noise power is quantified by

the SNR scaling factors Φbf and Φbf,BD
, which refer to the

data before and after focusing with a Doppler bandwidth of BD,

respectively (cf. Fig. 3).

Assuming thermal noise to be the dominant source, the

variation of the SNR normalized to the value obtained for

uniform sampling: i.e., PRF = PRFuni, has been derived in

detail in [3] and is given in (8). Note that this expression is

valid not only for the multichannel reconstruction algorithm

Fig. 3. Azimuth processing block diagram giving the SNR scaling factors
before (Φbf) and after focusing (Φbf,BD

) of the SAR image.

but also for arbitrary filter functions Pj(f). Again, the filter’s

dependence on the PRF should be kept in mind.

Φbf :=
SNRel/SNRout

(SNRel/SNRout)|PRFuni

= N ·

N
∑

j=1

E
[

|Pj(f)|2
]

.

(8)

Taking into account the focusing of the data, the SNR scaling

factor of the image, i.e., Φbf,BD
, is obtained. Assuming a sim-

plified model where the signal power is completely contained

within the spectral band BD, the variation of the SNR in the

SAR image induced by the multichannel processing is given as

follows:

Φbf,BD
= N ·

N
∑

j=1

E

[

∣

∣

∣

∣

Pj(f) · rect

(

f

BD

)∣

∣

∣

∣

2
]

. (9)

In a final step, the well-known expression for NESZ in

SAR (cf. [14] and [15]) is adapted to a multichannel system

by adding the SNR scaling factor of the reconstruction filter

network Φbf,BD
. Note that Φbf,BD

only describes the relation

between the output and input SNRs at the respective PRF com-

prising a possible gain by oversampling in the Doppler domain.

In contrast, it does not consider a possible variation of SNRel

with the PRF. To account for this, an additional factor ΦNESZ

might become necessary. Assuming, e.g., a constant duty cycle,

the signal power remains constant as—considering exemplarily

a rising PRF—the decreased energy per sample is compensated

by the increased number of samples per time. In addition, the

noise energy per sample remains constant, meaning that the

noise power rises according to the PRF. As Φbf,BD
is normal-

ized to the uniform case, one obtains ΦNESZ = PRF/PRFuni,

which directly represents the degradation of the input SNR per

sample with increasing PRF. For a constant processed Doppler

bandwidth, this “loss” is directly compensated by the obtained

“gain” due to a higher oversampling, as mentioned earlier. This

leads to the expression (see (10), shown at the bottom of the

page) for the image NESZ in multichannel SAR, taking into

NESZ =
256 · π3 · R3

0(Θi) · vs · sin(Θi) · k · T · Brg(Θi) · Φbf,BD
· ΦNESZ · L · F · Laz

Ptx · Gtx(Θi) · N · Grx,j(Θi) · λ3 · c0 · dc
(10)
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account the possible effect of a digital processing:2 with the

transmitted peak power Ptx, the incident angle Θi, the transmit

antenna gain Gtx, the chirp bandwidth Brg, and the duty cycle

dc defined by PRF · τ . The reflected signal is then received

by N apertures of gain Grx,j , each. L accounts for all power

losses (ohmic, system, atmospheric, etc.), while Laz gives the

azimuth loss factor [17]. The thermal noise power is quantified

by the receiver noise figure F and k · T · Brg, where k is

Boltzmann’s constant and T is the system’s equivalent noise

temperature. Note that the effective sampling to determine the

overall number of focused pulses is given by N · PRF , while

the duty cycle dc contains only PRF · τ . In consequence, an

increased signal power by a factor of N with respect to a single-

channel system is obtained.

III. MULTICHANNEL BURST-MODE OPERATION

A. ScanSAR Timing

In order to achieve a required azimuth resolution δaz, the nec-
essary illumination time TB,i or corresponding Doppler band-
width BB of a single burst is given in the following equation.
The index “i” accounts for the varying beam velocity and mean
slant range of the respective subswath and the consequentially
varying illumination time for a constant BB.

TB,i =
λ · R0,i · BB

2 · vs · vg,i

≈
λ · R0,i · 0.89

2 · vs · δaz

. (11)

As the dependence on the subswath is governed by R0,i

while vg,i varies nearly negligibly, the dependence of the beam
velocity will not be explicitly expressed in the following.
Nevertheless, the varying vg is accounted for in the performed
simulations.

Next, the cycle time TC that defines the time between two
subsequent illuminations of the same subswath is simply deter-
mined by the sum of all burst times

TC =

NB
∑

i=1

TB,i. (12)

In addition, the timing has to ensure for every single target
a continuous illumination of time TB,i by the azimuth antenna
beam which is given by the angle Θaz,i, as expressed by (13). In
other words, Θaz,i represents the maximum angle under which
signals from subswath i are received, and thus, it defines the
azimuth system bandwidth.

TC =
R0 · Θaz,i

vg

− TB,i. (13)

Combining (12) and (13) and replacing Θaz,i by the corre-

sponding bandwidth BD,i allow for relating the overall azimuth

2This assumes a scene of distributed scatterers, imposing the velocity vs

to relate illumination time and synthetic aperture length with regard to the
received signal power. The beam velocity on ground vg would be appropriate
for pointlike targets [16]. As vg < vs holds true, this provides a lower bound
for the signal power, and consequently, (10) provides a worst case estimation
of the NESZ.

