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Abstract

The incoherence between measurement and sparsifying transform matrices and the re-

stricted isometry property (RIP) of measurement matrix are two of the key factors in deter-

mining the performance of compressive sensing (CS). In CS-MRI, the randomly under-

sampled Fourier matrix is used as the measurement matrix and the wavelet transform is

usually used as sparsifying transform matrix. However, the incoherence between the ran-

domly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteri-

orate the performance of CS-MRI. Using the mathematical result that noiselets are

maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the

measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical

RIP analysis that compares the multichannel noiselet and multichannel Fourier measure-

ment matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) frame-

work to take the advantage of multichannel data acquisition used in MRI scanners.

Simulations are presented in the MCS framework to compare the performance of noiselet

encoding reconstructions and Fourier encoding reconstructions at different acceleration

factors. The comparisons indicate that multichannel noiselet measurement matrix has bet-

ter RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms

Fourier encoded MCS-MRI in preserving image resolution and can achieve higher accelera-

tion factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a

pulse sequences with tailored spatially selective RF excitation pulses was designed and im-

plemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a

human brain. The results indicate that noislet encoding preserves image resolution better

than Fouirer encoding.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used imaging modality in clinical practice due

to its ability to produce a good contrast between soft tissues and to image a slice at any orienta-

tion. The MRI scanner acquires data in a Fourier domain called k-space. MRI captures an
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image by scanning through the k-space on a Cartesian or non-Cartesian trajectory. This scan-

ning process is time consuming and results in a long acquisition time and patient discomfort.

Accelerating the data acquisition process is an active area of research in MRI, and Compressive

Sensing (CS) is a promising solution that can improve the speed of data acquisition in MRI. CS

[1–5] is a technique that permits the faithful reconstruction of the signal of interest from the

data acquired below the Nyquist sampling rate. MRI is a ideal system [6] for CS applications as

it acquires image already in encoded form rather than in pixel domain. The application of CS

in MRI was first described in [7], where variable density random under-sampling of phase en-

codes was suggested as a sampling strategy. Parallel imaging techniques [8–10] have also been

combined with CS in [11–16] to further accelerate MRI scans, and CS-MRI has been applied

for dynamic imaging, exploiting k-t space sparsity [14, 17–20].

The theory of CS provides a solution to an ill-posed inverse problem by exploiting prior

knowledge of signal sparsity or compressibility. This theory guarantees perfect reconstruction

of the signal from the under-sampled data if certain conditions are satisfied [1–5, 21]: (i) sparsi-

ty or compressibility of the signal in the transform domain; (ii) Restricted Isometry Property

(RIP) of the measurement matrix or incoherence between the measurement and sparsifying

transform matrices; and (iii) a non-linear reconstruction algorithm that promotes sparse repre-

sentation of the image and enforces data consistency of reconstruction with the acquired data.

The sparsity or compressibility condition is satisfied by MR images as they are known to be

sparse or compressible in the wavelet domain and the finite difference domain [7, 11–13].

However, the RIP is difficult to verify for a given deterministic measurement matrix since it is

computationally NP hard [22]. An empirical solution to this problem in the CS literature is to

use randommeasurement matrices. A randomly sampled frequency domain data can capture

pertinent information from a sparse signal with fewer measurements and allows accurate re-

construction of the signal by the convex l1 optimization program. This property was first

proved mathematically for Gaussian matrices [5, 23] and has recently been extended to a wide

class of random matrices [24]. Based on this property, [25] proposed using spatially selective

RF pulses to implement random encoding along the phase encode direction, with the entries of

the random measurement matrix drawn from Gaussian distribution. This random encoding

scheme attempts to approximate the sufficient conditions for perfect CS reconstruction, but as

described in [25], this measurement matrix is not unitary and results in noise amplification

even after taking all the required measurements. Another problem with random encoding is

computational complexity. Dense randommatrices consume large amounts of memory and re-

quire computationally expensive matrix multiplications in CS-reconstruction [3, 26]. This

problem is partially alleviated in [25] by using fast Fourier transforms of the matrix multiplica-

tions, but still requires more memory and computations than those of structured/unitary

measurement matrices.

MRI uses the Fourier basis to encode the excited region of interest. The Fourier measure-

ment matrix is weakly incoherent with the wavelet sparsifying transform matrix, thus is sub-

optimal for CS-MRI [27]. The incoherence is essentially a measure of the spread of sparse sig-

nal energy in the measurement domain [3]. Various attempts have been made in [25, 27–30] to

spread the energy of the MR signal in the measurement domain. In [27, 31], the spread spec-

trum technique was presented which convolves the k-space with the Fourier transform of a

chirp function to spread the energy of the MR signal in the measurement domain. The chirp

modulation is implemented through the use of second order shim coils. In [28–30, 32–34],

other non-Fourier encoding strategies were described for compressive sensing that aims to

spread the energy of the MR signal in the measurement domain. While these encoding strate-

gies can spread the signal energy to some extent, none of them has the theoretically proven

maximal incoherence for the complete spread of the signal energy.

Multichannel Compressive Sensing MRI Using Noiselet Encoding

PLOS ONE | DOI:10.1371/journal.pone.0126386 May 12, 2015 2 / 27



Noiselet bases [35, 36] are known to completely spread out the energy of the signal in the

measurement domain, which is a desired property in CS. Noiselets are also known to be maxi-

mally incoherent with Haar wavelets that makes them the best suited bases for CS. Further,

noiselet matrices are complex valued, symmetric and unitary, which simplifies the implemen-

tation of image reconstruction program in CS-MRI. In the simulation study of [37], it is found

that the noiselet measurement matrix outperforms the chirp modulation measurement matrix

when the noise level is high. Also, as shown in Section III of this paper, the multichannel noise-

let measurement matrix exhibits much better RIP than that of its Fourier counterpart. In order

to take the advantage of maximal incoherence and better RIP provided by noiselet measure-

ment matrix, we have investigated the use of noiselet encoding for CS-MRI.

In order to take the advantage of multiple measurements provided by an MR scanner

through the use of multiple channels, a Multichannel Compressive Sensing (MCS) framework

is proposed in [11] for CS reconstructions. The MCS framework simultaneously uses data

from the multiple channels to reconstruct the desired image instead of reconstructing separate

images from each channel, resulting in higher acceleration factors and improved image quality.

Therefore, in this paper we describe the theory and implementation details of using noiselet

bases as the measurement matrix in MCS-MRI. Considering the lack of analysis and sufficient

understanding of MCS-MRI in the literature, we also present an empirical RIP analysis of the

multichannel noiselet measurement matrix in comparison with its Fourier counterpart. The

simulation and experimental results indicate that the multichannel noiselet measurement ma-

trix outperforms its Fourier counterpart, and that noiselet encoding outperforms Fourier en-

coding in preserving image resolution for the same acceleration factors, and can achieve higher

acceleration factors than the Fourier encoding scheme for the desired image quality

and resolution.

