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optical signal processing. Until now, the latter has been restricted Multichannel Distance Filter
to processing 1-D and 2-D signals only because in order for a signal o o
to be processed optically, it has to be represented on a planar screen. Michail Pappas and loannis Pitas

Although holography allows planar representation of 3-D images,
it does not allow us to compute set and morphological operations ) ] o o
on them. Specifically, suppose we have two holograms (of two 3_DAbstract—A nonlinear multlghannel ‘dlgltal filter is presented in t_hls
. . . . . . orrespondence. The output is a weighted sum of all samples in the
images, respectively), and wish, by manipulating them, to obtain tﬁ@er window, with a single parameter controlling the filter nonlinearity.
hologram of either union, intersection, dilation, or erosion of thes&@though input data ordering is not required, performance can surpass
images. There is no way of doing so. the performance of other ordering-based multichannel filters.

On the contrary, suppose two 3-D images are encoded as proposggljex Terms—bistance filters, multichannel signals, nonlinear filters.
above. Then, the planar encoding of their union, intersection, dilation,
or erosion can be obtained by computing these operations on the
above encodings. Thus, the proposed 3-D-to-2-D mapping paves I. INTRODUCTION

the way for implementation of 3-D mathematical morphology op- A discrete multichannel signal is defined as a time series vector
tically (2-D mathematical morphology has been already implementgél components called channels, which are generally correlated and
optically by many researchers [4], [5]). characterized by their joint probability density function (pdf). Two-
Finally, in practice, it is, of course, impossible to map all rationadimensional (2-D) multichannel signals, e.g., color images and motion
points as well as to map a rational point to an irrational point. Insteafhlds, are frequently met in practice; rather high correlation is usually
only nodes of a cubical mesh should be mapped. The spacingehibited between their components. Multivariate signals can be
the mesh should satisfy the Nyquist criteria in order not to loosgocessed by applying single-channel techniques to each channel sep-
information. In addition, the spacing should be much higher than thgately. However, no correlation between signal components is taken
precision of the computer arithmetics. In the case of displaying th&to account in the single-channel approach. In this correspondence,
mapping on a screen or other planar material, the spacing should &lsfovel nonlinear multichannel digital filter will be studied.
be much higher than the resolution of the screen/material. The nonlinear digital filtering techniques have been extensively
used in signal and image processing [1]. Although most of them
were related to scalar signal processing, many efforts have been
made recently to extend them to the multichannel case. A marginal
[1] Y. Karasik, “On commutative properties of halftonning, or how toordering scheme for ordering multivariate data, as well as various
reduce 3-D mathematical morphology to 2-D one,” Rmoc. Second Mmultichannel estimators such as the marginal median, the marginal
IEEE Workshop Nonlinear Signal Image Proced®95, pp. 468-470. n-trimmed mean, and the modified trimmed mean filters, have been

[2] Y. Karasik, *On a planar representation of 3-dimensional figures COMroposed in [2] and [3]. Multichannel L-filters based on marginal
mutative with respect to set and morphological opertaions,Pioc.

13th Int. Conf. Pattern Recogn. ICPR996, vol. II, pp. 615-619. ordering, as well as their theoretical properties and optimal design,
[3] C.R. Giardina and E. R. Doughertijorphological Methods in Image iS presented in [4]. Vector median filters (VMF’s) have been derived

and Signal Processing Englewood Cliffs, NJ: Prentice-Hall, 1988, ch. from multidimensional exponential pdf's by adopting a maximum

6, pp. 156-173. e ) . likelihood estimate approach [5]. The reduced ordering is another
4] Eér%foéﬂggoﬁgfo?ﬁ.CEnga}SV%T‘zé‘pnpé"cgf'%ﬁ 50802%'(;?" E,Osg?hc’log'caéche_me fo_r ordering multivariate da_ta, vyhich has been used to define
[5] Y. Li, A. Kostrzewski, D. Kim, and G. Eichmann, “Compact paralleinonlinear filters [6], [7]. The vector directional filters (VDF's) process

real-time programmable optical morphological image procesgdpf.  Separately the direction and magnitude of a signal vector [8], whereas

Lett, vol. 18, no. 14, pp. 981-983, 1989. the directional-distance filters (DDF's) combine the characteristics of
both VMF's and VDF'’s [9]. An overview of most of these filtering
techniques is presented in [10] and [11].

