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Abstract

In many practical environments we wish to extract several desired speech signals, which are

contaminated by non-stationary and stationary interfering signals. The desired signals may also be

subject to distortion imposed by the acoustic Room Impulse Responses (RIRs). In this paper, a Linearly

Constrained Minimum Variance (LCMV) beamformer is designed for extracting the desired signals

from multi-microphone measurements. The beamformer satisfies two sets of linear constraints. One set

is dedicated to maintaining the desired signals, while the other set is chosen to mitigate both the stationary

and non-stationary interferences. Unlike classical beamformers, which approximate the RIRs as delay-

only filters, we take into account the entire RIR [or its respective Acoustic Transfer Function (ATF)].

The LCMV beamformer is then reformulated in a Generalized Sidelobe Canceler (GSC) structure,

consisting of a Fixed Beamformer (FBF), Blocking Matrix (BM) and Adaptive Noise Canceler (ANC). It

is shown that for spatially-white noise field, the beamformer reduces to a FBF, satisfying the constraint

sets, without power minimization. It is shown that the application of the adaptive ANC contributes

to interference reduction, but only when the constraint sets are not completely satisfied. We show

that Relative Transfer Functions (RTFs), which relate the speech sources and the microphones, and a

basis for the interference subspace suffice for constructing the beamformer. The RTFs are estimated by

applying the Generalized Eigenvalue Decomposition (GEVD) procedure to the Power Spectrum Density

(PSD) matrices of the received signals and the stationary noise. A basis for the interference subspace

is estimated by collecting eigenvectors, calculated in segments where non-stationary interfering sources

are active and the desired sources are inactive. The rank of the basis is then reduced by the application

the Orthogonal Triangular Decomposition (QRD). This procedure relaxes the common requirement for

non-overlapping activity periods of the interference sources. A comprehensive experimental study in

both simulated and real environments demonstrates the performance of the proposed beamformer.
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I. INTRODUCTION

Speech enhancement techniques, utilizing microphone arrays, have attracted the attention

of many researchers for the last thirty years, especially in hands-free communication tasks.

Usually, the received speech signals are contaminated by interfering sources, such as competing

speakers and noise sources, and also distorted by the reverberating environment. Whereas single

microphone algorithms might show satisfactory results in noise reduction, they are rendered

useless in competing speaker mitigation task, as they lack the spatial information, or the statistical

diversity used by multi-microphone algorithms. Here we address the problem of extracting several

desired sources in a reverberant environment containing both non-stationary (competing speakers)

and stationary interferences.

Two families of microphone array algorithms can be defined, namely, the Blind Source

Separation (BSS) family and the beamforming family. BSS aims at separating all the involved

sources, regardless of their attribution to the desired or interfering sources [1]. On the other hand,

the beamforming family of algorithms, concentrate on enhancing the sum of the desired sources

while treating all other signals as interfering sources. The BSS family of algorithms exploit the

independence of the involved sources. Independent Component Analysis (ICA) algorithms [2],

[3] are commonly applied for solving the BSS problem. The ICA algorithms are distinguished

by the way the source independence is imposed. Commonly used techniques include second-

order statistics [4], high-order statistics [5], and Information theoretic based measures [6]. BSS

methods can also be used in reverberant environments, but they tend to get very complex (for

time domain approaches [7]) or have an inherent problem of permutation and gain ambiguity [8]

(for frequency domain algorithms [3]).

Our proposed algorithm belongs to the beamformers family of algorithms. The term beam-

forming refers to the design of a spatio-temporal filter. Broadband arrays comprise a set of

filters, applied to each received microphone signal, followed by a summation operation. The

main objective of the beamformer is to extract a desired signal, impinging on the array from a

specific position, out of noisy measurements thereof. The simplest structure is the delay-and-sum

beamformer, which first compensates for the relative delay between distinct microphone signals

and then sums the steered signal to form a single output. This beamformer, which is still widely

used, can be very effective in mitigating noncoherent, i.e., spatially white, noise sources, provided

that the number of microphones is relatively high. However, if the noise source is coherent, the

Noise Reduction (NR) is strongly dependent on the direction of arrival of the noise signal.