Fig. 4. Target signal spectrum (Doppler domain) in (top) ScanSAR mode
and (middle) TOPS mode for two targets at different positions. For TOPS,
the snapshot at a specific time is given in dashed style, while the effectively
resulting envelopes for signal and ambiguities are given by solid lines and
consider the weighting by the shrunk pattern.3 The respective band of a specific
target depends on its position that entails a center frequency f0,t. Respective
ambiguous bands are marked in black. (Bottom) For comparison, the spectrum
for stripmap mode is shown.

bandwidth of subswath i, i.e., BD,i, with the burst bandwidth

BD,i =
2 · vs

λ
· sin(Θaz,i) ≈

2 · vs · vg

λ · R0

· (TC + TB,i)

=BB +
2 · vs · vg

λ · R0

· TC. (14)

If TC is approximated by a mean burst time TB and NB repre-

sents the number of bursts, the following simplified expression

can be derived:

BD = (NB + 1) · BB. (15)

Note that BD and BB are connected by a factor NB + 1,

although the system bandwidth is distributed to only NB bursts,

i.e., the overall swath compared to a stripmap system will be

increased by a factor of NB while the resulting coarsening of

the azimuth resolution will be in the order of NB + 1.

B. Burst-Mode Target Signal Spectrum

It is well known that the target signal spectrum depends

on the target’s position as this defines the angle under which

the target is illuminated by the antenna (cf. Fig. 4). In

3In contrast to ScanSAR and stripmap modes, the Doppler signal envelope
cannot be given straightforward for TOPS as it depends also on azimuth time.
For the time–Doppler frequency characteristic in TOPS, see Fig. 13, which
incorporates the characteristic shrunk pattern due to the azimuth beam steering
of TOPS.
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Fig. 5. Doppler spectrum (magnitude) of multichannel processing functions
and spectral bands covered by targets at two different positions, namely,
(light gray) “1” and (dark gray) “2,” respectively.

consequence, targets at different positions yield echoes with

different Doppler characteristics, both for ScanSAR and TOPS.

This means that the target position within the burst can be

“translated” to a “target center frequency” denoted by f0,t that

represents the mean frequency of the Doppler spectrum of

width BB reflected by the target during a burst. To provide a

consistent notation in the following, f0,t will be used when re-

ferring to the position-dependent characteristics in burst-mode

operation.

The maximum f0,t is obtained for targets at the outermost

position within the antenna main beam. Taking into account

the signal bandwidth BB and the equivalent azimuth bandwidth

BD,i of subswath i, the respective maximum f0,t is expressed

by (16). Note that the index i is omitted for reasons of succinct

notation while keeping in mind the dependence on the respec-

tive subswath.

±f0,t,max = ±
BD,i

2
∓

BB

2
. (16)

In a further step, the multichannel processing of the burst-

mode data is investigated. The magnitude of the Doppler spec-

trum of the reconstruction filter functions Pj(f)—exemplarily

for a nonoptimum PRF—is shown in Fig. 5. The spectrum

shows a staircase-like behavior and is subdivided into N sub-

bands of different amplitudes, which might vary strongly. In

general, the more the spatial sampling in azimuth becomes

nonuniform, the more the variations become strong. Consider-

ing the target signal spectra derived earlier, it becomes obvious

that—in contrast to stripmap operation—ambiguities and noise

disturbing the respective target are “weighted” differently by

the respective multichannel reconstruction while ensuring an

unchanged desired signal. In consequence, the performance

figures become dependent on the target position.

C. Burst-Mode Signal Power

The signal power in ScanSAR operation is governed by the

illumination time TB, resulting in a bandwidth BB. In addition,

signal power varies with the target position represented by

the target center frequency f0,t (“scalloping”) according to

the respective illumination intensity, as shown in Fig. 4, top.

Consequently, the received spectrum Bs of a pointlike target

is characterized by a bandwidth BB around a varying center

frequency f0,t
4

Bs =

[

f0,t −
BB

2
, f0,t +

BB

2

]

. (17)

The corresponding signal power ps,Bs
resulting from the

respective band Bs can then be expressed by

ps,Bs
= E

[

|U(f) · W (Bs)|
2
]

(18)

where W (Bs) represents a rectangular window function con-

fining the Doppler spectrum Bs. In the following, basically all

relations derived for stripmap imaging can be directly trans-

ferred to ScanSAR mode by replacing the dependence on BD

by the respective band(s) Bs,i. In this context, it should be kept

in mind that this introduces an additional dependence on the

target position, which is represented by f0,t.

Furthermore, it should be noted that the aforementioned

considerations are valid for the ScanSAR mode. Regarding the

TOPS mode, the scalloping is mitigated as only the antenna

characteristics of the single elements used to effectuate the

azimuth steering have to be considered when evaluating the loss

of peak power with varying target position [18]. In addition, the

effectively shrunk pattern caused by the steering will affect the

signal power.

D. Azimuth Ambiguities in Burst-Mode Operation: AASRN,B

As presented in Section II-D, the residual azimuth ambigu-

ities in the SAR image are governed by the aliasing contribu-

tions in the originally received signal in combination with a

possible amplification due to the weighting by the reconstruc-

tion filter functions Pj(f) of the digital processing network.