Most of the methods that were presented in the previous paragraph
have a computation step in common: Some sort of ordering is per-
formed on the input data vectors. Certain filters have been researched
that avoid this step by producing output that is a weighted sum of
the sample vectors inside the filter window with filtering performance
similar to the one of order statistic filters. Data-dependent filters have
been presented in [12] (also in [13]) for single channel data, with
coefficients that are expressed as sums of absolute differences. Their
multichannel extensions have been presented in [14]. Another class
of multichannel data-dependent filters (called multichannel distance
filters) that has been developed independently has been presented
in [15]. In these cases, coefficients can also be expressed in terms
of Euclidean distances. The data-dependent filters exhibit a locally
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adaptive characteristic, which is a highly desirable feature in sign@mbination of the ordered input samples. Consequently, they can be
processing. Additionally, techniques that utilize ordering exhibthought of as generalizations of single-channel L-filters [16], [17].
hard nonlinearity characteristics, making them rather unsuitable forThe outputy = [y1 y2 --- y,]7 of the M-ordering L-filter is
filtering multichannel signals corrupted by short- or medium-tailedqual to

noise. Consequently, the ability to control the filter linearity is very

important. & o

'[I)'he multichannel distance filter (MDFpresented in this corre- Y= Z Z AiysinX(inip) (2)
spondence attempts to address these two goals. As will be shown R
later on, no data ordering is performed, yet performance similar jghereA., ... ;, is a coefficient matrix. The ordered vectat, ....;,)
the one presented above can be attained. Finally, a single scalas itsjth component equal to theth largest statistic of the vectors’
parameter controls the filter linearity, which makes these methog component. A theoretical analysis and an optimization method for

natural candidates for adaptation. the design of this filter is given in [4].
A review of multivariate data ordering is presented in Section Il. The outputy of the R-ordering L-filter is given by

The MDF is defined in Section lll. In Section 1V, experimental results

of the MDF filtering performance are obtained. For comparison N

purposes, the performance of other well-known multivariate filters, y= Z @iX (i) @)
on the same test signals, has also been reported. Finally, certain =t
conclusions are drawn in Section V. wherea;, withi = 1,---. N, denote filter coefficients. Th&; filter
[7], the ranked-order estimatoiBr and R.s [6], and the double
1I. OVERVIEW OF MULTIVARIATE DATA ORDERING window modified trimmed mean (DW MTM) filter [16] represent

Ordering of multivariate data is not unambiguous, as it igpe.cial cases qf this filter cl.ass. . . .
9 g Finally, the distance ordering L-filter output is also given by (3).

in the case of single-channel data. Several ways of orderi[}i ; dian filter is th ‘K ati £ thi
multivariate data are discussed in the literature [3]. Three classe € veclor median filter 1S the most known representative of this

of ordering methods (marginal, reduced, and distance orderincg%tegory [5]-

will be used to define nonlinear filters. These methods will be

shortly presented here. LeX denote ap-dimensional random Ill. THE MULTICHANNEL DISTANCE FILTER
vector variable, i.e., @-dimensional vector of random variables The MDE is a data-dependent nonlinear filter with outpugiven
X = [Xi, X2+, X,]". Letx;,xs, -+, xx denoteN samples of
X with x; = [;l'l'l Ti, v ;l'l'p]l . FinaIIy, let X(i) denote theith
sample of the ordered set. N
3 i,
A. Fundamentals y="5——- (4)
In marginal ordering (M-ordering), the samples are ordered inde- > ai
pendently, along each one of thechannels. The marginal median i=1

's the vector The coefficientsa; are given by

KXined = [med{l’llg R ‘/L'Nl} . me({l»lp‘/ S XN, }]T v ,
» , , N ai= > lIxi ==l ®)
The statistical analysis of marginal order statistics is given in [3]. T g k
In reduced ordering (R-ordering) sample vectots,are ordered =1
according to their distance from a reference paintThe ordered wherer is a filter parameter. Equation (4) can be written in a more
vectors satisfy the relationship compact notation if normalized coefficients are utilized:
llxqy —all <--- <lxv) —all. @ N

y=2 ax (6)
=1

The arithmetic mean or the marginal median of a subset of the input
data set may be utilized as the reference veatoObviously, the
number of samples used to determine a reference point does not habere

to be equal to the number of ordered samples. The opgtatdn (1) , a;
may represent either the Euclidean or any other (e.g., Mahalanobis) “i= N )
distance for that purpose. Z aj

Finally, an ordering technique, which is proposed in this correspon- j=1

dence, is based on ordering input vectors on the sum of the distan&e

S . .
between a certain sample and all the other ordered ones (distanc ma_II “‘_"T‘t_’er must be_addefj to th_e sum of the distances in order
to avoid division by zero if the input signal is constant, and < 0.