Consequently, the performance of the delay-and-sum beamformer in reverberant environments

is often insufficient. Jan and Flanagan [9] extended the delay-and-sum concept by introducing

the so called filter-and-sum beamformer. This structure, designed for multipath environments,

namely reverberant enclosures, replaces the simpler delay compensator with a matched filter. The

array beam-pattern can generally be designed to have a specified response. This can be done by

properly setting the values of the multichannel filters weights. Statistically optimal beamformers
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are designed based on the statistical properties of the desired and interference signals. In general,

they aim at enhancing the desired signals, while rejecting the interfering signals. Several criteria

can be applied in the design of the beamformer, e.g., Maximum Signal to Noise Ratio (MSNR),

minimum mean-squared error (MMSE), Minimum Variance Distortionless Response (MVDR)

and LCMV. A summary of several design criteria can be found in [10], [11]. Cox et al. [12]

introduced an improved adaptive beamformer that maintains a set of linear constraints as well

as a quadratic inequality constraint.

In [13] a Multichannel Wiener Filter (MWF) technique has been proposed that produces a

Minimum Mean Squared Error (MMSE) estimate of the desired speech component in one of

the microphone signals, hence simultaneously performing noise reduction and limiting speech

distortion. In addition, the MWF is able to take speech distortion into account in its optimiza-

tion criterion, resulting in the Speech Distortion Weighted Multichannel Wiener Filter (SDW-

MWF) [14]. In a MVDR beamformer [15], [16], the power of the output signal is minimized

under the constraint that signals arriving from the assumed direction of the desired speech source

are processed without distortion. A widely studied adaptive implementation of this beamformer

is the GSC [17]. The standard GSC consists of a spatial pre-processor, i.e. a FBF and a BM,

combined with a multichannel ANC. The FBF provides a spatial focus on the speech source,

creating a so-called speech reference; the BM steers nulls in the direction of the speech source,

creating so-called noise references; and the multichannel ANC eliminates the noise components

in the speech reference that are correlated with the noise references. Several researchers (e.g.

Er and Cantoni [18]) have proposed modifications to the MVDR for dealing with multiple

linear constraints, denoted LCMV. Their work was motivated by the desire to apply further

control to the array/beamformer beam-pattern, beyond that of a steer-direction gain constraint.

Hence, the LCMV can be applied for constructing a beam-pattern satisfying certain constraints

for a set of directions, while minimizing the array response in all other directions. Breed and

Strauss [19] proved that the LCMV extension has also an equivalent GSC structure, which

decouples the constraining and the minimization operations. The GSC structure was reformulated

in the frequency domain, and extended to deal with the more complicated general ATFs case

by Affes and Grenier [20] and later by Gannot et al. [21]. The latter frequency-domain version,

which takes into account the reverberant nature of the enclosure, was nicknamed the Transfer

Function Generalized Sidelobe Canceler (TF-GSC).

Several beamforming algorithms based on subspace methods were developed. Ephraim and Van

Trees [22] considered the single microphone scenario. The Eigenvalue Decomposition (EVD) of

the noisy speech correlation matrix is used to determine the signal and noise subspaces. Each of

the eigenvalues of the signal subspaces is then processed to obtain the minimum distorted speech

signal under a permissible level of residual noise at the output. Hu and Loizou [23] extended this

method to deal with the colored noise case by using the GEVD rather than the EVD as in the

white noise case. Gazor et al. [24] propose to use a beamformer based on the MVDR criterion

and implemented as a GSC to enhance a narrowband signal contaminated by additive noise
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and received by multiple sensors. Under the assumption that the Direction of Arrival (DOA)

entirely determines the transfer function relating the source and the microphones, it is shown

that determining the signal subspace suffices for the construction of the algorithm. An efficient

DOA tracking system, based on the Projection Approximation Subspace Tracking (deflation)

(PASTd) algorithm [25] is derived. An extension to the wide-band case is presented by the same

authors [26]. However the demand for a delay-only impulse response is still not relaxed. Affes and

Grenier [20] apply the PASTd algorithm to enhance speech signal contaminated by spatially white

noise, where arbitrary ATFs relate the speaker and the microphone array. The algorithm proves to

be efficient in a simplified trading-room scenario, where the Direct to Reverberant Ratio (DRR)

is relatively high and the reverberation time relatively low. Doclo and Moonen [27] extend the

structure to deal with the more complicated colored noise case by using the Generalized Singular

Value Decomposition (GSVD) of the received data matrix. Warsitz et al. [28] propose to replace

the BM in [21]. They use a new BM based on the GEVD of the received microphone data,

providing an indirect estimation of the ATFs relating the desired speaker and the microphones.

Affes et al. [29] extend the structure presented in [24] to deal with the multi-source case.

The constructed multi-source GSC, which enables multiple target tracking, is based on the

PASTd algorithm and on constraining the estimated steering vector to the array manifold.