The paper is organized as follows. In section 2, we describe the background of CS, sufficient

conditions for CS and develops a model for MCS-MRI reconstruction. The noiselet basis func-

tion, its properties and our motivation for using noiselets in MRI is presented here. In section

3, a pulse sequence design to implement the proposed noiselet encoding scheme is described,

followed by an empirical RIP analysis of the multichannel noiselet measurement matrix in

comparison with its Fourier counterpart. In section 4, simulation studies comparing the perfor-

mance of noiselet encoded and Fourier encoded MCS-MRI for different acceleration factors

are demonstrated on a brain image. The effect of the number of channels and level of noise on

the reconstruction is also evaluated for both the encoding schemes. We demonstrate the feasi-

bility of the proposed encoding scheme by acquiring noiselet encoded data from a phantom

and a human brain. In section 5, we discuss the findings, limitation and further extension of

the technique and section 6 concludes the contribution of this work.

2 Theory

2.1 Compressive Sensing

Compressive sensing is a mathematical theory describing how a sparse signals can be faithfully

recovered after sampling its projections well below the Nyquist sampling rate. Consider a signal

x in the n dimensional complex space Cn that can be sparsely represented inC domain as ρ =

Cx, whereC is the n × n sparsifying transform matrix satisfying F�
F = I. The signal ρ is K-

sparse, that is, only the K coefficients in ρ are non-zero. A measurement system measures signal

y inm dimensional space by taking onlym projections of the signal x as

y ¼ Fx ð1Þ

Multichannel Compressive Sensing MRI Using Noiselet Encoding
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In CS MRI, x 2 C
n is the vectorized image with the dimension n = pq for a p × q image, and

F 2 C
m × n is usually a (partially) randomly under-sampled discrete Fourier transform matrix

resulting from encoding process, wherem = rq and r< p is the number of phase encoding lines

used to acquire y. Given the image size p × q, the under-sampling ratio n/m = p/r is determined

by the number of phase encoding lines, r, used in data acquisition, which in turn determines

the reduction of data acquisition time [7]. So the under-sampling ratio n/m = p/r is called the

acceleration factor in CS MRI.

Eq (1) can be further expressed as

y ¼ FC
�r; x ¼ C

�r ð2Þ

where � represents the conjugate transpose operation and the signal x is sparse in theC do-

main. MR images can be sparsely represented in the wavelet domain using the wavelet trans-

form matrix. Given the measurement y and the matrices F andC, there exist many solutions

satisfying (1) and recovering x becomes an ill posed problem. The CS theory provides a unique

solution to the ill-posed problem by solving the following optimization program:

min
x̂

kCx̂kl1 s: t: y ¼ Fx̂ ð3Þ

where kxkl1: = ∑ijxij is the l1 norm of x, with xi the ith element of x. Exact reconstruction of the

signal x is achievable if certain mathematical conditions hold.

2.2 Restricted Isometry and Incoherence in Compressive Sensing

An important sufficient condition for exact reconstruction of x is the so called restricted isome-

try property (RIP) [2, 21, 23]. For a normalized measurement matrix F with unit column

norms, the RIP is given as

ð1� dKÞkxk
2

l2
� kFxk2l2 � ð1þ dKÞkxk

2

l2
ð4Þ

where δK 2 (0,1) is called the RIP constant. The RIP (4) is equivalent to [2, 38, 39]

ð1� dKÞ � s2

min½FsubðKÞ� � s2

max½FsubðKÞ� � ð1þ dKÞ; ð5Þ

where Fsub(K) is them × K submatrix formed from K distinct columns of F, and σmin[Fsub(K)]

and σmax[Fsub(K)] are the minimum and maximum singular values of Fsub(K), respectively (In

[2, 38, 39], the eigenvalue λ[Fsub(K)
�
Fsub(K)] is used for (5), where λ[Fsub(K)

�
Fsub(K)] =

σ
2[Fsub(K)]). The RIP constant δK is the smallest constant that satisfies the inequality (5) for

everym × K sized submatrix of F, and it is essentially a bound on the distance between unity

and the singular values of all Fsub(K)s. It is shown in [23] that if δ2K < 1, then a K-sparse signal

x can be exactly reconstructed from the measurements of F.

While δK 2 (0,1) renders the exact reconstruction of x, the value of δK determines the stabili-

ty of reconstruction. In the presence of measurement noise �, y = Fx+� and the reconstructed

signal x̂ satisfies (Section 5.2 in [40])

kx � x̂k2l2 �
4�2

1� d
2K

: ð6Þ

Thus, the smaller the δK, the smaller the reconstruction error, and vice versa. Since measure-

ment noise always exists in practice, the value of δK is an important performance measure of a

measurement matrix F for both the reconstruct-ability and reconstruction error. However, the

computation of δK for a given F is NP hard and hence intractable. Since the RIP constant δK is

essentially a bound on the distance between 1 and the singular values of all Fsub(K)s, the value
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of δK can be assessed by the distances from 1 to the σmin[Fsub(K)]s and σmax[Fsub(K)]s. The

smaller the distance, the smaller the δK and hence the better performance of F. Since (5) must

hold for all them × K submatrices of F, the statistics of σmin[Fsub(K)] and σmax[Fsub(K)] over

randomly sampled Fsub(K)s are used in [5, 38, 39] to assess the RIP performance of a given

measurement matrix F. This method is also adopted in this paper.

Another important sufficient condition for exact reconstruction of x is the incoherence [3,

36]. For a pair of measurement matrix F and sparsifying transform matrixC, satisfying F�
F =

nI andC�
C = I, their incoherence is defined as

mðF;CÞ ¼ max
k;j

jhFk;Cjij ð7Þ

where Fk andCj are respectively the k
th and jth columns of F andC, and mðF;CÞ 2 ½1; ffiffiffi

n
p �.

The value μ(F,C) = 1 is termed as maximal incoherence. As shown in [3], ifm� C � μ2(F,C)

� K � log(n), where C is a small constant, then a K-sparse signal x can be exactly reconstructed.

Thus, μ(F,C) determines the minimum number of measurements needed for exact recon-

struction of x. The smaller the μ(F,C), the smaller them (the fewer the measurements) needed

for exact reconstruction of x.

It is important to note that both the RIP and the incoherence are sufficient conditions on

the measurement matrix. So they are parallel and either or both of them can be used to design,

analyze and assess the measurement matrix for exact reconstruction of x.

2.3 Multichannel Compressive Sensing

MRI systems acquire multiple measurements of the desired signal through multiple channels.

Given the multiple channels, the data acquisition process can be modeled as yi = FΓi x =

FΓiC
�
ρ, i = 1, 2, � � �, L, where Γi = diag[γij]j = 1, 2, � � �, n is the complex valued sensitivity map

matrix of the ith receive channel, with γij being the sensitivity of the ith channel at the jth pixel

of the vectorized image, L is the number of receive channels, yi is the data acquired from the ith

receive coil and ρ =Cx. In matrix form, the yis can be written as

Y :¼

y
1

y
2

.

.

.

yL

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

FG
1

FG
2

.

.

.