The MDF coefficients depend only on the distances between
N N samples. All samples within the filter window are used in the
Sk =%l << NIk = %5l calculation of the filter output. It should be obvious that no input
J=1 J=t data ordering is performed. The parametecontrols the amount
of applied nonlinearity. For small values ef the filter behaves in
B. L-Filters for Multivariate Data an almost linear fashion, whereas for larger values- ofinearity
The methods of Section II-A for ordering multivariate data cadiminishes. Thus, filter behavior can be easily altered. Indeed, this
be used to define nonlinear multichannel filters. These filters céilter becomes equivalent to the vector median filter if the linearity
be classified as L-filters because the output of each one is a linparameter tends to infinity(r — —oo), as can be easily shown.

ordering)
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10 . . T " T TABLE |
OPTIMAL VALUES OF THE EXPONENT » AND MAXIMAL NOISE REDUCTION FOR
of -8 1 1-D, Two-CHANNEL CONSTANT SIGNAL AND WINDOW LENGTH N = 5
Filter type Noise distribution
U G L CG
r 1.092 | -0.014 | -1.462 | -1.637
@ NRI [dB] 8.002 | 6.945 | 7.747 | 9.209
g
TABLE I
. CoMmPARISON OF THENOISE REDUCTION (IN DECIBELS) OF THE
4r 1 MDF AND OTHER REPORTED FILTERS FOR 1-D, Two-CHANNEL

CONSTANT SIGNAL AND WINDOW LENGTH N = 5

Filter type Noise distribution
> 15 B Y 0 05 I U G L | cG
r arithmetic mcan 6.98 6.94 6.99 7.05
Marginal median 3.72 5.50 7.62 8.49

Fig. 1. MDF Noise reduction for different noise distributions (u: uniform,
g: Gaussian, I: Laplacian, cg: cont. Gaussian) for a 1-D, two-channel constant Vector median [5] 2.40 4.13 6.24 7.29
signal and filter lengthV = 5.

Ry j=116] 3.02 ] 442 | 582 661

R j = 1[6] 2.94 | 436] 578| 6.56

IV. EXPERIMENTAL RESULTS Ry [7] 220 368, 536 655

Simulations were carried out in order to estimate MDF performance Ry [7] 233 367 518 6.41
on the following multivariate signals: adaptive Ry [7] 2.93 3.97 4.70 5.16
< one-dimensional, two-channel sequences; MDF 7999 | 6.942 | 7729 | 9.183

« velocity fields (2-D, 2-channel sequences);
« color images (2-D, 3-channel sequences).
Test (reference) signals were either existing or artificially generated
ones. Subsequently, reference signals were corrupted by artificiaigre set to 1 and 0.2, respectively. The contamination factor was

generated noise. The modified noise reduction index NRI [4] equal tos = 0.1.
Fig. 1 shows how the performance depends on the value of the

exponentr and on the type of the noise distributions. The optimal

Dr=12)r=0,3)r=-1

N (BN (k) — s(h
Z (y(k) = (k)" (y(k) = s(k)) values ofr are shown in Table I. The greatest noise reduction is
NRI = —10log £ . (8) achieved forr ~ 1 if noise is uniformly distributed. The filter
> (x(k) = (k)T (x(k) — s(k)) coefficients are proportional to the sum of distances between samples
k

in this case. Consequently, the remotest samples have the greatest

weights (as expected). Thus, the MDF behaves like a midrange
was utilized as a qqantitative criterion of filter performance, Whe'@stimator, which is optimal for this type of noise [16]. In the case
x(k), y(k), and s(k) denote the values of the corrupted (noisy)ef Gaussian noise, the optimal value ofis approximately equal
filtered, and reference signals respectively, at sample ikdex to zero. Thus, all coefficients are equal, and behavior equivalent to