Asano et al. [30] address the problem of enhancing multiple speech sources in a non-reverberant

environment. The Multiple Signal Classification (MUSIC) method, proposed by Schmidt [31],

is utilized to estimate the number of sources and their respective steering vectors. The noise

components are reduced by manipulating the generalized eigenvalues of the data matrix. Based

on the subspace estimator, a LCMV beamformer is constructed. The LCMV constraints set

consists of two subsets: one for maintaining the desired sources and the second for mitigating

the interference sources. Benesty et al. [32] also address beamforming structures for multiple

input signals. In their contribution, derived in the time-domain, the microphone array is treated

as a Multiple Input Multiple Output (MIMO) system. In their experimental study, it is assumed

that the filters relating the sources and the microphones are a priori known, or alternatively, that

the sources are not active simultaneously. Reuven et al. [33] deal with the scenario in which one

desired source and one competing speech source coexist in noisy and reverberant environment.

The resulting algorithm, denoted Dual source Transfer Function Generalized Sidelobe Canceler

(DTF-GSC) is tailored to the specific problem of two sources and cannot be easily generalized

to the multiple desired and interference sources.

In this paper, we propose a novel beamforming technique, aiming at the extraction of multiple

desired speech sources, while attenuating several interfering sources (both stationary and non-

stationary) in a reverberant environment. The resulting LCMV beamformer is first reformulated

in a GSC structure. It is shown that in the spatially-white sensor noise case only the FBF branch

is active. The ANC branch contributes to the interference reduction only when the constraints

set is not accurately estimated. We derive a practical method for estimating all components of

the eigenspace-based beamformer.
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We first show that the desired signals’ RTFs (defined as the ratio between ATFs which relate

the speech sources and the microphones) and a basis of the interference subspace suffice for

the construction of the beamformer. The RTFs of the desired signals are estimated by applying

the GEVD procedure to the received signals’ PSD matrix and the stationary noise PSD matrix.

A basis spanning the interference subspace is estimated by collecting eigenvectors, calculated

in segments in which the non-stationary signals are active and the desired signals are inactive.

A novel method, based on the QRD, of reducing the rank of interference subspace is derived.

This procedure relaxes the common requirement for non-overlapping activity periods of the

interference signals.

The structure of the paper is as follows. In Sec. II the problem of extracting multiple desired

sources contaminated by multiple interference in a reverberant environment is introduced. In

Sec. III the multiple constrained LCMV beamformer is presented and stated in a GSC structure.

In Sec. IV we describe a novel method for estimating the interferences’ subspace as well as a

GEVD based method for estimating the RTFs of the desired sources. The entire algorithm is

summarized in Sec. V. In Sec. VI we present a typical test scenario, discuss some implementation

considerations of the algorithm, and show experimental results for both a simulated room and a

real conference room scenarios. We draw some conclusions and summarize our work in Sec. VII.

II. PROBLEM FORMULATION

Consider the general problem of extracting K desired sources, contaminated by Ns stationary

interfering sources and Nns non-stationary sources. The signals are received by M sensors

arranged in an arbitrary array. Each of the involved signals undergo filtering by the RIR before

being picked up by the microphones. The reverberation effect can be modeled by a Finite Impulse

Response (FIR) filter operating on the sources. The signal received by the mth sensor is given

by:

zm(n) =
K∑

i=1

sd
i (n) ∗ hd

im(n) +
Ns∑

i=1

ss
i (n) ∗ hs

im(n) +
Nns∑

i=1

sns
i (n) ∗ hns

im(n) + vm(n) (1)

where sd
1(n), . . . , sd

K(n), ss
1(n), . . . , ss

Ns
(n) and sns

1 (n), . . . , sns
Nns

(n) are the desired sources, the

stationary and non-stationary interfering sources in the room, respectively. We define hd
im(n),

hs
im(n) and hns

im(n) to be the Linear Time Invariant (LTI) RIRs relating the desired sources,

the interfering sources, and each sensor m, respectively. vm(n) is the sensor noise. zm(n) is

transformed into the Short Time Fourier Transform (STFT) domain with a rectangular window

of length NDFT, yielding:

zm(ℓ, k) =
K∑

i=1

sd
i (ℓ, k)hd

im(ℓ, k) +
Ns∑

i=1

ss
i (ℓ, k)hs

im(ℓ, k) +
Nns∑

i=1

sns
i (ℓ, k)hns

im(ℓ, k) + vm(ℓ, k) (2)

where ℓ is the frame number and k is the frequency index. The assumption that the window

length is much larger then the RIR length ensures the Multiplicative Transfer Function (MTF)

approximation [34] validness.
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The received signals in (2) can be formulated in a vector notation:

z(ℓ, k) = Hd(ℓ, k)sd(ℓ, k) + Hs(ℓ, k)ss(ℓ, k) + Hns(ℓ, k)sns(ℓ, k) + v(ℓ, k)

