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optical signal processing. Until now, the latter has been restricted
to processing 1-D and 2-D signals only because in order for a signal
to be processed optically, it has to be represented on a planar screen.

Although holography allows planar representation of 3-D images,
it does not allow us to compute set and morphological operations
on them. Specifically, suppose we have two holograms (of two 3-D
images, respectively), and wish, by manipulating them, to obtain the
hologram of either union, intersection, dilation, or erosion of these
images. There is no way of doing so.

On the contrary, suppose two 3-D images are encoded as proposed
above. Then, the planar encoding of their union, intersection, dilation,
or erosion can be obtained by computing these operations on the
above encodings. Thus, the proposed 3-D-to-2-D mapping paves
the way for implementation of 3-D mathematical morphology op-
tically (2-D mathematical morphology has been already implemented
optically by many researchers [4], [5]).

Finally, in practice, it is, of course, impossible to map all rational
points as well as to map a rational point to an irrational point. Instead,
only nodes of a cubical mesh should be mapped. The spacing of
the mesh should satisfy the Nyquist criteria in order not to loose
information. In addition, the spacing should be much higher than the
precision of the computer arithmetics. In the case of displaying the
mapping on a screen or other planar material, the spacing should also
be much higher than the resolution of the screen/material.
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Multichannel Distance Filter

Michail Pappas and Ioannis Pitas

Abstract—A nonlinear multichannel digital filter is presented in this
correspondence. The output is a weighted sum of all samples in the
filter window, with a single parameter controlling the filter nonlinearity.
Although input data ordering is not required, performance can surpass
the performance of other ordering-based multichannel filters.

Index Terms—Distance filters, multichannel signals, nonlinear filters.

I. INTRODUCTION

A discrete multichannel signal is defined as a time series vector
of components called channels, which are generally correlated and
characterized by their joint probability density function (pdf). Two-
dimensional (2-D) multichannel signals, e.g., color images and motion
fields, are frequently met in practice; rather high correlation is usually
exhibited between their components. Multivariate signals can be
processed by applying single-channel techniques to each channel sep-
arately. However, no correlation between signal components is taken
into account in the single-channel approach. In this correspondence,
a novel nonlinear multichannel digital filter will be studied.

The nonlinear digital filtering techniques have been extensively
used in signal and image processing [1]. Although most of them
were related to scalar signal processing, many efforts have been
made recently to extend them to the multichannel case. A marginal
ordering scheme for ordering multivariate data, as well as various
multichannel estimators such as the marginal median, the marginal
�-trimmed mean, and the modified trimmed mean filters, have been
proposed in [2] and [3]. Multichannel L-filters based on marginal
ordering, as well as their theoretical properties and optimal design,
is presented in [4]. Vector median filters (VMF’s) have been derived
from multidimensional exponential pdf’s by adopting a maximum
likelihood estimate approach [5]. The reduced ordering is another
scheme for ordering multivariate data, which has been used to define
nonlinear filters [6], [7]. The vector directional filters (VDF’s) process
separately the direction and magnitude of a signal vector [8], whereas
the directional-distance filters (DDF’s) combine the characteristics of
both VMF’s and VDF’s [9]. An overview of most of these filtering
techniques is presented in [10] and [11].

Most of the methods that were presented in the previous paragraph
have a computation step in common: Some sort of ordering is per-
formed on the input data vectors. Certain filters have been researched
that avoid this step by producing output that is a weighted sum of
the sample vectors inside the filter window with filtering performance
similar to the one of order statistic filters. Data-dependent filters have
been presented in [12] (also in [13]) for single channel data, with
coefficients that are expressed as sums of absolute differences. Their
multichannel extensions have been presented in [14]. Another class
of multichannel data-dependent filters (called multichannel distance
filters) that has been developed independently has been presented
in [15]. In these cases, coefficients can also be expressed in terms
of Euclidean distances. The data-dependent filters exhibit a locally
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adaptive characteristic, which is a highly desirable feature in signal
processing. Additionally, techniques that utilize ordering exhibit
hard nonlinearity characteristics, making them rather unsuitable for
filtering multichannel signals corrupted by short- or medium-tailed
noise. Consequently, the ability to control the filter linearity is very
important.

The multichannel distance filter (MDF)presented in this corre-
spondence attempts to address these two goals. As will be shown
later on, no data ordering is performed, yet performance similar to
the one presented above can be attained. Finally, a single scalar
parameter controls the filter linearity, which makes these methods
natural candidates for adaptation.