FGL

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

x ¼: Ex ¼ EC�r: ð8Þ

As seen from above, with L receive channels, the measurement matrix for x becomes E, which

has a column of L sub-matrices FΓis and dimension Lm × n. These L sub-matrices, FΓis, share

a common measurement matrix F 2 C
m × n resulting from the encoding process, so they mea-

sure the same x simultaneously with the same under-sampling pattern and under-sampling

ratio n/m. As discussed in Section 2.1, the under-sampling ratio n/m is solely determined by

the number of phase encoding lines used in data acquisition, hence it is independent of the

number of channels L. It is important to note that Γis are complex valued and Γi 6¼ Γj, i 6¼ j, in

general. Therefore, FΓi 6¼ FΓj for i 6¼ j and can be independent of each other, depending on

the specific phase values of Γi and Γj. As a result, the multichannel measurement matrix E pro-

vides more independent measurements than that of the single channel F, which may improve

RIP. The improved RIP may in turn reduce the number of measurements,m, and hence the

number of phase encoding lines needed for exact reconstruction of x. This reasoning is con-

firmed by the empirical RIP analysis of E in Section 3.4.
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In light of the above discussion, the following MCS optimization is considered for recon-

structing the desired image x from the multichannel measurements of MRI.

min
x̂

kCx̂ kl1
s:t: kY � Ex̂kl2 � � ð9Þ

whereC is the wavelet transform operator and � determines the allowed noise level in the

reconstructed image.

MR images are also known to be sparse in the total variation (TV) domain. It is demonstrat-

ed in [41] that the TV penalty is critical to the performance of CS-MRI, and that MR images

can be recovered more efficiently with the use of TV penalty together with the wavelet penalty.

Therefore, most of the CS-MRI work [6, 7, 12, 13, 25, 28, 30, 33, 34] has used both TV and

wavelet penalties for better reconstruction performance. To be consistent with this common

practice in CS-MRI, the TV penalty is included in the objective function (9) for MCS-MRI re-

construction, together with the wavelet penalty. Eq (9) is a constrained optimization problem

which is computationally intensive to solve. To relax the problem, (9) is converted to the un-

constrained optimization problem with the inclusion of TV penalty.

min
x̂

l
1
kCx̂kl1

þ l
2
kTVx̂kl1 þ kY � Ex̂k2

l2 ð10Þ

where TV is a 2D total variation operator and λ1, λ2 are regularization parameters for wavelet

and TV penalties, respectively.

Daubechies-4 (db-4) wavelet is usually used in CS-MRI because of its superior performance

in sparsifying the MR images. To be consistent with this fact and fair in comparison with the

existing CS-MRI results, the unconstrained objective function (10) with theC of the db-4

wavelet operator will be used throughout all the simulations and reconstructions in this work.

2.4 Noiselets

Noiselets are functions which are noise-like in the sense that they are totally incompressible by

orthogonal wavelet packet methods [35, 36]. Noiselet basis functions are constructed similar to

the wavelet basis functions, through a multi-scale iteration of the mother bases function but

with a twist. As wavelets are constructed by translates and dilates of the mother wavelet func-

tion, noiselets are constructed by twisting the translates and dilates [3]. The mother bases func-

tion χ(x) can be defined as

wðxÞ ¼
(

1 x 2 ½0; 1Þ

0 otherwise

The family of noiselet basis functions are generated in the interval [0,1) as

f
1
ðxÞ ¼ wðxÞ

f
2nðxÞ ¼ ð1� iÞfnð2xÞ þ ð1þ iÞfnð2x � 1Þ

f
2nþ1

ðxÞ ¼ ð1þ iÞfnð2xÞ þ ð1� iÞfnð2x � 1Þ
ð11Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

and f2n, . . .. . ., f2n+1 form the unitary basis for the vector space Vn. An example
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of a 4 × 4 noiselet transform matrix is given below.

1

2

0� 1i 1þ 0i 1� 0i 0þ 1i

1þ 0i 0þ 1i 0� 1i 1� 0i

1� 0i 0� 1i 0þ 1i 1þ 0i

0þ 1i 1� 0i 1þ 0i 0� 1i

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð12Þ

Noiselets totally spread out the signal energy in the measurement domain and are known to

be maximally incoherent with the Haar wavelet. The mutual incoherence parameter between

the noiselet measurement matrix F and the sparsifying Haar wavelet transform matrixC has

been shown to be equal to 1 [3], which is the minimum value possible for the incoherence.

Therefore, theoretically, noiselets are the best suited measurement basis function for CS-MRI

when the wavelet is used as sparsifying transform matrix.

2.5 Motivation

The motivations behind using noiselets as a measurement matrix in MCS-MRI are as follows:

• Noiselets completely spreads out the signal energy in the measurement domain and are max-

imally incoherent with wavelets.

• Noiselet basis function is unitary and hence does not amplify noise as in the case of random

encoding [25].

• Unlike random basis, noiselet basis has conjugate symmetry. Thus, this property of symme-

try can be exploited by using the partial Fourier like technique.

• Noiselets are derived in the same way as wavelets, therefore it can be modelled as a multi-

scale filter-bank and can be applied in O(n � log(n)).

We proposed to use the noiselet encoding in the phase encode (PE) direction in 2DMR imag-

ing. Therefore, the acquired data is noiselet encoded in the PE direction and Fourier encoded

in the frequency encode (FE) direction.

3 Methods

Ethics statement: Written ethics approval was taken from Monash University Human Re-

search Ethics Committee (MUHREC), project approval CF12/1908—2012001051 for all the

human experiments performed in this study and written consent was taken from all the volun-

teers for invivo scans.

3.1 Pulse Sequence Design for Noiselet Encoding

In conventional 2D MR imaging sequences, a spatially selective RF excitation pulse is used to

select the slice and the linear spatial gradients are used to encode the excited slice onto the Fou-

rier transform space. In [31, 32, 42, 43], it is demonstrated that the spatially selective RF excita-

tion pulse can also be used to encode the imaging volume. In [25, 32, 44, 45], the wavelet, SVD

and random encoding profiles have been implemented using the spatially selective RF excita-

tion pulses. An analysis using the linear response model described in [42] provides a theoretical

framework to design spatially selective RF excitation pulses for implementation of non-Fourier

encoding. Under the small flip angle (� 30°) regime, the RF pulse envelope can be calculated

Multichannel Compressive Sensing MRI Using Noiselet Encoding
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directly by taking the Fourier transform of the desired excitation profile. However this method

of designing an RF excitation pulse requires excellent RF and main field homogeneity.

To excite a noiselet profile during excitation, one can design an RF pulse envelope by direct-

ly taking the Fourier transform of the noiselet basis functions. For an image of size 256 × 256,

the noiselet measurement matrix has 256 rows and 256 columns (refer to (12) for the low di-

mensional example). The Fourier transform of each row of the noiselet matrix will result in

256 RF pulse envelops. To achieve a specific flip angle, say 10 degrees, using such noiselet RF

pules, the integral of each individual noiselet pulse envelope over time must equal that of the

sinc RF pulse used in Fourier encoding for the same flip angle [46]. This equal integral rule can

be used to determine the scaling of noiselet pulse envelops for a required flip angle. Compared

to a sinc RF pulse of the same energy, a noiselet pulse envelope tends to have a smaller integral

since its phase changes are more diverse than that of sinc pulse. Therefore, noiselet pulses gen-

erally require more energy than that of sinc RF pulse to attain the same flip angle. But the ener-

gy difference is generally marginal and hence the resulting SAR level of noiselet encoding is

comparable to that of Fourier encoding. See Section 4.4 for experiment example.