Data from uniform (denoted by U), Gaussian (G), Laplacian (L}he one of an averaging filter (which is an optimal estimator for

and contaminated Gaussian (CG) distributions were generated;ilitive Gaussian noise) is obtained. The optimal value diEs
order to quantify filter performance in dissimilar noise environmentganyeen-2 and—1 in the case of long-tailed distributions: Laplacian
The contaminated Gaussian distributiofiV (m,, Ci.m>, C2,2) IS and contaminated Gaussian. In essence, centrally located samples

a linear combination of two normal distributions are heavily weighted, and remote samples (outliers) are practically
discarded. Thus, filter behavior can be altered at will by adapting the

CN(m;,C;,m., Cy,¢) value of the parameter, depending on the signal local statistics.
= (1-2)N(m;,C1) + cN(mz, Cs) 9) Performance indices are tabulated in Table Il. MDF performance

is compared with the performance of other well-known filters:

* arithmetic mean;
« marginal and vector median [5];
o Ry and R [6],
A. 1-D Sequence Filtering * Ry, R and adaptiveR: filters [7].

In simulations on 1-D sequence filtering, the corrupted sign&rom Fig. 1, the highest performance index for the MDF was selected
x = s + n was the sum of a constant two-channel sigsak  for this table. It is evident that better performance than both marginal
(1,2)’1‘ and white, zero-mean noise Four noise distributions were and vector median filters was attained in all noise distributions.
examined: uniform, Gaussian, Laplacian, and contaminated Gaussieime performance difference was quite high in the case of uniform
The first three distributions had variances equa)/fand correlation noise (more that 4 dB). MDF performance is also better than the
coefficient equal to 0.25. The variances and the correlation coefficiemte of the arithmetic mean filter in the case of Laplacian and
of the first distribution of the contaminated Gaussian were equal ¢contaminated Gaussian distributions (almost 2 dB and more than 3
1 and 0.2, respectively. For the second distribution, these parametiBs respectively).

where( < £ < 1 denotes the contamination factor.
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"""" /’///////%// Nt Y///////7 Gaussian, I: Laplacian, cg: cont. Gaussian).
....... Vs ey
------ Vi i
NEaareidids e VS NRI PERFORMANCE COMPARISON OF THEMDF AND OTHER
REPORTED FILTERS FOR WINDOW SIZE 3 X 3 ON A
© (d) VELOCITY FIELD OF SizE 64 x 64 HavING TwO REGIONS
Fig. 2. Velocity field filtering. (a) Original velocity field. (b) Velocity field - - —
corrupted by Laplacian noise. (c) Output of ax55 moving average filter. Filter Type Noise Distribution
(d) Output of a 5x 5 MDF filter. U a L e
arithmetic mean 5484 | 5.335 | 5.443 6.007
B. Velocity Field Filtering marginal median 4865 | 6.467 | 8.517 | 9.603

An artificially generated 2-D velocity field of size 64 64 vectors,
composed of two constant velocity regions, was utilized as the
reference signal in the experiments on velocity field filtering. It is ~ vector median (Lz norm) | 4.090 | 5.693 | 7.714 | 8.901
shown in Fig. 2. Velocity vectors have valués, 2)’[ in the first R filter 4.458 | 5.596 | 6.698 7.313
region and —5, 10)T in the second one. The same noise distributions

vector median (L; norm) | 3.638 | 5.401 | 7.564 8.669

. S Ry filter 3.481 | 5.166 | 6.869 7.916

as in the case of 1-D sequence filtering were used to corrupt the
reference field. Ry filter 3.547 4.880 6.291 7.330
Fig. 2 shows a graphical representation of a part of the original MDF r = —2 6.473 | 7.317 | 8.661 | 10.004

velocity field (upper-left picture) and the same part corrupted by
Laplacian noise (upper-right). This noisy vector field was subse-

quently filtered by an averaging (bottom-left) and an MDF (botton{gported, with respect to the same velocity field. The results of this

right) filter, with a window of 5x 5 points. For the MDF, a value Cgmparison _art_a depicted in_ Tabl_e I!l' T_he MDF filter 9Xhibit8d the

of r = —é was used. ' highest NR |nd|c_es in all noise dlstrlbutl_ons, although in the case of
Fig. 3 shows the dependency of the MDF on the value of tﬁge Laplacian noise, the performance gain was rathgrsma!l. However,
parameterr. This dependency is different from the one depicteg should be mentioned that these results were obtained with the same

in Fig. 1. Higher performance is attained for all noise distribution\éaIue of the parameter = —2 in all types of noise.

