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Autism spectrumdisorder (ASD) is a developmental disorder that impactsmore than 1.6% of children aged 8 across the United States. It
is characterized by impairments in social interaction and communication, aswell as by a restricted repertoire of activity and interests./e
current standardized clinical diagnosis of ASD remains to be a subjective diagnosis,mainly relying on behavior-based tests. However, the
diagnostic process for ASD is not only time consuming, but also costly, causing a tremendous financial burden for patients’ families.
/erefore, automated diagnosis approaches have been an attractive solution for earlier identification of ASD. In this work, we set to
develop a deep learningmodel for automated diagnosis of ASD. Specifically, amultichannel deep attention neural network (DANN)was
proposed by integrating multiple layers of neural networks, attentionmechanism, and feature fusion to capture the interrelationships in
multimodality data. We evaluated the proposed multichannel DANN model on the Autism Brain Imaging Data Exchange (ABIDE)
repository with 809 subjects (408ASD patients and 401 typical development controls). Ourmodel achieved a state-of-the-art accuracy of
0.732 on ASD classification by integrating three scales of brain functional connectomes and personal characteristic data, outperforming
multiple peermachine learningmodels in a k-fold cross validation experiment. Additional k-fold and leave-one-site-out cross validation
were conducted to test the generalizability and robustness of the proposed multichannel DANN model. /e results show promise for
deep learning models to aid the future automated clinical diagnosis of ASD.

1. Introduction

Autism spectrum disorder (ASD) has been estimated to
occur in more than 1.6% of children aged 8 across the United
States [1]. As a chronic neurological condition, ASD is
characterized by impairments in social interaction and
communication, as well as by a restricted repertoire of

activity and interests [2–5]. Patients with ASD exhibit dif-
ferent levels of impairments, ranging from above average to
intellectual disability. In neuroscience, ASD remains a
formidable challenge, due to their high prevalence, com-
plexity, and substantial heterogeneity, which require mul-
tidisciplinary efforts [6–8]. Although clinical therapies have
been developed to treat the symptoms, the diagnosis of ASD
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remains to be a challenging task. Currently, behavior-based
test is the standard clinical method for diagnosing ASD [9].
However, the diagnostic process for ASD is not only time
consuming but also costly [10]. /is results in a tremendous
financial burden for patients’ families. Meanwhile, with this
lifetime ASD, the patients may have difficulties in normal
socialization and working environments, increasing the
overall social costs. /erefore, an automated diagnosis ap-
proach is desirable for earlier identification of ASD.

Machine learning is a promising tool for investigating
the replicability of patterns across larger, more heteroge-
neous datasets [11–13]. For automated diagnosis of ASD,
personal characteristic (PC) data, such as intelligence
quotient (IQ) and Social Responsiveness Scale (SRS) score
have been adopted in several studies [14–16]. In the study of
ASD, IQ is a type of standard score that is derived from
several standardized tests designed to assess human intel-
ligence, and the SRS score includes a 65-item standardized
questionnaire regarding behaviors that are associated with
ASD [17]. ASD is highly associated with intellectual dis-
ability which is mainly measured by IQ. Meanwhile, some
studies [18, 19] indicate that IQ discrepancy marks a
meaningful phenotype in ASDs. In this way, IQ becomes an
important biomarker to classify the ASD.

Neuroimaging data have also been investigated to ex-
plore ASD biomarkers in recent decades. To facilitate the
ASD research community, Autism Brain Imaging Data
Exchange (ABIDE), an international collaborative project,
has collected data from over 1,000 subjects (e.g., structure
MRI (sMRI), resting-state functional MRI (rs-fMRI), and
PC data) and made the whole database publicly available.
/is provided a common platform to test hypotheses, search
key biomarkers, and develop advanced statistical and ma-
chine learning algorithms. For example, Ghiassian et al. [20]
proposed an automated classifier by combining the histo-
gram of orientated gradients approach for feature extraction
from sMRI and rs-fMRI data and support vector machines
(SVMs) for decision making./eir method was tested on the
ABIDE dataset and achieved 65.0% accuracy on hold-out set.
Of late, Sen et al. [21] developed a LEFMS learner, which
applies sparse autoencoder to extract features from sMRI
and spatial nonstationary independent components on rs-
fMRI data. SVM was the utilized to classify ASD and im-
proved accuracy by 0.042. Katuwal et al. [22] applied a
random forest classifier to classify ASD and achieved an
AUC of 0.61. Adding verbal IQ and age to morphometric
features, AUC was improved to 0.68. By introducing
hypergraph learning technique, Zu et al. [23] proposed a
novel learning method to discover complex connectivity
biomarkers that are beyond the widely used region-to-region
connections in the conventional brain network analysis.