A pulse sequence for the noiselet encoding of 2D MR imaging is shown in Fig 1. The pulse

sequence is designed by tailoring the spin echo sequence. The RF excitation pulse in the con-

ventional spin echo sequence is replaced by the noiselet RF pulse, and the slice select gradient

is shifted to phase encoding axis. The 180° refocusing RF pulse is used in conjunction with the

slice selection gradient to select the slice that refocuses the spins only in the desired slice. Spoil-

ers are used after the readout gradient to remove any residual signal in the transverse plane. A

new RF excitation pulse is used for every new TR to excite a new noiselet profile, and a total of

256 TR are required for excitation of the complete set of noiselet bases. The readout gradient

strength determines the FOV in the readout direction, while the phase encoding gradient

strength and duration of the RF excitation pulse determines the field of view (FOV) in phase

Fig 1. (a): Pulse sequence diagram for implementation of noiselet encoding in 2D imaging, whereGss is the
gradient in slice (z) direction,Gpe is the gradient in phase encoding (y) direction, andGro is the gradient in
readout (x) direction. The RF flip angle is 10°, which excites a noiselet profile along y-direction. The 180°
refocusing pulse is used to select the desired slice in z-direction. A new RF pulse is executed for every new
TR and the complete acquisition of all noiselet basis functions requires 256 different RF pulses derived from
the noiselet measurement matrix.

doi:10.1371/journal.pone.0126386.g001
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encoding direction. The FOV in phase encoding direction is determined as

FOVpe ¼
1

gGyDtp
ð13Þ

where Gy is the gradient strength in PE direction, γ is the gyromagnetic ratio, and Δtp is the

dwell time of the RF pulse which is defined as Δtp = (Duration of RF pulse) / (Number of points

in RF pulse). Eq (13) is used to calculate the gradient strength Gy required in the phase encod-

ing direction during execution of RF excitation pulse.

3.2 Under-sampling in noiselet encoding

Noiselet transform is a type of Haar-Walsh transform. The noiselet transform coefficients to-

tally spread out the signal in scale and time (or spatial location) [35]. As a result, each subset of

the transform coefficients contains a certain information of the original signal at all the scales

and times (spatial locations), and can be used alone with zero padding to reconstruct the origi-

nal signal at a lower resolution. This important property is demonstrated by the example

shown in Fig 2.

Fig 2 shows a brain image of size 256 × 256, and the 3D magnitude map of the noiselet

transform of the brain image along the phase encoding direction (all noiselet encodes). Fig 2

(c)–2(f) shows the images reconstructed with the first, second, third and fourth 64 noiselet en-

codes by zero padding the rest. Each of these images are reconstructed using one quarter of the

noiselet encodes and has low resolution than the original image. However, each of these images

have complementary information about the original image and have approximately the same

Fig 2. (a): Brain image of size 256 × 256; (b): 3D magnitude map of the noiselet transform of the brain image
along phase encoding direction (noiselet encodes); (c): image reconstructed using only the first 64 noiselet
encodes; (d), (e) and (f): are the images reconstructed with the second, third and fourth 64 noiselet encodes
respectively.

doi:10.1371/journal.pone.0126386.g002
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amount of energy and information because they are reconstructed using the same size of partial

matrix from the original coefficient matrix.

Based on the above property of noiselet transform, we propose to under-sample the noiselet

encoded data along the phase encoding direction according to the uniform probability distribu-

tion function. One sampling mask using this scheme is shown in Fig 3(a) where the white lines

represent the sampled data points and the black lines represent the unsampled data points. Fig

3(b) shows the sampling mask for Fourier encoding scheme drawn from a variable density

probability distribution function shown in Fig 3(c).

3.3 Coil Sensitivity Estimation

The performance of the MCS-MRI reconstruction depends on the accuracy of the sensitivity

matrix estimated. We used the regularized self-calibrated estimation method [47] to estimate

the sensitivity maps from the acquired data. This method estimates the sensitivity map Ĝi of

the ith receive coil by using

Ĝ i ¼ min
G

1

2
kIi � GIref k

2 þ bRðGÞ ð14Þ

where i 2 [1, 2, � � �, L] and R(Γ) is a spatial roughness penalty function with weighting factor β.

The reference image Iref can be obtained using the sum of squares of individual coil images Ii’s.

For the experimental results presented below, the sensitivity maps were estimated from fully

sampled images using (14). The data was acquired using a 32 channel head coil, but only the

data from 14 channels with good SNR was used in the reconstruction.

3.4 Empirical RIP analysis of measurement matrix

According to the CS theory summarized in Section 2.2, the measurement matrix is crucial to

the performance of CS reconstruction, and the performance of a measurement matrix F for a

K-sparse signal x can be assessed by the statistics of σmin[Fsub(K)] and σmax[Fsub(K)] over the

Fsub(K)s consisting of k distinct columns of F. To understand the behavior and advantage of

Fig 3. (a): Completely random sampling pattern for noiselet encoding generated using the uniform
probability distribution function, where the white lines represent the sampled phase encodes; (b): variable
density random under-sampling pattern for the Fourier encoding scheme, with the sampling mask generated
according to Gaussian probability distribution function; and (c): probability distribution function used to
generate variable density random undersampling pattern where the probability of sampling the center phase
encodes is equal to 1, while the probability decays as a Guassian function with distance from the center
phase encodes. The central fully sampled region is always between 20%-25% of the total number of sampled
phase encodes.

doi:10.1371/journal.pone.0126386.g003
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the noiselet encoding proposed above, we have used this method to assess the noiselet measure-

ment matrix in comparison to the conventional Fourier measurement matrix.

In the assessment, the size of the signal was n = 256, the number of measurementsm = 100,

the number of channels L = 1,8 and 14, and the sparsity K was varied from 5 to 100 with an in-

crement of 5. For L = 1, the measurement matrices, Fs, were generated for the noiselet and

Fourier encodings, respectively. For L = 8 and 14, the measurement matrices Es as given in (8)

were generated for the noiselet and Fourier encodings, respectively. For each K, 2000 subma-

trices Fsub(K)s were drawn uniformly randomly from the columns of F, then the σmin[Fsub(K)]

and σmax[Fsub(K)] of every Fsub(K) were calculated. The same procedure is used to obtain the

submatrices Esub(K)s from E and to calculate the σmin[Esub(K)] and σmax[Esub(K)] of every

Esub(K). The statistics of σmin[Fsub(K)]s, σmax[Fsub(K)]s, σmin[Esub(K)]s and σmax[Esub(K)]s

were accumulated from their respective 2,000 samples.