Consequently, (7) is modified replacing the dependence on BD

by W (Bs), which restricts the spectrum to the burst-mode

signal. One obtains the following expression for the azimuth

ambiguous power pa,Bs
resulting from the band Bs:

pa,Bs
= E

[∣

∣

∣

∣

∣

2 ·

∞
∑

k=1

⎛

⎝Uk(f) ·

N
∑

m=1

N
∑

j=1

Hjk(f) · Pjm(f)

⎞

⎠

·W (Bs)

∣

∣

∣

∣

∣

2]

. (19)

The ratio of the respectively considered signal and ambigu-

ous powers then yields the AASR in burst mode AASRN,B

according to

AASRN,B =
pa,Bs

ps,Bs

. (20)

Hence, besides the well-known varying signal power

(scalloping), the use of different subspectra corresponding to

4Depending on the timing, multiple bursts from the same target may be
received, e.g., to obtain multiple looks. In the following, exemplarily, only a
single burst will be considered, keeping in mind that, for multiple bursts, the
derived expressions can be easily extended by a simple summation over the
individual bursts.
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TABLE I
REQUIREMENTS AND CONSTRAINTS FOR A

MULTICHANNEL SCANSAR SYSTEM

different target positions within the burst will result in a vari-

ation of the residual azimuth ambiguities of these targets. This

yields a scallopinglike effect for the AASRN,B since it varies

with f0,t as can be seen by the dependence of the ambiguous

power on Bs [cf. (19)]. Although (19) is not valid for TOPS,

also, this mode will suffer a scaling depending on the target

position due to the frequency dependence of the filters Pjm(f).

E. SNR Scaling in Burst-Mode Operation: Φbf,B

Equivalent to the AASRN,B, the resulting SNR is governed

by the considered parts of the Doppler spectrum given by the

band(s) Bs that determine the signal power ps,Bs
according to

(18) and Section III-C. The noise scaling both in ScanSAR

and TOPS is expressed by (21), where the input noise power

is denoted by pn,el while pn,Bs
describes the output noise

power. The Doppler band Bs is defined by the specific target

position by this introducing a scalloping with the variation of

the subband.

pn,Bs

pn,el

= N · F ·

N
∑

j=1

E
[

|Pj(f)|2 · W (Bs)
]

. (21)

IV. SYSTEM DESIGN EXAMPLE–MULTICHANNEL SCANSAR

This section gives a ScanSAR system design example to

demonstrate the applicability and potentials of multichannel

signal processing in burst-mode operation for ultrawide-swath

imaging with high geometric resolution [8]. Note that the

design was chosen exemplarily and that the derived results

can be transferred to any burst-mode system, e.g., TOPS

(cf. Section V) or the innovative MBBM concept, which is

based on multiple transmit beams enabling the simultaneous

acquisition of multiple subswaths within the same burst [7].

A. Timing and System Parameters

In the following, an X-band system is designed to image a

swath of 400 km with an azimuth resolution below 5 m, which

exceeds, by far, the imaging capabilities of current spaceborne

SAR systems. All requirements and system constraints are

summarized by Table I.

At first, a timing analysis is performed. This yields four

subswaths of length 105 km each with an orbit height of 630 km

to cover the swath of 400 km (cf. Fig. 6). The necessary PRF

values vary only from 1150 up to 1240 Hz, representing a quite

Fig. 6. Timing diagram. Depending on the applied PRF and ground range,
signal reception is only possible when no transmit events (“Tx”) and nadir
returns (“Nadir”) are interfering. In the given case, four swaths of length 105 km
each cover a ground range of 400 km.

good-natured case. Note that orbit height variations might result

in a modified timing, but this can be compensated by a simple

roll maneuver of the satellite, thus still ensuring a coverage of

400 km but with a different incident angle range. If a mapping

of the same incident angle range is required, a possible larger

PRF range is needed. In such a case, optimization strategies as

presented in [2] and [3] can be applied to enable the increased

PRF range.

An overall length of the antenna in azimuth of 12.8 m is

chosen, yielding a PRFuni of ∼1180 Hz which is within the

PRF range of operation. Furthermore, a Doppler bandwidth of

1.24 kHz for a single burst ensures a resolution of 5 m for

single-look processing. According to (11) and (14), this yields

the respective illumination times TB,i and Doppler bandwidths

BD,i as given in Table II. Note that the fixed burst bandwidth,

in combination with the varying slant ranges of the subswaths,

leads to a variation of these two parameters (cf. Table II).

In combination with the minimum PRF, a maximum overall

Doppler bandwidth of ∼6.8 kHz requires a minimum number of

six receive apertures to fulfill the Nyquist criterion according to

N ≥
max

i
{BD,i}

PRFmin

. (22)

In the case of a ScanSAR system, it was observed that a low

oversampling might introduce a tradeoff between scalloping

and azimuth ambiguity suppression, as one parameter can only

be improved by degrading the other according to the chosen an-

tenna size. This conflict can be relaxed by ensuring sufficiently

high oversampling, as this allows for smaller antennas in order

to improve scalloping while the ambiguous energy suppression

is mainly achieved by the oversampling. The drawbacks of

such a solution are, of course, increased hardware costs and

complexity and also a higher data rate, as more independent

receiving channels are required. In the following, N = 8 is

chosen to adapt the single receive aperture size to BD,i and

to guarantee oversampling in the Doppler domain. Finally, the

transmit antenna length in azimuth is set to 2.1 m, as this is large
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TABLE II
PARAMETERS OF DIFFERENT SUBSWATHS

Fig. 7. Illustration of system architecture and antenna dimensions.