A review of multivariate data ordering is presented in Section II.
The MDF is defined in Section III. In Section IV, experimental results
of the MDF filtering performance are obtained. For comparison
purposes, the performance of other well-known multivariate filters,
on the same test signals, has also been reported. Finally, certain
conclusions are drawn in Section V.

II. OVERVIEW OF MULTIVARIATE DATA ORDERING

Ordering of multivariate data is not unambiguous, as it is
in the case of single-channel data. Several ways of ordering
multivariate data are discussed in the literature [3]. Three classes
of ordering methods (marginal, reduced, and distance ordering)
will be used to define nonlinear filters. These methods will be
shortly presented here. LetX denote ap-dimensional random
vector variable, i.e., ap-dimensional vector of random variables
X = [X1; X2; � � � ; Xp]

T : Let x1; x2; � � � ;xN denoteN samples of
X with xi = [xi xi � � � xi ]T : Finally, let x(i) denote theith
sample of the ordered set.

A. Fundamentals

In marginal ordering (M-ordering), the samples are ordered inde-
pendently, along each one of thep channels. The marginal median
is the vector

xmed = [medfx1 ; � � � ; xN g � � � medfx1 ; � � � ; xN g]T :

The statistical analysis of marginal order statistics is given in [3].
In reduced ordering (R-ordering) sample vectors,xi are ordered

according to their distance from a reference pointa: The ordered
vectors satisfy the relationship

kx(1) � ak � � � � � kx(N) � ak: (1)

The arithmetic mean or the marginal median of a subset of the input
data set may be utilized as the reference vectora: Obviously, the
number of samples used to determine a reference point does not have
to be equal to the number of ordered samples. The operatork�k in (1)
may represent either the Euclidean or any other (e.g., Mahalanobis)
distance for that purpose.

Finally, an ordering technique, which is proposed in this correspon-
dence, is based on ordering input vectors on the sum of the distances
between a certain sample and all the other ordered ones (distance
ordering)

N

j=1

kx(1) � xjk � � � � �

N

j=1

kx(N) � xjk:

B. L-Filters for Multivariate Data

The methods of Section II-A for ordering multivariate data can
be used to define nonlinear multichannel filters. These filters can
be classified as L-filters because the output of each one is a linear

combination of the ordered input samples. Consequently, they can be
thought of as generalizations of single-channel L-filters [16], [17].

The outputy = [y1 y2 � � � yp]
T of the M-ordering L-filter is

equal to

y =

N

i =1

� � �

N

i =1

Ai ;���;i x(i ;���;i ) (2)

whereAi ;���;i is a coefficient matrix. The ordered vectorx(i ;���;i )

has itsjth component equal to theij th largest statistic of the vectors’
jth component. A theoretical analysis and an optimization method for
the design of this filter is given in [4].

The outputy of the R-ordering L-filter is given by

y =

N

i=1

aix(i) (3)

whereai, with i = 1; � � � ; N , denote filter coefficients. TheR1 filter
[7], the ranked-order estimatorsRE and RM [6], and the double
window modified trimmed mean (DW MTM) filter [16] represent
special cases of this filter class.

Finally, the distance ordering L-filter output is also given by (3).
The vector median filter is the most known representative of this
category [5].

III. T HE MULTICHANNEL DISTANCE FILTER

The MDF is a data-dependent nonlinear filter with outputy given
by

y =

N

i=1

aixi

N

i=1

ai

: (4)

The coefficientsai are given by

ai =

N

k=1

kxi � xkk
2

r

(5)

wherer is a filter parameter. Equation (4) can be written in a more
compact notation if normalized coefficients are utilized:

y =

N

i=1

a
0

ixi (6)

where

a
0

i =
ai

N

j=1

aj

: (7)

A small number must be added to the sum of the distances in order
to avoid division by zero if the input signalx is constant, andr < 0:

The MDF coefficients depend only on the distances between
samples. All samples within the filter window are used in the
calculation of the filter output. It should be obvious that no input
data ordering is performed. The parameterr controls the amount
of applied nonlinearity. For small values ofr, the filter behaves in
an almost linear fashion, whereas for larger values ofr, linearity
diminishes. Thus, filter behavior can be easily altered. Indeed, this
filter becomes equivalent to the vector median filter if the linearity
parameterr tends to infinity(r ! �1), as can be easily shown.
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Fig. 1. MDF Noise reduction for different noise distributions (u: uniform,
g: Gaussian, l: Laplacian, cg: cont. Gaussian) for a 1-D, two-channel constant
signal and filter lengthN = 5:

IV. EXPERIMENTAL RESULTS

Simulations were carried out in order to estimate MDF performance
on the following multivariate signals:

• one-dimensional, two-channel sequences;
• velocity fields (2-D, 2-channel sequences);
• color images (2-D, 3-channel sequences).