Deep learning has had a profound impact on many data
analytic applications, such as speech recognition, image
classification, computer vision, and natural language pro-
cessing [24]. Based on data-driven feature construction, deep
learning provides a new direction for data analytic modelling.
Over the past few years, an increasing body of the literature
confirmed the success of feature construction using deep
learning methods. Deep learning has been demonstrated to

outperform traditional machine learning algorithms on nu-
merous recognition and classification tasks [24–29], which
inspires the researchers in the ASD community to apply deep
learning approaches on ASD classification. Earlier, deep
neural networks (DNNs) have been applied to identify ASD
patients using rs-fMRI [26]. /eir model achieved 70% on
accuracy by using the functional connectivity (FC) matrix as
features for model training.

Kong et al. [27] constructed individual functional brain
networks using the rs-fMRI data from 182 subjects of NYU
LangoneMedical Center, a data site within ABIDE repository.
FC features were used to represent the networks of all subjects
and further ranked using F-score. /en, a stacked sparse
autoencoder-based DNN model was developed. Significant
performance improvement was achieved by comparing the
proposed method with two existing algorithms.

More recently, an ASD-DiagNet, a joint learning pro-
cedure using an autoencoder and a single layer perceptron,
was presented [28]. A data augmentation strategy was also
designed for the FC features of functional brain networks
based on linear interpolation of available feature vectors to
ensure the robust training of the ASD-DiagNet. By evalu-
ating the model on 1035 subjects from 17 different sites of
ABIDE repository, ASD-DiagNet achieves 70.1% on the
accuracy, 67.8% on sensitivity, and 72.8% on specificity in
10-fold cross validation. In the mode evaluation of indi-
vidual data centers, ASD-DiagNet outperformed other state-
of-the-art methods and increased the accuracy performance
up to 20% with a maximum accuracy of 80%.

In this work, we aim to develop a novel deep learning
model for automated diagnosis of ASD. Specifically, we
proposed a multichannel deep attention neural network,
called DANN, by integrating multiple layers of neural
networks, attention mechanism, and feature fusion to
capture the interrelationships in multimodality data
(functional neuroimaging data and PC data) to distinguish
ASD patients from typical development controls (TDCs).
/e attention mechanism-based learning is a type of deep
learning which is a recent trend for understanding what part
of historical information weighs more in predicting diseases
[30, 31]. Taking advantage of large heterogeneous dataset
from ABIDE, multiscale brain functional connectomes and
PC data were obtained as the features. We systematically
evaluated the diagnosis power of our multichannel DANN
on ASD classification and compared the performance of the
proposed model with peer machine learning models.

/e rest of paper is organized as follows. Section 2 de-
scribes ASD data and multichannel deep attention neural
network. /e experimental setup is shown in Section 3,
followed by the experimental results and discussion in Section
4. Finally, the conclusion of this work is described in Section 5.

2. Materials and Methods

2.1. Subjects. We collected preprocessed rs-fMRI and PC
data from 809 subjects from publicly accessible ABIDE
repository, including 408 ASD subjects and 401 TDC sub-
jects. Detailed demographic information of subjects is listed
in Table 1. /e incidence of ASD between male and female
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subjects is significantly different, and thus the majority of the
subjects in ABIDE dataset are male. /ere is no significant
difference between the age of ASD and TDC groups. All
three IQ scores had significant difference between two
groups. Later, the variables’ gender, age, and three IQs were
used as PC data in our ASD classification experiments.