Fig 4 shows the means and standard deviations of the minimum and maximum singular val-

ues of Fsub(K)s and Esub(K)s versus the sparsity K for the Fourier and noiselet measurement

matrices. As seen from the figure, in single channel case, the singular values of noiselet mea-

surement matrix are closer to 1 than those of Fourier measurement matrix, but are not signifi-

cantly different. As the number of channels increases, the singular values of noiselet and

Fourier measurement matrices all move towards 1, but those of noiselet measurement matrix

move much closer to 1 than those of Fourier measurement matrix. By the CS theory, when the

maximum distance from unity to the singular values is less than 1, it equals roughly the RIP

constant δK. Therefore, the figure actually reveals two facts: 1) For both the noiselet and Fourier

Fig 4. The means and standard deviations of maximum and minimum singular values versus sparsity K for
(a) and (c): Fourier measurement matrix, (b) and (d): noiselet measurement matrix.

doi:10.1371/journal.pone.0126386.g004
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measurement matrices, the RIP constant δK decreases as the number of channels increases. 2)

As the number of channels increases, the RIP constant δK of noiselet measurement matrix de-

ceases much more than that of Fourier measurement matrix. According to the CS theory, these

imply that the multichannel measurement matrix should generally outperform the single chan-

nel measurement matrix, and that the multichannel noiselet measurement matrix should gen-

erally outperform the multichannel Fourier measurement matrix.

As a particular example consider the curves in Fig 4(d) for the noiselet measurement matrix.

To facilitate discussion, the distances from unity to the singular values of a measurement ma-

trix will be called the δ-distances here. In single channel case, the δ-distances of noiselet mea-

surement matrix are less than 1 for K� 40. By RIP, this implies that the single channel noiselet

measurement matrix can guarantee the recovery of the signals with sparsity K� 20. When the

number of channels is increased to 14, the δ-distances are less than 1 for K� 85. So the 14

channel noiselet measurement matrix can guarantee the recovery of the signals with sparsity

K� 42. The improvement in terms of sparsity is two folds. In contrast, for the 14 channel Fou-

rier measurement matrix shown in Fig 4(c), its δ-distances are less than 1 only for K< 30, so it

can only guarantee the recovery of the signals with sparsity K< 15.

From the above assessment, it can be expected that the multichannel CS MRI will outper-

form the single channel CS MRI and that the noiselet encoding multichannel CS MRI will out-

perform the Fourier encoding multichannel CS MRI in practice. These are confirmed by the

simulation and experiment results presented in the next sections.

4 Results

4.1 Simulations

Simulations were performed on a (256 × 256) brain image acquired using a spin echo sequence

to investigate the performance of noiselet encoded and Fourier encoded MRI. The simulation

study was divided into two parts: (i) a simulation study with a single channel using uniform

sensitivity and (ii) a simulation study with multiple channels where the sensitivity profiles were

estimated from the acquired data.

4.2 Single Channel Simulation with a Uniform Sensitivity Profile

Fourier encoded CS-MRI A Fourier transform of the image was taken in the PE direction to

simulate Fourier encoding. A variable density random sampling pattern as shown in Fig 3(a)

where samples were taken in the PE direction according to a Gaussian distribution function

was used in this simulation. A non-linear program of (10) was solved to reconstruct the final

image for acceleration factors of 2 and 3. In this case the encoding matrix E does not have any

sensitivity information (i.e. E = F).

Noiselet encoded CS-MRI A noiselet transform of the image was taken in the PE direction

to simulate noiselet encoding. A completely random sampling pattern was used to sample the

noiselet encoded data in the PE direction and the non-linear program of (10) was solved to re-

construct the final image for acceleration factors of 2 and 3. In this case the encoding matrix E

does not have any sensitivity information (i.e. E = F).

Fig 5 show the images reconstructed with Fourier encoding and noiselet encoding using var-

iable density random under-sampling and completely random under-sampling pattern respec-

tively. The noiselet encoded CS-MRI performs similar to that of the Fourier encoded CS-MRI.

This is due to the fact that in the case of variable density random under-sampling, the Fourier

encoding judiciously exploits extra information about the data, namely the structure of k-

space. The center of the k-space data has maximum energy and hence, by densely sampling the
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Fig 5. Ref: represents the reference image 256 × 256 (up/down: phase encodes, left/right: frequency
encode); (a)-(b): show images reconstructed using Fourier encoding with variable density random under-
sampling patterns for acceleration factors of 2 and 3 respectively; (c)-(d): show images reconstructed using
noiselet encoding with completely random under-sampling patterns for acceleration factors of 2 and 3
respectively. Noiselet encoded CS-MRI performs better than the Fourier encoded CS-MRI when completely
random under-sampling is used for both the encoding schemes. This is due to the better incoherence
provided by the noiselets. However, noiselet encoding with a random under-sampling pattern performs
similar to Fourier encoding with a variable density random under-sampling pattern.

doi:10.1371/journal.pone.0126386.g005

Multichannel Compressive Sensing MRI Using Noiselet Encoding

PLOS ONE | DOI:10.1371/journal.pone.0126386 May 12, 2015 13 / 27



center of k-space, the Fourier encoding captures most of the signal energy and results in

better performance.

In practice, the MR data is collected through the use of multiple channels, and data in each

channel is slightly different from the other channels. The actual k-space data is convolved with

the Fourier transform of the sensitivity profiles of the individual channel, making the data

from each channel different from others. This sensitivity information can also be taken into

consideration while performing the CS reconstruction, by applying the multichannel CS frame.

Therefore, to further study the effect of sensitivity information on noiselet encoding and Fou-

rier encoding, MCS-MRI simulations were performed. To quantitatively compare the perfor-

mance of both the encoding schemes, we used the relative error defined in (15) as a metric:

Relative error ¼
kx

0
� x̂kl2

kx
0
kl2

ð15Þ

First we investigated the effect of the number of channels on the reconstruction quality

using the MCS framework. For a fixed number of measurements, the number of channels was

varied and the mean of the relative error for 1000 such simulations was calculated. Fig 6 shows

the plot of the mean relative error versus the number of channels for the acceleration factors of

2 and 3. When the number of channels was two, the noiselet encoding scheme outperformed

the Fourier encoding scheme for both the acceleration factors of 2 and 3. However, when num-

ber of channels was equal to one, the noiselet encoding outperformed the Fourier encoding for

an acceleration factor of 2, but not for an acceleration factor of 3. It is interesting to note that

noiselet encoding outperformed Fourier encoding for both acceleration factors when the num-

ber of channels was greater than one. These simulations suggest that noiselet encoding should

take into account the sensitivity information while performing CS, and therefore noiselet en-

coding is potentially a better encoding scheme for MCS-MRI. Based on the fact that noiselet

encoding performs better than Fourier encoding for multi-channel data, we investigated the

performance of both the encoding schemes using muti-channel data.