TABLE III
MULTICHANNEL BURST-MODE SYSTEM PARAMETERS

enough to ensure sufficient ambiguity suppression but small

enough to obtain a resolution of 5 m.

Regarding the elevation dimension, a chirp bandwidth of

Brg = 30 MHz/ sin(Θi) is necessary to ensure a ground range

resolution of 5 m. Furthermore, the transmit antenna height

is chosen adaptively to illuminate for all incident angles a

swath of 105 km on ground, entailing an effective height dev,tx

varying from 0.19 to 0.31 m leading to a maximum antenna

gain Gtx,max from 37.2 to 39.3 dB, respectively (cf. Fig. 7

and Table III). The height variation is achieved by an antenna

consisting of multiple elements in elevation, which can be

individually activated while ensuring constant transmit peak

power independent of the antenna area.5 The switch between

the subswaths is achieved by an electrical steering of the

transmit beam where an optimum pointing of the antenna to

the subswath is assumed. An interelement spacing of 2 cm

is suitable to guarantee full coverage while avoiding grating

lobes, thus requiring in total a number of 16 elements [19]. Note

that, despite this spacing, the exact effective heights as derived

earlier will be assumed in the following.

On receive, a large number of independent antenna elements

allow for beamforming in elevation, thus ensuring a high gain

and a sufficient suppression of range ambiguities. As an ex-

ample, the scan-on-receive (SCORE) technique, which uses a

real-time beamforming to scan the reflected pulse as it travels

over the ground, can be applied [20], [21]. As a result, the

overall antenna gain Grx = N · Grx,j can be assumed nearly

independent of the incident angle Θi and is simply defined

by the receiving antenna area.6 Problems may occur with this

technique by topography, and it might be necessary to apply a

more sophisticated approach to cope with the problems arising

from height variations within the scene [23], [24]. Assuming the

antenna to be tilted such that it points to the center of the imaged

region, the steering capability of the elevation beam requires a

variation of ±13◦ with respect to antenna boresight in order to

cover the 400-km swath. Within the different subswaths, the

necessary scan angles to perform SCORE vary from ±4.2◦

in near range to ±2.6◦ in far range. This means that, for the

near-range burst, the necessary element spacing in elevation to

avoid grating lobes is 8 cm. In consequence, the complete range

requires a spacing on the order of 2 cm, while a sufficiently high

gain (Grx = N · Grx,j = 55.3 dB) is ensured by a receiving

antenna height hev,rx of 2 m. Finally, this results in a number

of Nel = 100 subantenna elements. It should be noted that 100

elements are needed for the complete coverage, while within a

single burst, the real-time steering of the SCORE would only

require 25 elements. This can be exploited to reduce hardware

complexity, e.g., by a suitable analog presumming of four chan-

nels each to “preset” the respective subswath, thus remaining

only 25 presummed channels to be steered in real time.

5This can, e.g., be achieved by an analog solution enabling to switch the
power feeds, thus adapting the radiated power per area. Another possibility for
the “decoupling” of radiated power and effective transmit height is given by a
frequency multiplex technique on transmit [25]. A detailed investigation of this
issue is however beyond the scope of this paper.

6A very large antenna height might result in a very narrow footprint which no
longer covers the complete pulse on ground, resulting in a gain loss for certain
frequency components of the chirp. In this case, a frequency-dependent steering
has to be implemented as addressed in [21] and elaborated in [22].
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Fig. 8. Geometric resolution in azimuth (δaz) versus f0,t for all subswaths.

The system is shown in Fig. 7, and all parameters are

summarized in Table III. Note that Fig. 7 shows an exemplary

architecture, but of course, it is also possible to, for example,

employ T/R modules, thus making a separate Tx antenna un-

necessary. In addition, this would allow for benefiting from the

long receive aperture also on transmit, e.g., by phase tapering

or by the frequency multiplex technique described in [25]. This

would ease the upper limit imposed on the emitted power by

a usually small Tx antenna in combination with the technolog-

ically possible power density per surface area. Furthermore, a

long Tx antenna could enable novel techniques which allow for

relaxing the timing constraints by continuously adapting the Tx

phase center position as discussed in [26].

B. Performance Analysis

In the present section, a point target analysis is carried out for

the previously introduced ScanSAR system, allowing for the

derivation of key performance figures such as δaz, AASRN ,

and NESZ. This performance analysis includes the depen-

dence on the target position represented by the center frequency

f0,t, thus showing possible performance variations depending

on the target’s location within the antenna footprint. The sim-

ulated data are focused with a standard stripmap processor,

where the most common approach to process only a single burst

for each target is chosen. This means that, for a specific target, a

subband of width BB around the target’s center frequency f0,t

is considered.

The evaluation of the geometric resolution in azimuth δaz

according to Fig. 8 shows a constant value over the PRF and

f0,t. For all subswaths, the same resolution of 5 m is achieved.

Fig. 9 shows the AASR (AASRN,B) versus f0,t for the

different subswaths. As expected, the worst case regarding

the azimuth ambiguities is encountered for the respectively

maximum f0,t (cf. Table II), i.e., targets situated at the very

edge of the burst. As a result, one obtains an AASRN,B better

than approximately −22 dB.