2.2. Data Preprocessing. Each of rs-fMRI data has been
preprocessed using Configurable Pipeline for the Analysis of
Connectomes (CPAC) preprocessing pipeline, which in-
cludes slice timing correction, motion realignment, and
intensity normalization. Nuisance variable regression was
implemented through bandpass filtering and global signal
regression strategies to clean confounding variations in-
troduced by heartbeats and respiration, head motion, and
low-frequency scanner drifts. Furthermore, boundary-based
rigid body and FMRIB’s linear and nonlinear image regis-
tration tools were used to register functional to anatomical
images. /en, both functional and anatomical images were
normalized to template space (MNI 152). /ree scales of
brain functional connectomes were extracted in this work.
Mean blood oxygen-level dependent (BOLD) time-series
signals for three sets of regions of interests (ROIs), i.e.,
atlases, including the Automated Anatomical Labeling
(AAL) atlas, Harvard-Oxford (HO) atlas, and Craddock 200
(CC200), were calculated. /e weights of functional brain
connectivity were defined using Pearson’s correlation co-
efficient between any pair of two ROIs. For AAL atlas, each
subject was represented by a 90 × 90 FC adjacency matrix,
symmetric along diagonal, in which each entry represents
the brain connectivity between each pair of ROIs. Similarly,
each rs-fMRI data was also represented by 110 × 110 and
200 × 200 symmetric FC adjacency matrices using HO and
CC200 atlases, respectively. In addition, from 809 subjects,
we obtained five PC data, including sex, handedness, full-
scale IQ (FIQ), verbal IQ (VIQ), and performance IQ (PIQ).

2.3. Multichannel Deep Attention Neural Network

2.3.1. Overview Structure. An overview of multichannel
DANN is given in Figure 1. It consists of blocks of multi-
channel inputs, multilayer perceptron (MLP), self-attention,
fusion, and aggregation. /e various components are de-
scribed in the following sections.

2.3.2. MLP. /e MLP block is composed of 5 layers, which
are one dropout layer and four dense layers. /e details of
the block are shown in Figure 2.

A dropout layer, which prevents overfitting during
training the model, is applied on input data, e.g. AAL FC
(input size is 4005). /e white circle in Figure 2 denotes
dropped units according to dropout probability. /e
dropout layer is followed by four dense layers, whose hidden
units are 1024, 512, 128, and 32, respectively, and corre-
sponding activation functions are “elu,” “tanh,” “tanh,” and
“relu,” respectively.

2.3.3. Self-Attention. /e attention is proposed to compute
an alignment score between elements from two sources [32].
In particular, given an input FC adjacency matrix, which can
be transformed into a FC adjacency sequence,
x � [x1, x2, . . . , xd] and a representation of a query q ∈ Rd,
attention [33] computes the alignment score between q and
each element xi using a compatibility function f(xi, q). A
softmax function then transforms the alignment scores
[f(xi, q)]

d
i�1 to a probability distribution p(z | x, q), where z

is an indicator of which element is important to q. /at is, a
large p(z � i | x, q) means that xi contributes important
information to q. /is attention process can be formalized as

α � f xi, q(  di�1,
p(z � i | x, q) � softmax(α).

(1)

/e output si is the weighted element according to its
importance, i.e.,

si � p(z � i | x, q)xi. (2)

Additive attention mechanisms [33, 34] are commonly
used attentionmechanisms where the compatibility function
f(·) is parameterized by a MLP, i.e.,

f xi, q(  � wTσ W(1)xi +W
(2)q , (3)

where W(1) ∈ Rd×d, W(2) ∈ Rd×d, w ∈ Rd are learnable pa-
rameters, d is the dimension of xi, and σ(·) is an activation
function. In contrast to additive attention, multiplicative
attention [35, 36] uses cosine similarity or inner product as
the compatibility function for f(xi, q), i.e.,

f xi, q(  �〈W(1)xi,W
(2)q〉. (4)

In practice, although additive attention is expensive in
time cost and memory consumption, it usually achieves
better empirical performance for downstream tasks.

Self-attention [37, 38] explores the importance of each
feature to the entire FC given a specific task. In particular, q
is removed from the common compatibility function which
is formally written as the following equation:

Table 1: Demographic information of 809 subjects from ABIDE.