= H(ℓ, k)s(ℓ, k) + v(ℓ, k) (3)

where

z(ℓ, k) ,
[

z1(ℓ, k) . . . zM(ℓ, k)
]T

v(ℓ, k) ,
[

v1(ℓ, k) . . . vM(ℓ, k)
]T

hd
i (ℓ, k) ,

[

hd
i1(ℓ, k) . . . hd

iM(ℓ, k)
]T

i = 1, . . . , K

hs
i (ℓ, k) ,

[

hs
i1(ℓ, k) . . . hs

iM(ℓ, k)
]T

i = 1, . . . , Ns

hns
i (ℓ, k) ,

[

hns
i1 (ℓ, k) . . . hns

iM(ℓ, k)
]T

i = 1, . . . , Nns

Hd(ℓ, k) ,
[

hd
1(ℓ, k) . . . hd

K(ℓ, k)
]

Hs(ℓ, k) ,
[

hs
1(ℓ, k) . . . hs

Ns
(ℓ, k)

]

Hns(ℓ, k) ,
[

hns
1 (ℓ, k) . . . hns

Nns
(ℓ, k)

]

H i(ℓ, k) ,
[

Hs(ℓ, k) Hns(ℓ, k)
]

H(ℓ, k) ,
[

Hd(ℓ, k) Hs(ℓ, k) Hns(ℓ, k)
]

sd(ℓ, k) ,
[

sd
1(ℓ, k) . . . sd

K(ℓ, k)
]T

ss(ℓ, k) ,
[

ss
1(ℓ, k) . . . ss

Ns
(ℓ, k)

]T

sns(ℓ, k) ,
[

sns
1 (ℓ, k) . . . sns

Nns
(ℓ, k)

]T

s(ℓ, k) ,
[

(sd(ℓ, k))T (ss(ℓ, k))T (sns(ℓ, k))T

]T

.

Assuming the desired speech signals, the interference and the noise signals to be uncorrelated,

the received signals’ correlation matrix is given by:

Φzz(ℓ, k) = Hd(ℓ, k)Λd(ℓ, k)
(
Hd(ℓ, k)

)†
+ (4)

Hs(ℓ, k)Λs(ℓ, k)
(
Hs(ℓ, k)

)†
+ Hns(ℓ, k)Λns(ℓ, k)

(
Hns(ℓ, k)

)†
+ Φvv(ℓ, k)
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where

Λd(ℓ, k) , diag
([

(σd
1(ℓ, k))2 . . . (σd

K(ℓ, k))2
])

Λs(ℓ, k) , diag
([

(σs
1(ℓ, k))2 . . . (σs

Ns
(ℓ, k))2

])

Λns(ℓ, k) , diag
([

(σns
1 (ℓ, k))2 . . . (σns

Nns
(ℓ, k))2

])

.

where (•)† is the conjugate-transpose operation, and diag (•) is a square matrix with the vector

in brackets on its main diagonal. Φvv(ℓ, k) is the sensor noise correlation matrix usually assumed

to be spatially-white, i.e. Φvv(ℓ, k) = σ2
vIM×M where IM×M is the identity matrix.

III. PROPOSED METHOD

In this section the proposed algorithm is derived. First, the LCMV beamformer is introduced

and reformulated in a GSC structure1. In the following subsections we define a set of constraints

used for extracting the desired sources and mitigating the interference sources. Then we replace

the constraints set by an equivalent set which can be more easily estimated. Finally, we relax

our constraint for extracting the exact input signals, as transmitted by the sources, and replace

it by the extraction of the desired speech components at an arbitrarily chosen microphone. The

outcome of the latter, a modified constraints set, will constitute a feasible system.