Test (reference) signals were either existing or artificially generated
ones. Subsequently, reference signals were corrupted by artificially
generated noise. The modified noise reduction index NRI [4]

NRI = �10 log k

(y(k)� s(k))T (y(k)� s(k))

k

(x(k)� s(k))T (x(k)� s(k))
(8)

was utilized as a quantitative criterion of filter performance, where
x(k); y(k); and s(k) denote the values of the corrupted (noisy),
filtered, and reference signals respectively, at sample indexk:

Data from uniform (denoted by U), Gaussian (G), Laplacian (L),
and contaminated Gaussian (CG) distributions were generated in
order to quantify filter performance in dissimilar noise environments.
The contaminated Gaussian distributionCN(m1;C1;m2;C2; ") is
a linear combination of two normal distributions

CN(m1;C1;m2;C2; ")

= (1� ")N(m1;C1) + "N(m2;C2) (9)

where0 � "< 1 denotes the contamination factor.

A. 1-D Sequence Filtering

In simulations on 1-D sequence filtering, the corrupted signal
x = s + n was the sum of a constant two-channel signals =
(1; 2)T and white, zero-mean noisen: Four noise distributions were
examined: uniform, Gaussian, Laplacian, and contaminated Gaussian.
The first three distributions had variances equal to

p
2 and correlation

coefficient equal to 0.25. The variances and the correlation coefficient
of the first distribution of the contaminated Gaussian were equal to
1 and 0.2, respectively. For the second distribution, these parameters

TABLE I
OPTIMAL VALUES OF THE EXPONENT r AND MAXIMAL NOISE REDUCTION FOR

1-D, TWO-CHANNEL CONSTANT SIGNAL AND WINDOW LENGTH N = 5

TABLE II
COMPARISON OF THENOISE REDUCTION (IN DECIBELS) OF THE

MDF AND OTHER REPORTEDFILTERS FOR 1-D, TWO-CHANNEL

CONSTANT SIGNAL AND WINDOW LENGTH N = 5

were set to 1 and 0.2, respectively. The contamination factor was
equal to" = 0:1:

Fig. 1 shows how the performance depends on the value of the
exponentr and on the type of the noise distributions. The optimal
values ofr are shown in Table I. The greatest noise reduction is
achieved forr ' 1 if noise is uniformly distributed. The filter
coefficients are proportional to the sum of distances between samples
in this case. Consequently, the remotest samples have the greatest
weights (as expected). Thus, the MDF behaves like a midrange
estimator, which is optimal for this type of noise [16]. In the case
of Gaussian noise, the optimal value ofr is approximately equal
to zero. Thus, all coefficients are equal, and behavior equivalent to
the one of an averaging filter (which is an optimal estimator for
additive Gaussian noise) is obtained. The optimal value ofr lies
between�2 and�1 in the case of long-tailed distributions: Laplacian
and contaminated Gaussian. In essence, centrally located samples
are heavily weighted, and remote samples (outliers) are practically
discarded. Thus, filter behavior can be altered at will by adapting the
value of the parameterr, depending on the signal local statistics.

Performance indices are tabulated in Table II. MDF performance
is compared with the performance of other well-known filters:

• arithmetic mean;
• marginal and vector median [5];
• RE and RM [6];
• R1; R2 and adaptiveR2 filters [7].

From Fig. 1, the highest performance index for the MDF was selected
for this table. It is evident that better performance than both marginal
and vector median filters was attained in all noise distributions.
The performance difference was quite high in the case of uniform
noise (more that 4 dB). MDF performance is also better than the
one of the arithmetic mean filter in the case of Laplacian and
contaminated Gaussian distributions (almost 2 dB and more than 3
dB, respectively).
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(a) (b)

(c) (d)

Fig. 2. Velocity field filtering. (a) Original velocity field. (b) Velocity field
corrupted by Laplacian noise. (c) Output of a 5� 5 moving average filter.
(d) Output of a 5� 5 MDF filter.

B. Velocity Field Filtering

An artificially generated 2-D velocity field of size 64� 64 vectors,
composed of two constant velocity regions, was utilized as the
reference signal in the experiments on velocity field filtering. It is
shown in Fig. 2. Velocity vectors have values(1; 2)T in the first
region and(�5; 10)T in the second one. The same noise distributions
as in the case of 1-D sequence filtering were used to corrupt the
reference field.

Fig. 2 shows a graphical representation of a part of the original
velocity field (upper-left picture) and the same part corrupted by
Laplacian noise (upper-right). This noisy vector field was subse-
quently filtered by an averaging (bottom-left) and an MDF (bottom-
right) filter, with a window of 5� 5 points. For the MDF, a value
of r = �2 was used.