Type Number Gender (M/F) Age FIQ PIQ VIQ

ASD 408 330/78 16.47± 6.70 110.63± 12.67 107.85± 13.41 111.17± 13.31
TDC 401 352/49 16.80± 7.80 105.28± 16.64 105.10± 17.10 104.60± 17.81
p value — 0.017 0.785 <0.001 0.003 <0.001
ASD: autism spectrum disorder; TDC: typical development control; M: male; F: female; VIQ: the verbal IQ; PIQ: the performance IQ; FIQ: the full-scale IQ.
/e values are denoted as mean and standard deviation.
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f xi(  � wTσ W(1)xi ,
α � f xi(  di�1,

p(z � i | x) � softmax(α).

(5)

/e output si is the weighted element according to its
importance, i.e.,

si � p(z � i | x)xi. (6)

2.3.4. Fusion. /e fusion output u is obtained by com-
bining the outputs of the two dense layer blocks, which can
capture the correlation between the types of spaces. /e
combination is accomplished by a fusion gate, as shown in
Figure 3, i.e.,

F � sigmoid W f1( )od1 +W
f2( )od2 + b

(f) .
u � F⊙ od1 +(1 − F)⊙ od2,

(7)

whereW(f1),W(f2) ∈ Rdo , do is the dimension of output od,
and b(f) ∈ R are the learnable parameters of the fusion gate.

2.3.5. Aggregation. To aggregate dense layer, self-attention,
and fusion into a DANN, the outputs of self-attention and
fusion blocks can be concatenated, multiplied, or averaged.
In our implementation, the outputs of both the self-attention
blocks and the fusion blocks are concatenated, followed by a
dense layer and sigmoid layer for classification:

Multi-channel DANN for ASD Classification

MLP

Self-attention Self-attention Self-attention

Sigmoid

ASD TDC

Aggregation

32, ‘relu’

AAL FC (90 × 90) HO FC (110 × 110) CC200 FC (200 × 200) Demographic data

Fusion Fusion Fusion

Saal Sho Sccu1 u2 u3

Od
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Od
2

Od
3

MLP MLP

Figure 1: A DANN structure for ASD classification in this study.
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Figure 2: Detailed MLP block in DANN structure.
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Figure 3: Detailed fusion gate in DANN structure.
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ld � relu Wdv + bd( ,
Comb � sigmoid Wcld + bc( , (8)

where v is a vector of the combined outputs of both the self-
attention blocks and the fusion blocks.
v � [saal, sho, scc, u1, u2, u3,Demo] represents the concate-
nation of outputs saal, sho, scc from the self-attention blocks,
u1, u2, u3 from the fusion blocks, and Demo from demo-
graphic data. A sigmoid function on dense lay is then used
for data classification.

3. Experiment Setup

3.1. Model Evaluation. We conducted a comprehensive
evaluation in this study by employing the proposed
multichannel DANN on ABIDE dataset to classify the
ASD subjects from TDC subjects. Two evaluation strategies,
k-fold cross validation and leave-one-site-out cross validation,
were designed in our experiments. For k-fold cross validation,
whole ABIDE dataset would be divided into k portions. In
each repeated iteration, we randomly used one portion of the
data as testing data and applied the remaining (k − 1) portions
of the data as training data. /is process would be repeated k
times until all data have been tested once. For the leave-one-
site-out cross validation, we separated the whole ABIDE
dataset according to their data sites. We removed the SBL site
from this experiment due to its small subject size (N� 4)./is
resulted in a total of 12 data sites. We randomly used data
from one site as testing data and treated the remaining data
from 11 data sites as training data. /is is repeated 12 times
until data from all sites have been evaluated as testing data.
Both the k-fold cross validation and leave-one-site-out ex-
periments were repeated 50 times to understand the vari-
ability of the results. Mean and standard deviation (SD) were
calculated. Student’s T-test was applied to test the difference
between continuous values, and chi-square test was used for
discrete values. One-way analysis of variance (ANOVA) was
utilized to compare multiple conditions (i.e., multiple k-fold
cross validation experiments). A p value< 0.05 was used for
inferring statistical significance.