Fig 6. Themean relative error and standard deviation (vertical bar) versus the number of receive
channels for acceleration factors of 2 and 3, showing that the error increases as the number of
channels decreases.Noiselet encoding outperforms Fourier encoding for both acceleration factors when
the number of channels is more than two. However for a single channel, noiselet encoding outperforms
Fourier encoding only for the acceleration factor of 2.

doi:10.1371/journal.pone.0126386.g006
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4.3 Multiple Channel Simulation

A (256 × 256) brain image was used to compare the performance of noiselet encoding and Fou-

rier encoding in MCS-MRI for different acceleration factors. Eight complex sensitivity maps

(Fig 7) obtained from the head coil of a Siemens Skyra 3T scanner were used to perform the

simulations. For solving the minimization program in (10), we used the nonlinear conjugate

gradient with the backtracking line search method [7]. The measurement matrix (F) was the

discrete Fourier transform matrix while the daubechies-4 wavelet transform matrix (C) and

TV were used as sparsifying transforms.

Fourier encoded MCS-MRI The reference brain image was multiplied by the sensitivity

function to generate eight sensitivity encoded images. The Fourier transform of each these im-

ages was taken in the PE direction; only a few PEs were taken according to the Gaussian proba-

bility distribution function. MCS-MRI reconstruction of (10) was solved using the nonlinear

conjugate gradient on this data. An example sampling scheme for the Fourier encoded

MCS-MRI is shown in Fig 3(a).

Noiselet encoded MCS-MRI A Noiselet transform of the sensitivity encoded images was

taken in the PE direction, with only a few PE selected according to the uniform probability dis-

tribution function. MCS-MRI reconstruction of (10) was solved using the nonlinear conjugate

gradient on this data. An example of the sampling scheme for noiselet encoded MCS-MRI is

shown in Fig 3(b).

For a noiseless simulation, the reconstructed images for different acceleration factors (4, 8

and 16) are shown in Fig 8. The difference images in Fig 8(d)–8(f) and 8(j)–8(l) demonstrate

that the error in noiselet encoding is always less than in Fourier encoding, and that the noiselet

encoded MCS-MRI reconstruction preserves spatial resolution better than the Fourier encoded

MCS-MRI. Fig 8(m) and 8(n) show the zoomed images reconstructed with Fourier encoding

for acceleration factors of 8 and 16 respectively, while Fig 8(o) and 8(p) show the zoomed im-

ages reconstructed with noiselet encoding for an acceleration factors of 8 and 16 respectively.

The zoomed images highlight that the spatial resolution of the noiselet encoded reconstruc-

tions outperforms the Fourier encoded reconstructions. Moreover, the spatial resolution pro-

vided by the noiselet encoding at an acceleration factor of 16 is comparable to that of the

Fourier encoding at an acceleration factor of 8, suggesting that noiselet encoding performs ap-

proximately twice as good as Fourier encoding.

Fig 7. The eight coil sensitivity magnitude maps used in simulations that were estimated from the
data acquired on MR scanner.

doi:10.1371/journal.pone.0126386.g007
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Fig 8. Simulation results for MCS-MRI comparing the noiselet encoding and Fourier encoding
schemes (up/down: phase encodes, left/right: frequency encode). (a)-(c): show images reconstructed
with Fourier encoding for acceleration factors of 4, 8, and 16 respectively; (d)-(f): show difference images with
Fourier encoding for acceleration factors of 4, 8, and 16 respectively; (g)-(i): show images reconstructed with
noiselet encoding for acceleration factors of 4, 8, and 16 respectively; (j)-(l): show difference images with
noiselet encoding for acceleration factors of 4, 8, and 16 respectively; (m)-(n): show zoomed portion of
images reconstructed with Fourier encoding for acceleration factors of 8, and 16 respectively; (o)-(p): show
zoomed portion of images reconstructed with noiselet encoding for acceleration factors of 8, and 16
respectively. The zoomed images highlight that MCS-MRI using noiselet encoding reconstructions
outperforms the Fourier encoding for preserving image resolution.

doi:10.1371/journal.pone.0126386.g008
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To further compare MCS-MRI under Fourier encoding and noiselet encoding, we also re-

constructed images using only the wavelet penalty in (9). As shown in Fig 9, the reconstructed

images of both encoding schemes are degraded as compared to those reconstructed using both

the wavelet and TV penalties. However, the superior image quality of noiselet encoding over

Fourier encoding still holds true.

To measure the relative error, simulations were performed on the brain image for 1000

times by randomly generating a sampling mask each time. The mean of the relative errors was

calculated after 1000 such reconstructions at every acceleration factor. The mean relative error

versus the number of measurements is plotted in Fig 10 and highlights that noiselet encoding

outperforms Fourier encoding for all acceleration factors. The relative error for noiselet encod-

ing at an acceleration factor of 16 was the same as the relative error for Fourier encoding at an

acceleration factor of 8 indicating that higher acceleration factors are achievable with noiselet

encoding compared to Fourier encoding.

In practice, MR data always has some noise and the level of noise depends upon many fac-

tors including the FOV, resolution, type of imaging sequence, magnetic field inhomogeneity

and RF inhomogeneity. Therefore, simulations were carried out to evaluate the performance of

both the noiselet encoding and Fourier encoding schemes in the presence of variable levels of

Fig 9. Simulation results for MCS-MRI comparing the noiselet encoding and Fourier encoding schemes (up/down: phase encodes, left/right:
frequency encode) using only wavelet penalty. (a)-(b): show images reconstructed with Fourier encoding for acceleration factors of 4 and 8 respectively;
(c)-(d): show difference images with Fourier encoding for acceleration factors of 4 and 8 respectively; (e)-(f): show images reconstructed with noiselet
encoding for acceleration factors of 4 and 8 respectively; (g)-(h): show difference images with noiselet encoding for acceleration factors of 4 and 8
respectively.

doi:10.1371/journal.pone.0126386.g009
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noise. Different levels of random Gaussian noise were added to the measured k-space data, and

MCS-MRI reconstruction was performed for noiselet and Fourier encoding schemes. For every

level of noise, 1000 simulations were performed and the mean of the relative error was calculat-

ed. Fig 11 shows the mean relative error as a function of the Signal to Noise Ratio (SNR), dem-

onstrating the comparative performance of noiselet encoding reconstructions and Fourier

encoding reconstructions in the presence of noise. The plots demonstrate that noiselet encod-

ing outperforms Fourier encoding for SNR above 20 dB for all acceleration factors, but does a

poor job at extremely low SNR of 10 dB. The poor performance of noiselet encoding at 10 dB

SNR can be attributed to the fact that at extremely low SNR, most of the noiselet coefficients

are severely corrupted by the noise since their magnitudes are approximately uniform. In con-

trast, the Fourier coefficients at the center of k-space have much larger magnitudes and hence

are less affected by the noise at low SNR. These large magnitude coefficients are fully utilized in

reconstruction because of the centralized variable density sampling scheme, hence Fourier en-

coding is less affected by the noise and performs better at low SNR.