A. The LCMV Beamformer and the GSC Formulation

A beamformer is a system realized by processing each of the sensor signals zm(k, ℓ) by the

filters w∗
m(ℓ, k) and summing the outputs. The beamformer output y(ℓ, k) is given by

y(ℓ, k) = w†(ℓ, k)z(ℓ, k) (5)

where

w(ℓ, k) =
[

w1(ℓ, k), . . . , wM(ℓ, k)
]T

. (6)

The filters are set to satisfy the LCMV criterion with multiple constraints:

w(ℓ, k) = argmin
w
{w†(ℓ, k)Φzz(ℓ, k)w(ℓ, k)} subject to C†(ℓ, k)w(ℓ, k) = g(ℓ, k) (7)

where

C†(ℓ, k)w(ℓ, k) = g(ℓ, k) (8)

is the constraints set. The well-known solution to (7) is given by [10]:

w(ℓ, k) = Φ−1
zz (ℓ, k)C(ℓ, k)

(
C†(ℓ, k)Φ−1

zz (ℓ, k)C(ℓ, k)
)−1

g(ℓ, k) (9)

1The authors wish to express their gratitude to Dr. Emanuël Habets for the fruitful discussions and for his assistance in

clarifying the GSC formulation.
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The LCMV can be implemented using the GSC formulation [19]. In this structure the filter

set w(ℓ, k) can be split to two orthogonal components [10], one in the constraint plane and the

other in the orthogonal subspace:

w(ℓ, k) = w0(ℓ, k)−wn(ℓ, k)

= w0(ℓ, k)−B†(ℓ, k)q(ℓ, k) (10)

where B(ℓ, k) is the projection matrix to the “null” subspace, denoted BM, i.e. BC(ℓ, k) = 0.

w0(ℓ, k) is the FBF satisfying the constraints set, wn(ℓ, k) is orthogonal to w0(ℓ, k), and q(ℓ, k)

is a set of ANC filters adjusted to obtain the (unconstrained) minimization. In the original

GSC structure the filters q(ℓ, k) are calculated adaptively using the Least Mean Squares (LMS)

algorithm.

Using [10] the FBF is given by:

w0(ℓ, k) = C(ℓ, k)
(
C†(ℓ, k)C(ℓ, k)

)−1
g(ℓ, k). (11)

The BM can be determined as the projection matrix to the null subspace of the column-space

of C:

B(ℓ, k) = IM×M −C(ℓ, k)
(
C†(ℓ, k)C(ℓ, k)

)−1
C†(ℓ, k) (12)

and a closed-form (Wiener) solution for q(ℓ, k) is:

q(ℓ, k) =
(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)Φzz(ℓ, k)w0(ℓ, k). (13)

A block diagram of the GSC structure is depicted in Fig. 1. The GSC comprises three blocks. The

FBF is responsible for the alignment of the desired sources and the BM blocks the directional

signals. The output of the BM, denoted u(ℓ, k) is then processed by the ANC filters q(ℓ, k) for

further reduction of the residual interference signals at the output. More details regarding each

block of the GSC blocks will be given in the subsequent subsections for the various definitions

of the constraints set.

B. The constraints set

We start with the straightforward approach, in which the beam-pattern is constrained to cancel

out all interfering sources while maintaining all desired sources (for each frequency bin). Note,

that unlike the DTF-GSC approach [33], the stationary noise sources are treated similarly to

the interference (non-stationary) sources. We therefore define the following constraints. For each

desired source {sd
i }

K
i=1 we apply the constraint:

(
hd

i (ℓ, k)
)†

w(ℓ, k) = 1, i = 1, . . . , K. (14)

For each interfering source, both stationary and non-stationary, {ss
i}

Ns

i=1 and {sns
j }

Nns

j=1 , we apply:

(
hs

i (ℓ, k)
)†

w(ℓ, k) = 0, (15)
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uM (ℓ, k)

u1(ℓ), k

y(ℓ, k)

yFBF(ℓ, k)

u2(ℓ, k)

yANC(ℓ, k)

FBF ∑

z1(ℓ, k)

z2(ℓ, k)

−

+

zM (ℓ), k

BM

q(ℓ, k)

ANC

Fig. 1. The proposed LCMV beamformer reformulated in a GSC structure.

and
(
hns

j (ℓ, k)
)†

w(ℓ, k) = 0. (16)

Define N , K +Ns +Nns the total number of signals in the environment (including the desired

sources, stationary interference signals, and the non-stationary interference signals). Assuming

the column-space of H(ℓ, k) is linearly independent (i.e. the ATFs are independent), it is obvious

that for the solution in (9) to exist we require that the number of microphones will be greater

or equal the number of constraints, namely M ≥ N . It is also understood that whenever the

constraints contradict each other, the desired signal constraints will be preferred.