We calculated true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) for the classification by
comparing the classified labels and gold-standard labels./en,
we calculated accuracy, sensitivity, precision, and F-score by

accuracy �
TP + TN

TP + TN + FP + FN
,

sensitivity �
TP

TP + FN
,

precision �
TP

TP + FP
,

F − score � 2 ×
precision × sensitivity

precision + sensitivity
,

specificity �
TN

TN + FP
.

(9)

3.2. Peer Machine Learning Models. To compare our mul-
tichannel DANN with existing machine learning models, we
also implemented random forest (RF), support vector ma-
chine (SVM) models, and multichannel DNN. Each model
was designed to take multimodality data as inputs.

3.2.1. Random Forest (RF). RF is one of the classic ensemble
learning methods by learning multiple decision trees to
improve classification performance and control overfitting.
/e number of trees in the forest was optimized from
empirical values [20, 40, 60, 80, 100]. We set the maximal
depth of the tree as 10.

3.2.2. Support Vector Machine (SVM). A SVM model was
developed to perform ASD classification by using vectorized
FC features. We applied a linear kernel and searched the
margin penalty with empirical values [0.2, 0.4, 0.6, 0.8, 1.0].

3.2.3. Deep Neural Networks (DNNs). In terms of existing
deep learning model, we compared our model with a DNN
model developed previously for ASD classification [26]. In
brief, the compared existing DNN model is a 5-layer DNN,
with input number of nodes in input layer, followed by 1024,
512, 128, and 32 nodes in hidden layers, and the output layer
contains two output units. A cross entropy loss function was
adopted. Learning rate was set as 0.0001. 10 epochs were
applied to ensure the convergence of the model.

3.3. Developmental Environment. /e proposed DANN and
peer machine learning models were implemented in the
Python 3.7 environment. To build the deep learning related
models, we applied Keras (2.2.4) package with TensorFlow
(1.13.1) backend. For the traditional models, we adopted the
models from Sklearn 0.20 [39]. Statistical analyses were
performed using Matlab 2019b.

All the experiments were conducted on a workstation
with 10 cores of Intel Core i9 CPU and 64GB RAM. Due to
the high computation cost of deep learning algorithm, we
configured one GPU (Nvidia TITAN Xp, 12GB RAM) to
accelerate the training speed of the models.

4. Results and Discussion

4.1. Performance Comparison on the Whole ABIDE Dataset.
We first compared the ASD classification performance of
the proposed multichannel DANN model and multiple
peer machine learning models, including RF, SVM, and
multichannel DNN. /e results were calculated based on
50 repeats of 10-fold cross validation experiments by using
the entire ABIDE dataset. /e mean and SD of the per-
formance metrics are listed in Table 2. /e proposed
multichannel DANN exhibited a significantly higher ac-
curacy than multichannel DNN (p � 0.01), SVM
(p � 0.014), and RF (p � 0.008) models. Similarly, the
multichannel DANN also had better F-score than multi-
channel DNN (p � 0.004), SVM (p< 0.001), and RF
(p< 0.001) models. /e sensitivity of the multichannel
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DANN was significantly higher than that of multichannel
DNN (p � 0.009), SVM (p � 0.015), and RF (p � 0.005)
models. /e specificity of the multichannel DANN was
significantly higher than that of SVM (p � 0.004) and RF
(p< 0.001) models but was not significantly better than
multichannel DNN (p � 0.082). Since the multichannel
DNN had a relatively lower sensitivity (0.673), it achieved
the best mean precision in our experiments. No significant
difference (p � 0.219) was found between multichannel
DNN and DANN on precision. /e multichannel DANN
model still exhibited higher precision than SVM
(p � 0.003) and RF (p< 0.001). Overall, the proposed
multichannel DANN achieved improved ASD classifica-
tion accuracy, sensitivity, F-score, and specificity among
compared machine learning models, while the multi-
channel DNN had the highest precision.