In order to derive the NESZ of the system, signal and noise

power have to be taken into account. First, the ScanSAR-

inherent loss of the signal power in dependence on the target

position is determined for each of the subswaths as shown in

Fig. 10. To concentrate only on the variation, the values are

normalized to the optimum at f0,t = 0. The obtained “scal-

Fig. 9. Ambiguous energy suppression (AASRN,B) versus f0,t for all four
subswaths.

Fig. 10. Signal power loss Lp versus f0,t for all four subswaths. The worst
case for each swath varies with the respectively maximum center Doppler
frequency.

loping” has the same characteristic for each subswath, but the

worst case varies according to the respective maximum center

Doppler frequency listed in Table II: One obtains a maximum

decrease of the signal power from ∼3.4 dB in near range (solid

red line, “swath 1”) to ∼2.2 dB in far range (dotted–dashed light

blue line, “swath 4”).

In addition, the noise power scaling Φbf induced by the

digital processing network is investigated. It is quantified by

(21) and depends on the PRF of the respective subswath.

Furthermore, a dependence on the target center frequency f0,t

is observed, entailing a scallopinglike effect. Similar to the

scalloping, the worst case is represented by the respectively

maximum f0,t. As discussed in [2], this is caused by the fact

that the scaling of ambiguous energy as well as noise power

is dominated by the outermost bands of the Doppler spectrum

while the amplification in the inner bands remains moderate.

In the given scenario, an uncritical maximum increase of noise

power by ∼0.2 dB induced by the beamforming network is

obtained (cf. Fig. 11, dotted–dashed line).

Including the aforementioned results for signal and noise

power scalloping and taking into account the sensor dimensions

and system parameters according to Tables II and III, the NESZ

can be calculated using (10). For each of the subswaths, this

yields two characteristics which are shown in Fig. 12. The solid
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Fig. 11. SNR scaling factor of the digital processing network (Φbf) versus
f0,t. Results for all subswaths taking into account the respective PRF.

Fig. 12. NESZ versus ground range for the case where a bandwidth of
BB around a varying f0,t is processed. The solid lines represent the best
case for f0,t = 0, while the dashed lines show the worst case obtained for
maximum f0,t.

lines give the best case achieved for a target centered within the

antenna footprint, i.e., f0,t = 0, while the dashed lines represent

the worst case which is obtained for targets located at the

outermost possible position. In any case, an NESZ that is better

than −23 dB is achieved.

V. MULTICHANNEL TOPS MODE

In a next step, the operation of multichannel systems in

TOPS mode is investigated. Therefore, TOPS is applied to

the ScanSAR system discussed earlier, and an adapted multi-

channel processing approach for TOPS systems is introduced.

Finally, a performance analysis is carried out for a system of

same coverage and resolution as in the ScanSAR operation.

Regarding the subsequent analysis, it should be noted that

the original system was designed for ScanSAR. Thus, the

results obtained for TOPS do not represent the full possible

performance but give a good indication about the potentials

and challenges for the operation of multichannel systems in

TOPS mode.

A. Timing and System Parameters

As mentioned, the TOPS mode is applied to the aforemen-

tioned ScanSAR system design, and consequently, the system

parameters can be looked up in Table III. In addition, the TOPS

azimuth steering coefficient α has to be chosen, and some minor

adaptations have to be done, which will be derived in the fol-

lowing. First, the dwell time TD,i represents the integration time

which is necessary to ensure the required azimuth resolution. A

first estimate for TD,i can be derived using (11), and for the

given antenna dimensions and parameters, it is chosen to yield

a Doppler bandwidth of 1.32 kHz, which is slightly above the

value for the ScanSAR system. The corresponding values for

each subswath are listed in Table IV. Next, similar to ScanSAR,

the timing of TOPS has to ensure continuous coverage, which

is expressed as follows, where the cycle time TC is defined by

the sum over all burst times TB,TOPS,i:

TB,TOPS,i ≥
TC − α · TD,i

α
. (23)

Equation (23) offers “some” degree of freedom, as TB,TOPS,i

as well as α can be varied. In order to prevent a too high squint

angle resulting from a too long burst, α = 5 is chosen. Solving

the resulting set of equations leads for each subswath to the

TOPS burst time and corresponding maximum steering angle

Θaz,max,i as summarized in Table IV. The respective maximum

target center frequencies are calculated according to

f0,t,max =
2 · vs

λ
· sin

(

vg · (α − 1)

2 · R0,i

· (TB,TOPS,i − TD,i)

)

.

(24)

B. Adaptively Squinted Multichannel Processing for TOPS

In TOPS, the instantaneous Doppler spectrum is defined

by the antenna pattern, but steering with the aforementioned

parameters leads to squint angles of up to ±1.69◦. Thus, while

the received bandwidth at each instant of time is sampled

according to Nyquist, the overall Doppler bandwidth BTOPS

clearly exceeds the azimuth system bandwidth of N · PRF
(cf. Fig. 13, left). As a result, conventional reconstruction of

a Doppler band around f = 0 cannot be applied anymore,

but a time-dependent approach is necessary to perform the

multichannel reconstruction. The basic principle is sketched

on the right part of Fig. 13, showing the idea of exploiting

the dependence of squint angle versus time by adapting the

respective center frequency of the reconstructed band f0(t) to

the actual center frequency of the TOPS steering (“ramping”).

In the following, a step size of PRF is chosen to adapt

the center frequency of the processing filters. Furthermore,

processing is performed in the Doppler domain, which requires

a minimum signal length of TD to consider the complete echo of

a specific target. This leads to a blockwise processing approach,

whose main steps might look as follows (and whose detailed

derivation is not within the scope of this paper).