Summarizing, we have a constraint matrix:

C(ℓ, k) , H(ℓ, k) (17)

and a desired response vector:

g ,

[

1 . . . 1
︸ ︷︷ ︸

K

0 . . . 0
︸ ︷︷ ︸

N−K

]T

. (18)
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Under these definitions, and using (3) and (11), the FBF output is given by:

yFBF(ℓ, k) = w
†
0(ℓ, k)z(ℓ, k) =

g†
(
C†(ℓ, k)C(ℓ, k)

)−1
C†(ℓ, k) (H(ℓ, k)s(ℓ, k) + v(ℓ, k)) =

g†s(ℓ, k) + g†
(
H†(ℓ, k)H(ℓ, k)

)−1
H†(ℓ, k)v(ℓ, k) =

K∑

i=1

sd
i (ℓ, k) + g†

(
H†(ℓ, k)H(ℓ, k)

)−1
H†(ℓ, k)v(ℓ, k). (19)

Using (13) and (4) the ANC filters are given by:

q(ℓ, k) =
(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)Φzz(ℓ, k)w0(ℓ, k) (20)

=
(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)

(
H(ℓ, k)Λ(ℓ, k)H†(ℓ, k) + Φvv(ℓ, k)

)
w0(ℓ, k).

Hence, using B(ℓ, k)C(ℓ, k) = B(ℓ, k)H(ℓ, k) = 0 we have:

q(ℓ, k) =
(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)Φvv(ℓ, k)w0(ℓ, k). (21)

Now, using (11) we have

q(ℓ, k) = (22)
(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)Φvv(ℓ, k)C(ℓ, k)

(
C†(ℓ, k)C(ℓ, k)

)−1
g

For the spatially-white sensor noise case, Φvv(ℓ, k) = σ2
vIM×M , the ANC filters simplifies to:

q(ℓ, k) = σ2
v

(
B(ℓ, k)Φzz(ℓ, k)B†(ℓ, k)

)−1
B(ℓ, k)C(ℓ, k)

(
C†(ℓ, k)C(ℓ, k)

)−1
g. (23)

Using once more the projection identity B(ℓ, k)C(ℓ, k) = 0 we finally conclude that q(ℓ, k) = 0.

Hence, the lower branch of the GSC beamformer has no contribution to the output signal in

this case, and the LCMV simplifies to the FBF beamformer, i.e. no minimization of the output

power is performed.

The LCMV beamformer output is therefore given by (19). It comprises a sum of two terms:

the first is the sum of all the desired sources and the second is the response of the array to the

sensor noise.

C. Equivalent constraints set

The matrix C(ℓ, k) in (17) comprises the ATFs relating the sources and the microphones

hd
i (ℓ, k), hs

i (ℓ, k) and hns
i (ℓ, k). Hence, the solution given in (11) requires an estimate of the

various filters. Obtaining such estimates might be a cumbersome task in practical scenarios,

where it is usually required that the sources are not active simultaneously (see e.g. [32]). We

will show now that the actual ATFs of the interfering sources can be replaced by the basis vectors

spanning the same interference subspace, without sacrificing the accuracy of the solution.

Let

Ni , Ns + Nns (24)
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be the number of interferences, both stationary and non-stationary, in the environment. For

conciseness we assume that the ATFs of the interfering sources are linearly independent at each

frequency bin, and define E , [e1 . . . eNi
] to be any basis2 that spans the column space of the

interfering sources H i(ℓ, k) = [Hs(ℓ, k) Hns(ℓ, k)]. Hence, the following identity holds:

H i(ℓ, k) = E(ℓ, k)Θ(ℓ, k) (25)

where ΘNi×Ni
(ℓ, k) is comprised of the projection coefficients of the original ATFs on the

basis vectors. When the ATFs associated with the interference signals are linearly independent,

ΘNi×Ni
(ℓ, k) is an invertible matrix.

Define

Θ̃(ℓ, k) ,

[

IK×K OK×Ni

ONi×K Θ(ℓ, k)

]

N×N

(26)

where IK×K is a K × K identity matrix. Multiplication by (Θ̃
†
(ℓ, k))−1 of both sides of the

original constraints set in (8), with the definitions (17)-(18), yields:

(Θ̃
†
(ℓ, k))−1C†(ℓ, k)w(ℓ, k) = (Θ̃

†
(ℓ, k))−1g. (27)

Starting with the left-hand-side of (27) we have:

(Θ̃
†
(ℓ, k))−1C†(ℓ, k)w(ℓ, k)