Inspiringly, the proposed multichannel DANN sig-
nificantly outperformed multichannel DNN on four of
five performance metrics, increasing mean accuracy by
0.025, sensitivity by 0.072, F-score by 0.018, and specificity
by 0.017. Although no significance was found, the pre-
cision of the proposed approach is slightly lower than
multichannel DNN by 0.01. /e attention mechanism in
our model, as the name implies, aids the deep learning
model to make choices about which features it should pay
attention. Our model can allocate attention by adjusting
the weights they assign to individual FC features. /is
process can decide which FC features are more important
than others in terms of the ASD classification task. In
another word, it optimizes the feature selection during the
learning of a deep learning model. /e improved per-
formance of DANN over DNN demonstrated the validity
of the attention mechanism. /e results in Table 2 also
showed that multichannel DANN achieved significantly
improved performance, compared to traditional models
SVM and RF. /is is consistent with multiple previous
ASD classification studies [26, 27]. /e improvement was
likely due to a combination of attention mechanism and
the superior capability of deep learning model on complex
data patterns, such as FC features.

4.2. Leave-One-Site-Out Cross Validation of Multichannel
DANN. To test the generalizability of the proposed model
on unseen data from different data sites, we performed a
leave-one-site-out cross validation. Similar to k-fold cross
validation, we reserved data from one data site as testing data
and trained our model by using all data from the rest of the
11 data sites. But, since the training data were the same

across all repeats, the performances have much smaller
variations than k-fold cross validation. Table 3 shows the
classification performance of our model and the size of
subjects for each data site.

In the NYU data site that contains the largest sample size,
our model achieved an accuracy of 0.709 ± 0.019, sensitivity
of 0.720± 0.086, the precision of 0.758± 0.127, F-score of
0.738± 0.069, and specificity of 0.689± 0.072. When ex-
amining data sites with more than 40 subjects, we found that
our model achieved the highest accuracy (0.803± 0.045) on
the USM site and the best F-score (0.745± 0.052) on the
UCLA site. /ese two sites contain nearly 100 subjects, so
the results are very informative. We also noted that the
lowest accuracy our model returned was 0.684± 0.026 from
UM site, suggesting that the data here may have variability
that is different from other sites. Overall, our model reached
a mean accuracy of 0.713± 0.022 and mean F-score
0.707± 0.043. /is was significantly lower than accuracy
(p � 0.002) and F-score (p< 0.001) from the cross validation
results in Table 2, indicating a large data variability among
different data sites.

4.3. Robustness of Multichannel DANN on Varying Data Split
Schemes. Next, the robustness of our DANN was further
tested using varying k-fold cross validation. A classification
model that is not robust may appear to perform very dif-
ferently with different k. Figure 4 shows plots of the accu-
racy, sensitivity, precision, F-score, and specificity of the
proposed DANN over k-fold cross validation strategies
(k � [6, 7, 8, 9, 10]). Using one-way ANOVA, the proposed
DANN exhibited no significantly different performance
across varying k-fold experiments (p � 0.082), indicating the
robustness of the proposed multichannel DANN model.

4.4. Impact of Data Modality on the Classification
Performance. At the end, we set to test the performance of
the multichannel DANN when different data modalities are
used for ASD classification. All results were based on 50
repeats of 10-fold cross validation experiment. Table 4 lists
the performance of multichannel DANN on varying com-
binations of FC data (marked as AAL, HO, and CC200) and
PC data (marked as Demo). /e upper part of Table 4
contains results based on both FC and PC data, while the
lower part of the table focuses on FC data only. /e com-
bined FC and PC data (AAL+HO+CC+Demo) had a
better accuracy (p � 0.011), sensitivity (p � 0.039), and
specificity (p � 0.025) than FC data alone
(AAL+HO+CC), while no significant differences were

Table 2: Comparison of random forest (RF), support vector machine (SVM), multichannel deep neural network (DNN), and multichannel
deep attention neural network (DANN) classifiers trained using 10-fold cross validation on the entire dataset.

Method Accuracy Sensitivity Precision F-Score Specificity

RF 0.659± 0.018 0.689± 0.106 0.656± 0.012 0.671± 0.023 0.628± 0.081
SVM 0.693± 0.059 0.713± 0.059 0.696± 0.072 0.702± 0.048 0.673± 0.113
Multichannel DNN 0.707± 0.027 0.673± 0.088 0.740 ± 0.106 0.718± 0.060 0.700± 0.067
Multichannel DANN 0.732 ± 0.024 0.745 ± 0.115 0.730± 0.053 0.736 ± 0.042 0.717 ± 0.101

All data are mean and standard deviation. /e highest metrics were marked as bold.
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Table 3: Leave-one-site-out cross validation results using multichannel DANN.