1) Starting with the minimum target center frequency, the

closest integer multiple of PRF is determined, leading

to a block of f0,t, where |f0,t − k · PRF | < PRF/2, k
integer, holds true.

2) The block length in the time domain is chosen such that

the full echo of each of the above f0,t is considered.

3) Reconstruction and focusing around k · PRF are per-

formed, and only results obtained for the actual f0,t are
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TABLE IV
TOPS PARAMETERS OF DIFFERENT SUBSWATHS

Fig. 13. (Left) TOPS time–frequency characteristic. (Right) Idea of adapting
the Doppler spectrum of multichannel processing to TOPS. In the optimum
case, the reconstructed band is centered adaptively around a varying frequency
f0(t) to ideally cover the TOPS spectrum.

Fig. 14. Applied squinted multichannel processing. The reconstructed band-
width is kept constant and centered adaptively in a staircase-like manner on the
target center frequency given by the diagonal dotted line.

considered, meaning that the results obtained for echoes

which are only partly in the considered block are omitted.

This scheme is continued until the maximum target center

frequency is reached, yielding the “staircase-like” behavior as

shown in Fig. 14. Note that, for reasons of clarity, the overlap

in time of adjacent blocks is not depicted.

The resulting output signal of this “staircase” reconstruc-

tion is still ramped but free of aliasing. Consequently, further

processing as suggested in [6], [18], [27], or [28] can now be

applied.

C. Performance Analysis

In the following, the key performance figures δaz, AASRN ,

and NESZ of the TOPS mode are determined by a point-

target analysis considering the “staircase-like” adaptation of the

reconstruction as introduced earlier. The simulations are carried

out for a single element size of 2.5 cm, leading to a nearly

ideally steered pattern. If the element size becomes too big, the

single-element azimuth pattern, as well as grating lobes, can

influence the performance.

Fig. 15. Geometric resolution in azimuth (δaz) versus f0,t for TOPS mode
operation.

Fig. 16. Azimuth ambiguous energy suppression (AASRN,B) versus f0,t

for TOPS mode operation. The different line styles represent the results
obtained for the four different subswaths.

As can be seen from Fig. 15, the TOPS mode yields the

same azimuth resolution δaz of ∼5 m as in ScanSAR but

requires a slightly increased bandwidth of 1.32 kHz due to

the effectively shrunk pattern of TOPS. As the single-element

characteristic is assumed constant, the resolution in TOPS is

constant, independent of the target position.

Next, the suppression of azimuth ambiguous energy

(AASRN,B) by TOPS is shown in Fig. 16 for all four sub-

swaths. The AASRN,B varies with the offset of the target

center frequency f0,t from the respective center frequency of

the reconstructed band. As this center frequency is switched

with integer multiples of PRF, the AASRN,B shows only a

variation over an interval of width PRF which is periodically

continued. As the beamsteering ensures the same pattern in-

dependent of the target position, the different performance is
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Fig. 17. Peak power loss normalized to optimum value at f0,t = 0 (Lp)
versus f0,t for TOPS mode operation for antenna element sizes of 2.5, 10, 20,
30, and 40 cm. The larger the single element, the higher the peak power loss.

only caused by the respective multichannel processing of the

signal, which is governed by the different PRF values of the

respective swaths. Hence, in contrast to ScanSAR, the influence

of the antenna pattern is eliminated. This can be seen from the

solid line in Fig. 16 which corresponds to the optimum PRF

and shows a nearly constant value for all target positions as the

sampling is uniform in this case and no multichannel processing

is applied. The minor offset from the constant value for high

target center frequencies is possibly caused by the large cor-

responding squint angle. In reverse, the other characteristics in

Fig. 16 (dotted, dashed, and dotted–dashed) show the scalloping

introduced by the multichannel processing for the respective

PRF. The results show a suppression of better than −21 dB,

nearly identical to the ScanSAR results.

In order to derive the NESZ of the system, first, the loss of

signal peak power has to be determined. Only for an optimum

TOPS pattern that every target is illuminated by the same

antenna pattern and no scalloping is encountered. In reality,

the single-element characteristic of the array antenna has to be

considered, causing a small scalloping effect which is directly

given by the characteristic drop-off with Doppler frequency.

Fig. 17 shows this effect in dependence on the target center

frequency for different element sizes. One recognizes that the

assumed element size of 2.5 cm leads to a nearly optimum

behavior close to 0 dB. However, even for an antenna element

size of 40 cm, TOPS yields a clearly better scalloping result

than ScanSAR.

In addition to the peak power, the effect of the effectively

shrunk pattern on the signal power has to be considered. This

effect can be quantified by the azimuth loss factor Laz, and

one obtains a value of −1.40 dB. Furthermore, the noise

scaling introduced by the digital processing network does not

depend on the acquired signal but only on the processing.

Consequently, for the same set of parameters, this scalloping is

the same for both modes. As the processed Doppler bandwidth

has been only slightly increased and, furthermore, the impact

of the processing network is nearly negligible, Fig. 11 not

only is exact for ScanSAR but also can be considered as a

valid approximation for TOPS. Finally, the NESZ for the TOPS

mode can be approximated by the optimum value for ScanSAR,

which is represented by the solid line in Fig. 12, and taking

into account the increased azimuth loss of 1.40 dB compared to

a value of 0.1 dB for ScanSAR. In consequence, TOPS mode

ensures for any target an NESZ better than ∼−25 dB.