4.4 Experiments

Experiments were carried out on Siemens Skyra 3T MRI scanner with a maximum gradient

strength of 40 mT/m and a maximum slew rate of 200 mT/m/sec. Informed consent was taken

from healthy volunteers in accordance with the Institution’s ethics policy. To validate the prac-

tical implementation of noiselet encoding, the pulse sequence shown in Fig 1 was used to ac-

quire noiselet encoded data. An RF excitation pulse with 256 points was used. The flip angle

was 10° calculated by the equal integral rule described in Section 3.1, with the SAR level

checked by Siemens’ RF pulse programming software IDEA to be well below the safety limit

and about 5% higher than that of Fourier encoding RF pulse. We also acquired the Fourier en-

coded data using the spin echo (SE) sequence to compare the quality of the reconstructed

Fig 10. The mean relative error and standard deviation (vertical bar) versus the acceleration factor in
MCS-MRI highlighting that noiselet encoding consistently outperforms Fourier encoding.

doi:10.1371/journal.pone.0126386.g010
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image from the data acquired by the noiselet encoding sequence. An apodized slice selective

sinc RF excitation pulse was used in the spin echo sequence with a flip angle of 10°. The proto-

col parameters for the noiselet encoding sequence and the Fourier encoding SE sequence were

(i) Phantom experiments FOV = 200 mm, TE/TR = 26/750 ms, image matrix = 256 × 256;

and (ii) In vivo experiments FOV = 240 mm, TE/TR = 26/750 ms, image matrix = 256 × 256.

Non-Fourier encoding in general is sensitive to field inhomogeneities, but careful design of

the sequence and good shimming can result in high quality images. To reconstruct the noiselet

encoded data the inverse Fourier transform was taken along the frequency encoding axis and

the inverse noiselet transform was taken along the PE axis. To reconstruct the Fourier encoded

data, an inverse Fourier transform was taken along both axes. Fig 12 shows the images recon-

structed from the fully sampled noiselet encoded data and Fourier encoded data sets. These im-

ages demonstrate that the noiselet encoding reconstructions are practically feasible and

produce artifact free images. Fig 12(c) shows a zoomed portion of the noiselet encoded image,

while Fig 12(f) shows a zoomed portion of the Fourier encoded image. The zoomed images re-

veal that the resolution of the image from noiselet encoding with 256 noiselet excitation is the

same as that of the image from Fourier encoding with 256 phase encodes. Fig 12(g) and 12(i)

show the T2 weighted images for the brain with noiselet encoding and Fourier encoding, re-

spectively. Fig 12(h) and 12(j) show the T1 weighted images for the brain with noiselet encod-

ing and Fourier encoding, respectively. It is evident from the in vivo images that the proposed

noiselet encoding is feasible in practice.

Fig 11. (a), (b) and (c): are the plots of the mean relative error as a function of the signal to noise ratio (SNR)
for different number of measurements. When the SNR is greater than 20 dB, the noiselet encoding
outperforms Fourier encoding in the presence of noise for all acceleration factors; (d): show the brain images
with SNR of 10, 20, 30 and 50 dB.

doi:10.1371/journal.pone.0126386.g011
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To validate the feasibility of the proposed reconstruction method, we performed retrospec-

tive under-sampling on the acquired noiselet encoded data and Fourier encoded data to simu-

late accelerated data acquisition. After retrospective under-sampling, the unconstrained

optimization program (10) was solved using the non-linear conjugate gradient method to re-

construct the desired image for different acceleration factors. Fig 13(a)–13(c) shows the recon-

structed images for the acceleration factors of 4, 8 and 16 on the Fourier encoded data while

Fig 13(d)–13(f) shows the corresponding difference images. Similarly, Fig 13(g)–13(i) shows

the reconstructed images for the acceleration factors of 4, 8 and 16 on the noiselet encoded

data, and Fig 13(j)–13(l) shows the corresponding difference images for noiselet encoded

MCS-MRI. These results on the acquired data are consistent with the simulation results and in-

dicate that the noiselet encoding is superior to the Fourier encoding in preserving resolution.

Fig 13(A)–13(H) shows the zoomed portion of the reconstructed images with Fourier en-

coding and noiselet encoding. One can distinguish between the small dots in the zoomed im-

ages reconstructed with noiselet encoding while it is difficult to distinguish these dots in the

images reconstructed with Fourier encoding. This demonstrates that noiselet encoding is able

to preserve resolution better than the Fourier encoding. Fig 14 show the images reconstructed

with Fourier encoding and noiselet encoding for various acceleration factors on the data ac-

quired for one axial slice of the brain. Since the SNR of the in vivo images is less than in the

phantom images, reconstruction is shown only up to an acceleration factor of 8. The difference

images demonstrate that noiselet encoding outperforms Fourier encoding for all acceleration

Fig 12. Images reconstructed using fully sampled noiselet encoded and Fourier encoded data
acquired on the 3T scanner (up/down: phase encodes, left/right: frequency encode). The noiselet
encoded data was acquired using the pulse sequence described in section III C, and Fourier encoded data
was acquired using a conventional spin echo sequence. (c)-(f): show the zoomed portion of the images in (b)
and (e) respectively, with the zoomed images demonstrating that noiselet encoding provides similar image
resolution to that of Fourier encoding; (g)-(h): show T2 and T1 weighted brain images using noiselet encoding
respectively; (i)-(j): show T2 and T1 weighted brain images using Fourier encoding respectively. These in

vivo images demonstrate the practical feasibility of the proposed noiselet encoding scheme.

doi:10.1371/journal.pone.0126386.g012
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Fig 13. MCS-MRI reconstruction on the acquired noiselet encoded and Fourier encoded data for
different acceleration factors (up/down: phase encodes, left/right: frequency encode). RF: shows
reference image reconstructed from fully sampled Fourier encoded data;RN: shows reference image
reconstructed from fully sampled Noiselet encoded data; (a)-(c): show images reconstructed using Fourier
encoding for acceleration factor of 4, 8 and 16 respectively; (d)-(f): show the difference images using Fourier
encoding for acceleration factor of 4, 8 and 16 respectively; (g)-(i): show images reconstructed using noiselet
encoding for acceleration factor of 4, 8 and 16 respectively; (j)-(l): show the difference images using noiselet
encoding for acceleration factor of 4, 8 and 16 respectively. The result here aligns with the simulation results
and noiselet encoding outperforms Fourier encoding in preserving resolution. (A-H): Zoomed portion of
phantom images reconstructed with Fourier encoding and noiselet encoding with different acceleration
factors. (A): shows the original image reconstructed from fully sampled Fourier encoded data; (B), (C) and
(D): show the Fourier encoded reconstructed images for acceleration factors of 4, 8 and 16 respectively; (E):
shows the image reconstructed from fully sampled noiselet encoded data; (F), (G) and (H): show the noiselet
encoded reconstructed images for acceleration factors of 4, 8 and 16 respectively demonstrating that noiselet
encoding produces improved resolution images than than Fourier encoding at all acceleration factors.

doi:10.1371/journal.pone.0126386.g013
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Fig 14. MCS-MRI reconstruction on in vivo brain images using acquired noiselet encoded and Fourier
encoded data for different acceleration factors (up/down: phase encodes, left/right: frequency
encode). (a): shows reference image reconstructed from fully sampled Fourier encoded data; (b)-(d): show
images reconstructed using Fourier encoding for acceleration factor of 2.6, 4 and 8 respectively; (e)-(g): show
the difference images using Fourier encoding for acceleration factor of 2.6, 4 and 8 respectively; (h): shows
reference image reconstructed from fully sampled Noiselet encoded data; (i)-(k): show images reconstructed
using noiselet encoding for acceleration factor of 2.6, 4 and 8 respectively; (l)-(n): show the difference images
using noiselet encoding for acceleration factor of 2.6, 4 and 8 respectively. It can be seen from the difference
images that noiselet encoding outperforms Fourier encoding on the acquired invivo data. The loss in
resolution is clearly visible for Fourier encoding at an acceleration factor of 8.

doi:10.1371/journal.pone.0126386.g014
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factors. In particular, at the acceleration factor of 8 the image reconstructed with Fourier en-

coded data has significantly poorer resolution compared to the image reconstructed with noise-

let encoded data.