Site-out Size Accuracy Sensitivity Precision F-score Specificity

TRINITY 46 0.696± 0.012 0.640± 0.012 0.762± 0.036 0.696± 0.004 0.679± 0.070
YALE 56 0.696± 0.025 0.679± 0.029 0.714± 0.032 0.691± 0.034 0.682± 0.065
STANFORD 39 0.615± 0.018 0.350± 0.025 0.778± 0.039 0.483± 0.015 0.685± 0.032
SDSU 36 0.694± 0.024 0.727± 0.095 0.762± 0.072 0.744± 0.059 0.705± 0.067
CALTECH 36 0.667± 0.029 0.556± 0.016 0.714± 0.029 0.625± 0.015 0.693± 0.038
UCLA 98 0.755± 0.015 0.795± 0.017 0.700± 0.009 0.745± 0.012 0.701± 0.019
CMU 27 0.630± 0.019 0.692± 0.044 0.600± 0.037 0.643± 0.044 0.684± 0.035
USM 71 0.803± 0.015 0.560± 0.028 0.824± 0.034 0.667± 0.029 0.685± 0.038
NYU 175 0.709± 0.019 0.720± 0.026 0.758± 0.027 0.738± 0.039 0.689± 0.022
PITT 56 0.696± 0.022 0.778± 0.023 0.656± 0.002 0.712± 0.027 0.717± 0.013
LEUVEN 29 0.621± 0.017 1.000± 0.017 0.577± 0.027 0.732± 0.028 0.674± 0.022
UM 126 0.684± 0.026 0.761± 0.008 0.675± 0.009 0.715± 0.008 0.671± 0.012
Mean 62 0.713± 0.022 0.712± 0.081 0.731± 0.087 0.707± 0.043 0.713± 0.057
All data are mean and standard deviation.

Accuracy 

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Fold 9 Fold 8 Fold 10 Fold 6 Fold 7 

(a)

Sensitivity 

0.60

0.65

0.70

0.75

0.80

0.85

Fold 7 Fold 8 Fold 9 Fold 10 Fold 6 

(b)

Precision 

0.60

0.65

0.70

0.75

0.80

Fold 7 Fold 8 Fold 9 Fold 10 Fold 6 

(c)

F-score

Fold 7 Fold 8 Fold 9 Fold 10 Fold 6 

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

(d)

Specificity

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Fold 7 Fold 8 Fold 9 Fold 10 Fold 6 

(e)

Figure 4: Performance of multichannel DANN over varying data split schemes with k-fold cross validation strategies (k � [6, 7, 8, 9, 10]).
Mean and standard deviation are displayed.
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observed on precision (p � 0.231) and F-score (p � 0.347).
/is demonstrated the predictive power of PC data.

Without PC data, our model achieved the highest
performance by combining FC from all three brain atlases.
/is suggests that brain connected data from different
atlases may have complementary information so as to assist
the ASD classification. Interestingly, the model using
CC200 FC data (marked as CC in the table) performed
better than FC data derived from AAL (p � 0.012) and HO
(p � 0.023). It is likely because that CC200 atlas is con-
structed from rs-fMRI data, representing a brain functional
parcellation.

5. Conclusion

In summary, we developed a multichannel DANN model
by applying the state-of-the-art attention mechanism-
based deep learning techniques for automated diagnosis of
ASD. /e k-fold cross validation experiments have shown
that our multichannel DANN achieved an accuracy of
0.732, outperforming multiple peer machine learning
models. /e results of the leave-one-site-out cross vali-
dation experiments showed promise for our model to be
applied to clinical data with unseen variations. /e ex-
periments using varying combinations of data modalities
demonstrated discriminative power of individual data
modalities such as brain functional connectome and PC
data. /is suggests a future direction of combining addi-
tional data modalities to move the machine learning ap-
plications towards clinical usage of ASD computer-aided
diagnosis tools. One limitation of the current work is that
the selected cohort is in the adolescent and young adult
population, which limits the generalizability of the model,
since the ASD diagnosis was performedmuch earlier. In the
future study, we would retrain the model with additional
data from a wider age range of population.
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