for negative values of- for all noise distributions. This happens

because there are both constant regions and edges in the ifpufolor Image Filtering

velocity field. Edges are preserved better for negative values of The color image “Lenna” of size 51 512 pixels and 8 bits
because filter behavior is similar to the one of the vector mediger color channel was selected for the experiments on color image
filer. Performance in constant regions is better for negative (positiidjering. Impulsive noise (l) was also utilized, in addition to the four
values ofr in the case of long-tailed (short-tailed) distributionsnoise distributions previously utilized. Noise distributions had the
Thus, increasing: from negative values to positive ones decreasdsllowing parameters:

the MDF filter performance in both edges and constant regions. uniform and Laplaciansr = c¢ = o5 = 20, rra = res =

(if the noise has a long-tailed distribution). On the contrary, if .5 = 0;

the noise has a short-tailed distribution, the same change of « Gaussiansr = 0 = 05 = 20, rrg = rre = ras = 0.5;
decreases the filter performance on edges, but increases it in constant contaminated Gaussian:

regions (compensating, partially at least, for the decrease on edges).

Therefore, filter performance dependency on the valueisfgreater a) firstdistributionog = 0 = 05 =10, rre = res =

in the case of long-tailed distributions than in the case of short-tailed rgp = 0.25;

ones, as can be seen in Fig. 3. b) second distributionsr = 06 = o = 50, rrg =
For performance comparisons, the arithmetic mean, marginal, and rrp = raB = 0.75;

vector medianRg, R, and R; filter performances have also been c) contamination factors = 0.2;
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Fig. 4. Noise reduction of the MDF filter on image Lenna corrupted by
different noise distributions (u: uniform, g: Gaussian, I: Laplacian, cg: cont{s]
Gaussian, i: impulsive). A 5 5 point window was utilized.

TABLE IV 71

NRI PERFORMANCE COMPARISON OF THEMDF AND OTHER
REPORTED FILTERS, ON IMAGE LENNA OF Size 512 x 512 RXELS

(8]

Filter Type Noise Distribution
U G L CG I EJ
arithmetic mean 6.155 | 6.116 | 6.043 | 7.040 8.304
marginal median 5.631 | 6.328 | 5.716 | 8.390 | 11.038 (10]
vector median (L norm) | 3.800 | 5.116 | 5.716 | 7.651 | 10.895 [11]
vector median (Le norm) | 3.913 | 4.850 | 5.071 | 6.542 8.986 [12]
MDF r = -2 6.355 | 6.543 | 6.856 | 8.357 | 10.655

(23]

e impulsive: uncorrelated impulsive noise with probability 0.1 in14
each channel. (14]

Fig. 4 shows the dependency of the MDF performance on the value
of the parameter. This dependency is similar as in the case ofl5]
velocity field filtering (Fig. 3). The best performance is achieved with
—3 < r < —1. Noise reduction rapidly decreases for —1, mainly [16]
due to the distortions on the image edges.

Performance results are presented in Table IV. The performar{¢é]
indices of other multichannel filters were also included for compari-
son purposes. Similarly, as in the case of 1-D sequences and velocity
field filtering, the MDF filter was exhibited in three out of five noise
types. However, in the case of contaminated Gaussian noise, the MDF
was second best, being slightly inferior to the marginal median filter.

V. CONCLUSIONS

The multichannel distance filter presented in this correspondence
represents a novel nonlinear filter, which is suitable for multivariate
data processing. Experimental results show that MDF performance
may be adapted to perform adequately for the noise distributions
examined (short-tailed, long-tailed). An important characteristic is
that performance can be adapted to the noise pdf by choosing the
parameterr appropriately. Simulation results also show that for a
wide class of input signals and noise distributions, good results are
obtained with small negative values of the parametend that filter
performance is not very sensitive to the value of this parameter. Thus,
the MDF could be utilized when both the desired signal and the noise

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 1999

parameters are not known. Additionally, the filter linearity can be
easily controlled. This fact, in turn, suggests that adaptation of the
parameter may yield good performance under any type of the noise
environments examined.
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