=

[

IK×K OK×Ni

ONi×K (Θ†(ℓ, k))−1

] [

(Hd(ℓ, k))†

(H i(ℓ, k))†

]

w(ℓ, k)

=

[

(Hd(ℓ, k))†

(Θ−1(ℓ, k))†(H i(ℓ, k))†

]

w(ℓ, k)

=

[

(Hd(ℓ, k))†

(H i(ℓ, k)Θ−1(ℓ, k))†

]

w(ℓ, k)

=
[

(Hd(ℓ, k)) E(ℓ, k)
]†

w(ℓ, k)

△
= Ċ

†
(ℓ, k)w(ℓ, k)

where the equivalent constraint matrix is defined as

Ċ(ℓ, k)
△
=

[

Hd(ℓ, k) E(ℓ, k)
]

. (28)

2If this linear independency assumption does not hold, the rank of the basis can be smaller than Ni in several frequency bins.

In this contribution we assume the interference subspace to be full rank.
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For the right-hand-side of (27) we have:

(Θ̃
†
(ℓ, k))−1g =
[

IK×K OK×Ni

ONi×K (Θ†(ℓ, k))−1

]

g =

=

[

(1 . . . 1
︸ ︷︷ ︸

K

)IK×K (0 . . . 0
︸ ︷︷ ︸

N−K

)(Θ(ℓ, k))−1

]†

= g.

Hence, it is shown that w(ℓ, k) that satisfies the original constraints set C†(ℓ, k)w(ℓ, k) = g

also satisfies the equivalent constraints set

Ċ
†
(ℓ, k)w(ℓ, k) = g. (29)

Since the constraint is satisfied by the FBF branch, and since the original LCMV beamformer

and the LCMV beamformer with the equivalent constraints set are derived similarly, it is also

guaranteed that q(ℓ, k) in the later structure becomes zero for the spatially-white sensor noise

case.

D. Modified constraints set

Both the original and equivalent constraints sets in (17) and (28) respectively, require estimates

of the desired sources ATFs Hd(ℓ, k). Estimating these ATFs might be a cumbersome task, due

to the large order of the respective RIRs. In the current section we relax our demand for a

distortionless beamformer [as depicted in the definition of g in (18)] and replace it by constraining

the output signal to be comprised of the desired speech components at an arbitrarily chosen

microphone.

Define a modified vector of desired responses:

g̃(ℓ, k) =

[

(hd
11(ℓ, k))∗ . . . (hd

K1(ℓ, k))∗
︸ ︷︷ ︸

K

0 . . . 0
︸ ︷︷ ︸

N−K

]T

where microphone #1 was arbitrarily chosen as the reference microphone. The modified FBF

satisfying the modified response Ċ
†
(ℓ, k)w̃(ℓ, k) = g̃(ℓ, k) is then given by

w̃0(ℓ, k) , Ċ(ℓ, k)
(
Ċ

†
(ℓ, k)Ċ(ℓ, k)

)−1
g̃(ℓ, k). (30)

Indeed, using the equivalence between the column subspaces of Ċ(ℓ, k) and H(ℓ, k), the FBF

output is now given by:

yFBF(ℓ, k) = w̃
†
0(ℓ, k)z(ℓ, k) =

g̃†(ℓ, k)
(
Ċ

†
(ℓ, k)Ċ(ℓ, k)

)−1
Ċ

†
(ℓ, k) (H(ℓ, k)s(ℓ, k) + v(ℓ, k)) =

g̃†(ℓ, k)s(ℓ, k) + g̃†(ℓ, k)
(
Ċ

†
(ℓ, k)Ċ(ℓ, k)

)−1
Ċ

†
(ℓ, k)v(ℓ, k) =

K∑

i=1

hd
i1(ℓ, k)sd

i (ℓ, k) + g̃†(ℓ, k)
(
Ċ

†
(ℓ, k)Ċ(ℓ, k)

)−1
Ċ

†
(ℓ, k)v(ℓ, k) (31)
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as expected from the modified constraint response. As mentioned before, estimating the desired

signal ATFs is a cumbersome task. Nevertheless, in Sec. IV we will show that a practical method

for estimating the RTF can be derived. We will therefore reformulate in the sequel the constraints

set in terms of the RTFs.

It is easily verified that the modified desired response is related to the original desired

response (18) by:

g̃(ℓ, k) = Ψ̃†(ℓ, k)g

where:

Ψ(ℓ, k) = diag
([

hd
11(ℓ, k) . . . hd

K1(ℓ, k)
])

and

Ψ̃(ℓ, k) =

[

Ψ(ℓ, k) OK×Ni

ONi×K INi×Ni

]

.