5 Discussion

We have presented a new method of encoding the MR data in PE direction with noiselet basis

functions for accelerating MRI scans using MCS-MRI reconstruction. The simulation results

demonstrate that the proposed encoding gives rise to a multichannel measurement matrix with

improved RIP, and the reconstruction method using the noiselet bases outperforms the con-

ventional Fourier encoding scheme. The mean relative error for noiselet encoding at the accel-

eration factor of 16 is comparable to that of Fourier encoding at the acceleration factor of 8,

demonstrating that higher acceleration factors can be achieved with noiselet encoding than the

Fourier encoding in the MCS framework.

The reconstruction from the noiselet encoding scheme preserves image spatial resolution

far better than the Fourier encoding scheme. The Fourier encoding scheme intelligently ex-

ploits the property of k-space since most of the energy is concentrated at the center of the k-

space. Therefore, densely sampling the center and randomly under-sampling the outer regions

of the k-space retains most of the energy in the acquired data. However retaining most of the

energy does not imply that most of the information is captured in the acquisition. The low en-

ergy (high frequency) component in the outer k-space contains the information about the fine

features of the image that the variable density random under-sampling pattern fails to capture.

Therefore, the images reconstructed with the Fourier encoding scheme look visually good but

have reduced resolution due to insufficient information about the high frequency components

in the acquired data. On the other hand, noiselet encoding completely spreads out the energy

of the signal in the measurement domain. Therefore each measurement in the noiselet domain

has sufficient information to reconstruct the fine details of the image, thus preserving the reso-

lution better than the Fourier encoding.

Noiselet basis functions have some interesting properties that can be exploited, for example

noiselets are unitary basis functions and have complex conjugate symmetry. This conjugate

symmetry property can be exploited in a way similar to that of the Fourier encoding for partial

acquisition [48, 49]. Another interesting property of noiselet basis functions, as for the Fourier

basis functions, is that regular under-sampling in the noiselet domain results in aliasing in the

image domain. Therefore in the case of regular under-sampling in the noiselet domain, unalias-

ing with SENSE [8] alone can also be used for noiselet encoding.

In general the implementation of non-Fourier encoding suffers from a few limitations, and

hence the current implementation of noiselet encoding also suffers from these limitations as

summarized below. (i) In 2D imaging implementation of noiselet encoding, the excitation of

noiselet profile is not slice selective, thus a slice selective 180° pulse is required after excitation,

which limits the noiselet encoding to spin echo type sequences. The spin echo sequence always

have long TR, therefore the proposed noiselet encoding can only be used for applications re-

quiring long TR, such as structural scans, but will be of little use in dynamic imaging. (ii) In the

current implementation, to simplify the design of noiselet excitation pulse we have used direct

Fourier transform method that limits the excitation to the low flip angle regime, resulting in

the sacrifice of some available SNR. (iii) The duration of noiselet RF excitation pulse is long

compared to the conventional sinc RF pulse and the noiselet encoding can only be imple-

mented in one direction in the current implementation. (iv) Due to dielectric effects, etc, in

practice, B1 field is always not perfectly homogeneous. Because B1 is used for spatial encoding

in the proposed noiselet encoding scheme, B1 inhomogeneity may introduce some
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perturbations to the noiselet measurement matrix, which in turn may result in some image ar-

tifact if the perturbation is large.

The above limitations are not specific to noiselet encoding scheme but are common to all

non-Fourier encoding schemes. Here we discuss some probable solutions to the above men-

tioned problems. (i) The problem of slice selection can be alleviated using a 3D gradient echo

(GRE) sequences where a 3D volume can be excited with a noiselet profile in one dimension

and other two dimensions can be Fourier encoded. (ii) The low tip angle in current implemen-

tation is the limitation of the direct Fourier transform method used to compute the RF pulse. It

is not an intrinsic limitation of noiselet encoding. Although difficult, computation of large tip

angle noiselet RF pulse is possible by using nonlinear computation methods such as direct iter-

ative solution of Bloch equation [50] and the SLR method [51], which are currently being in-

vestigated. (iii) The duration of the RF pulse can be reduced by using parallel-transmit and

multiple dimensional excitation of noiselet profiles to achieve encoding [50, 52]. This is our on-

going research. (iv) The perturbations to the measurement matrix induce an equivalent deter-

ministic noise additive to the measured MR signals. When the inverse noiselet transform is

applied directly to the fully sampled dataset to reconstruct the image, a structured artifact may

show up if the perturbation is large. This problem can be alleviated when the CS reconstruction

method as given in (10) is used for image reconstruction. This is because the CS reconstruction

algorithm has inherent denoising capability, which can suppress small perturbations by enforc-

ing the prescribed bound � on the reconstruction error. Refer to Section 2.2 and the references

therein for detailed discussions. For this reason and also because of the high quality of the new

3T scanner used in our experiments, we have not observed structured image artifacts in the ex-

periments presented in Section 4.4.

6 Conclusion

In this paper we have introduced a method of acquiring data in the noiselet domain and pre-

sented a method for the design and implementation of pulse sequences to acquire data in the

noiselet domain. The performance of the noiselet encoding has been thoroughly evaluated by

extensive numerical analysis, simulation and experiments. The results indicate that the multi-

channel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and

that the noiselet encoding scheme in MCS-MRI outperforms the conventional Fourier encod-

ing in preserving image resolution, and can achieve higher acceleration factors than the con-

ventional Fourier encoding scheme. The implementation of noiselet encoding by tailoring spin

echo sequence demonstrates that the proposed encoding scheme is pragmatic. The proposed

technique has the potential to accelerate image acquisition in applications that require high

resolution images.

As an emerging technique, the proposed noiselet encoding needs further improvements to

overcome its limitations in current implementation. We are currently working on the improve-

ments following the technical approach outlined in Discussion. It is expected that upon com-

pletion of these improvements, the proposed noiselet encoding scheme should be able to

replace the conventional Fourier encoding in many CS MRI applications reported in the cur-

rent literature to achieve better imaging quality and speed.
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