Fig. 3 shows the dependency of the MDF on the value of the
parameterr: This dependency is different from the one depicted
in Fig. 1. Higher performance is attained for all noise distributions
for negative values ofr for all noise distributions. This happens
because there are both constant regions and edges in the input
velocity field. Edges are preserved better for negative values ofr

because filter behavior is similar to the one of the vector median
filer. Performance in constant regions is better for negative (positive)
values of r in the case of long-tailed (short-tailed) distributions.
Thus, increasingr from negative values to positive ones decreases
the MDF filter performance in both edges and constant regions
(if the noise has a long-tailed distribution). On the contrary, if
the noise has a short-tailed distribution, the same change ofr

decreases the filter performance on edges, but increases it in constant
regions (compensating, partially at least, for the decrease on edges).
Therefore, filter performance dependency on the value ofr is greater
in the case of long-tailed distributions than in the case of short-tailed
ones, as can be seen in Fig. 3.

For performance comparisons, the arithmetic mean, marginal, and
vector medianRE ; R1; andR2 filter performances have also been

Fig. 3. Noise reduction of the MDF filter, having window size 3� 3 for
a velocity field corrupted by different noise distributions (u: uniform, g:
Gaussian, l: Laplacian, cg: cont. Gaussian).

TABLE III
NRI PERFORMANCE COMPARISON OF THEMDF AND OTHER

REPORTED FILTERS FOR WINDOW SIZE 3 � 3 ON A

VELOCITY FIELD OF SIZE 64 � 64 HAVING TWO REGIONS

reported, with respect to the same velocity field. The results of this
comparison are depicted in Table III. The MDF filter exhibited the
highest NR indices in all noise distributions, although in the case of
the Laplacian noise, the performance gain was rather small. However,
it should be mentioned that these results were obtained with the same
value of the parameterr = �2 in all types of noise.

C. Color Image Filtering

The color image “Lenna” of size 512� 512 pixels and 8 bits
per color channel was selected for the experiments on color image
filtering. Impulsive noise (I) was also utilized, in addition to the four
noise distributions previously utilized. Noise distributions had the
following parameters:

• uniform and Laplacian:�R = �G = �B = 20; rRG = rRB =
rGB = 0;

• Gaussian:�R = �G = �B = 20; rRG = rRB = rGB = 0:5;
• contaminated Gaussian:

a) first distribution:�R = �G = �B = 10; rRG = rRB =
rGB = 0:25;

b) second distribution:�R = �G = �B = 50; rRG =
rRB = rGB = 0:75;

c) contamination factor:" = 0:2;
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Fig. 4. Noise reduction of the MDF filter on image Lenna corrupted by
different noise distributions (u: uniform, g: Gaussian, l: Laplacian, cg: cont.
Gaussian, i: impulsive). A 5� 5 point window was utilized.

TABLE IV
NRI PERFORMANCE COMPARISON OF THEMDF AND OTHER

REPORTEDFILTERS, ON IMAGE LENNA OF SIZE 512� 512 PIXELS

• impulsive: uncorrelated impulsive noise with probability 0.1 in
each channel.

Fig. 4 shows the dependency of the MDF performance on the value
of the parameterr: This dependency is similar as in the case of
velocity field filtering (Fig. 3). The best performance is achieved with
�3<r<�1: Noise reduction rapidly decreases forr >�1, mainly
due to the distortions on the image edges.

Performance results are presented in Table IV. The performance
indices of other multichannel filters were also included for compari-
son purposes. Similarly, as in the case of 1-D sequences and velocity
field filtering, the MDF filter was exhibited in three out of five noise
types. However, in the case of contaminated Gaussian noise, the MDF
was second best, being slightly inferior to the marginal median filter.

V. CONCLUSIONS

The multichannel distance filter presented in this correspondence
represents a novel nonlinear filter, which is suitable for multivariate
data processing. Experimental results show that MDF performance
may be adapted to perform adequately for the noise distributions
examined (short-tailed, long-tailed). An important characteristic is
that performance can be adapted to the noise pdf by choosing the
parameterr appropriately. Simulation results also show that for a
wide class of input signals and noise distributions, good results are
obtained with small negative values of the parameterr and that filter
performance is not very sensitive to the value of this parameter. Thus,
the MDF could be utilized when both the desired signal and the noise

parameters are not known. Additionally, the filter linearity can be
easily controlled. This fact, in turn, suggests that adaptation of the
parameterr may yield good performance under any type of the noise
environments examined.
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