D. TOPS Versus ScanSAR

The results obtained for TOPS as well as for ScanSAR show

the same performance with respect to coverage and resolution

and highlight directly the big advantage of TOPS: The steer-

ing of the azimuth antenna footprint during signal acquisition

ensures a constant signal power independent on the target posi-

tion, which allows for removing or clearly reducing the scallop-

ing. In particular, with regard to the NESZ, the large scalloping

in ScanSAR of up to 3.4 dB has been completely removed.

Furthermore, longer bursts are possible with TOPS, reducing

the losses when switching between different subswaths. These

advantages come at the cost of additional hardware, which are

necessary to enable the azimuth beamsteering in TOPS, and

an increased computational complexity, mainly caused by the

blockwise processing.

Keeping in mind that the azimuth antenna dimensions were

designed for ScanSAR, a system optimized for TOPS would

offer further potential to fully exploit the TOPS mode. In par-

ticular, a careful adjustment of steering coefficient and antenna

patterns could, for example, reduce the rather large azimuth loss

factor.

VI. DISCUSSION

Multichannel SAR systems operating in stripmap mode were

shown to be unsuitable for the mapping of ultrawide swaths

of several hundred kilometers as this would require antennas

with an unreasonable length. Thus, this paper presented, as a

possible solution, the operation of multichannel SAR systems

in burst modes, such as ScanSAR and TOPS. In a first step,

the application of multichannel processing algorithms to burst

modes was analyzed theoretically, investigating the Doppler-

frequency-dependent multichannel processing with respect to

the particular properties of burst-mode data. As the target po-

sition determines the spectral band of its echo, different targets

are processed with different subbands of the processing filter’s

colored spectrum. This results in a variation of the performance

depending on the target position, introducing a scalloping-like

effect both for TOPS and ScanSAR. This effect was derived

analytically when extending the expressions for performance

estimation to burst modes. Next, a multichannel ScanSAR sys-

tem was designed which demonstrated the possibility to image a

swath of 400 km with a resolution of 5 m. Furthermore, perfor-

mance analyses illustrated the introduced scalloping of residual

azimuth ambiguities and the SNR scaling, thus verifying the

theory. Additionally, the designed system was also operated in

TOPS mode, and an innovative approach for processing multi-

channel TOPS data was presented: By adaptively “ramping”

the processing filter functions, the multichannel reconstruction

was adapted to the “squinted” time–frequency characteristic of

TOPS. In the end, TOPS mode showed a similar performance

as ScanSAR with respect to coverage, geometric resolution, and
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azimuth ambiguity suppression. The big advantage of TOPS is

given by the reduced scalloping, in particular with respect to

the NESZ. One should keep in mind that the system design was

optimized to ScanSAR, meaning that there is further potential

to optimized TOPS performance by a better adaptation of the

system design to this mode.

In conclusion, the results for both modes show that this new

class of multichannel systems enables frequent mapping on a

global scale with unprecedented detail. This means that such

systems open up an entirely new field of SAR operation and

introduce a new degree of freedom in SAR system design,

e.g., with respect to the antenna dimensions. Consequently,

multichannel burst modes represent an important aspect in

the “toolkit” for advanced SAR sensors which are capable of

answering the needs of future remote sensing missions.

As a next step, based on the analysis of multichannel burst-

mode operation, focus should be on the adaptation of the system

design to multichannel TOPS operation in combination with a

further development of the TOPS multichannel processing. In

this context, more sophisticated burst modes allowing for even

higher resolutions and swath widths deserve special interest [7].

Another promising concept is the application of burst modes to

large reflector antennas with a feed array enabling digital signal

processing both in azimuth and range dimensions. The large

reflector dimensions ensure a high antenna gain in combination

with a narrow beam whose steering angle—and consequently

the illuminated footprint on ground–is directly linked to a

specific feed element (or a subgroup of them). This makes

such systems ideally suited for multibeam applications, be it

to enable effective range ambiguity suppression or to image

multiple elevation beams simultaneously [23], [29], [30].

APPENDIX

A. Multichannel Range Cell Migration

The range history of a pointlike target at distance R0 migrates

over several range resolution cells, thus spanning a range from

R0 to R0 + ∆R. In addition, in multichannel systems based on

a single Tx antenna, the same target is “seen” under different

minimum slant-range distances and with varying range curva-

tures, depending on the respective distance to the transmit aper-

ture. As illustrated hereinafter, this might result in a different

range cell migration for each receive aperture (Fig. 18).

The unambiguous azimuth signal is obtained by separately

reconstructing each range bin, i.e., each line of the data array.

Hence, it has to be ensured that the contributions from a specific

target in the range-Doppler domain are coregistered to the same

“reference” range bin in all receivers’ signal memory spaces.

In this regard, first, a large receiver spacing might result in

a large relative range offset ∆R0,j , which exceeds the range

resolution, thus requiring a range shift to correct for. Second,

the differential range curvature ∆Rcurv,j might also be in the

order of a range resolution cell. As a consequence, the echo

of a specific target is stored in different range bins according

to the respective receiver’s position, thus precluding correct

reconstruction. It should be noted that ∆R0,j and ∆Rcurv,j

consider the two-way path difference, as this is relevant for the

different delay times.

Fig. 18. Multichannel range cell migration. Depending on the receiver po-
sition, the same target shows different range histories. (Top) Relative two-
way slant-range offset ∆R0,j for three receivers. (Bottom) Varying curvature
versus Doppler frequency, resulting in an offset ∆Rcurv,j (two-way, each
curve normalized to its respective R0).

The variation in slant range can be directly derived from the

effective phase center definition, which includes—in quadratic

phase approximation—the addition of a constant phase. This

phase originates from the previously discussed differences re-

garding the minimum slant range of the range history, leading

to the following two-way offsets according to the spacing ∆xj

of the respective receiver j from the transmitter:

∆R0,j =
vg

vs

·
∆x2

j

4 · R0

. (25)

In order to evaluate the impact of the different range cell

migrations, one single-platform system and one distributed

constellation are analyzed for L-band as well as X-band and

a slant range of 735 km. In this context, the maximum receiver

separation describes the largest distance with respect to a refer-

ence receiver at the transmitter position. As the range curvature

depends also on the illumination time, a value is chosen which

ensures an azimuth resolution on the order of 1 m. Furthermore,

for the following considerations, a range resolution in the same

order is assumed. The obtained results are summarized in the

subsequent table which also contains the reconstruction phase

errors from the analysis in the following paragraph.

Regarding the differential range curvatures, Table V shows

for both systems and bands an error far below the range

resolution, and consequently, this effect can be neglected. This

is good news, as the correction of the curvature could only be

carried out in the Doppler frequency domain. Hence, on the

one hand, the full—i.e., unaliased—Doppler spectrum would

be required, but on the other hand, a correction would be

necessary prior to reconstruction, which is a contradiction in

terms. Concerning the relative range offset, a negligible value

is encountered in single-platform systems, but a sparse array

constellation might require compensation. For each channel,

the respective offset is a constant value independent on the

Doppler frequency but with slight variation in dependence of

the slant range according to (25). As the differential curvature

is minor, this means that all range histories obtained at a certain

R0 can be aligned correctly by a constant shift of the received

pulse in the range time domain. As a pixelwise shift cannot

ensure correctly aligned range histories over the complete range
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TABLE V
RANGE MIGRATION IN MULTICHANNEL SAR AND RESULTING RECONSTRUCTION FILTER MISMATCH

migration, the alignment has to be performed by a phase ramp

in the range frequency domain, yielding a time shift according

to ∆R0,j . This leaves the azimuth phase unchanged, thus not

affecting the following azimuth processing steps. For example,

the shift can be directly incorporated in the range compression

by using an appropriately shifted replica, which has to be

adapted to the respective R0 to ensure exact solution. In a brute

force approach, this would mean that, for each slant range,

the compression is performed separately. As this entails huge

computational load and as the variation of ∆R0,j over R0 is

slow, one could think of a range compression in blocks. An

investigation of optimized correction algorithms is beyond the

scope of this paper as the focus of the research is directed to

single-platform systems.

B. Reconstruction Filter Mismatch

In a second step, the reconstruction filter functions Pj(f)
are taken into account, as they depend on R0. As indicated by

(1) and (2), the system matrix H can be decomposed into a

matrix H
′ multiplied by a diagonal matrix D whose elements

at position (j, j) represent the dependence on R0

(D)j,j = exp

[

−j ·
vg

vs

·
π · ∆x2

j

2 · λ · R0

]

. (26)

Thus, according to basic matrix algebra, the matrix P is

made up of the inverse from H
′ multiplied by D

−1 which

simply consists of the inverse diagonal elements. As a result,

the dependence of each channel j on R0 is characterized as

follows:

Pj(f) ∝ exp

[

j ·
vg

vs

·
π · ∆x2

j

2 · λ · R0

]

. (27)

As the range history spans several range bins, a signal

obtained for a target at R0 will be partly reconstructed by filters

calculated for R0 + ∆Rj . Thus, range migration introduces a

phase mismatch ∆ϕj between the signal and the reconstruction.

As differential range curvature can be neglected and the relative

range offset is assumed to be corrected, ∆ϕj is only determined

by the maximum range migration ∆Rj of channel j. Note that,

in this context, the one-way slant range is relevant, since the Tx

path is the same for all channels.

∆ϕj =
vg

vs

·
π · ∆x2

j

2 · λ

(

1

R0

−
1

R0 + ∆Rj

)

=
vg

vs

·
π · ∆x2

j

2 · λ

(

∆Rj

R0 · (R0 + ∆Rj)

)

. (28)

This result enables to convert the range migration in Table V

in respective phase errors, where ∆ϕj refers to the compressed

pulse while ∆ϕτ,j considers the uncompressed pulse. Here, a

pulse length τ = 10 µs is assumed, and correspondingly, the

maximum range mismatch is increased by τ · c0 = 3 km, with

the speed of light c0. Both possibilities are analyzed, as in

principle, the aliased data of each channel can be range com-

pressed either before reconstruction or afterward. Nevertheless,

the obtained values (cf. Table V) allow for the conclusion that

the phase errors are negligible for range-compressed data but

have to be considered for uncompressed data gathered by multi-

platform systems with large receiver separations. Consequently,

from the reconstruction point of view, range compression prior

to reconstruction is favorable, as the extension of the target echo

is reduced by the pulse length and the effective ∆R will be

smaller.
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