Now, a beamformer having the modified beam-pattern should satisfy the modified constraints

set:

Ċ
†
(ℓ, k)w̃(ℓ, k) = g̃(ℓ, k) = Ψ̃†(ℓ, k)g.

Hence,

(Ψ̃−1(ℓ, k))†Ċ
†
(ℓ, k)w̃(ℓ, k) = g.

Define

C̃(ℓ, k) , Ċ(ℓ, k)Ψ̃−1(ℓ, k) =
[

H̃
d
(ℓ, k) E(ℓ, k)

]

(32)

where

H̃
d
(ℓ, k) ,

[

h̃
d

1(ℓ, k) . . . h̃
d

K(ℓ, k)
]

(33)

with

h̃
d

i (ℓ, k) ,
hd

i (ℓ, k)

hd
i1(ℓ, k)

(34)

defined as the RTF with respect to microphone #1.

Finally, the modified FBF is given by:

w̃0(ℓ, k) , C̃(ℓ, k)
(
C̃(ℓ, k)†C̃(ℓ, k)

)−1
g (35)

and its corresponding output is therefore given by:

yFBF(ℓ, k) = w̃
†
0(ℓ, k)z(ℓ, k) =

K∑

i=1

sd
i (ℓ, k)hd

i1(ℓ, k) + g†
(
C̃

†
(ℓ, k)C̃(ℓ, k)

)−1
C̃

†
(ℓ, k)v(ℓ, k). (36)

The modified beamformer output therefore comprises the sum of the desired sources as mea-

sured at the reference microphone (arbitrarily chosen as microphone #1) and the sensor noise

contribution. It is easily verified that B̃(ℓ, k), the projection matrix to the modified constraint

matrix C̃(ℓ, k), also satisfies B̃(ℓ, k)H(ℓ, k) = 0 (see similar arguments in [33]) and hence the

ANC branch becomes zero for the spatially-white sensor noise, yielding y(ℓ, k) = yFBF(ℓ, k).
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E. Residual Noise Cancellation

It was shown in the previous subsection that the proposed LCMV beamformer can be for-

mulated in a GSC structure. Note a profound difference between the proposed method and the

algorithms presented in [21] and [33]. While the purpose of the ANC in both the TF-GSC and

DTF-GSC structures is to eliminate the stationary-directional noise source passing through the

BM, in the proposed structure all directional signals, including the stationary directional noise

signal, are treated by the FBF branch and the ANC does not contribute to the interference

cancellation, when the sensor noise is spatially-white.

However, in non-ideal scenarios the ANC branch has a significant contribution to the overall

performance of the proposed beamformer. The proposed method requires an estimate of the

RTFs relating each of the desired sources and the microphones, and a basis that spans the ATFs

relating each of the interfering source and the microphones. As these quantities are not known,

we use instead estimates thereof. The estimation procedure will be discussed in Sec. IV. In case

no estimation errors occur, the BM outputs consist of solely the sensor noise. When the sensor

noise is spatially white, the ANC filters converge to 0, as discussed in III-B.

Due to inevitable estimation errors, the constraints set is not exactly satisfied, resulting in

leakage of residual interference signals (as well as residual desired sources) to the beamformer

output, as well as desired signal distortion. These residual signals do not exhibit spatial-whiteness

anymore, therefore enabling the ANC filters to contribute to the noise and interference cancel-

lation.

The adaptation rule of the ANC filters q(ℓ, k) is derived in [21] and is presented in Alg. 1.

We note however, that as both the desired sources and the interference sources are expected to

leak through the BM, mis-convergence of the filters can be avoided by adapting q(ℓ, k) only

when the desired sources are inactive. This necessitates the application of an activity detector

for the desired sources.

A comparison between the TF-GSC algorithm and the proposed method in the single desired

source scenario can be found in [35].

IV. ESTIMATION OF THE CONSTRAINTS MATRIX

In the previous sections we have shown that knowledge of the RTFs related to the desired

sources and a basis that spans the subspace of the interfering sources suffice for implementing

the beamforming algorithm. This section is dedicated to the estimation procedure necessary to

acquire this knowledge. We start by making some restrictive assumptions regarding the activity

of the sources. First, we assume that there are time segments for which none of the non-stationary

sources is active. These segments are used for estimating the stationary noise PSD. Second, we

assume that there are time segments in which all the desired sources are inactive. These segments

are used for estimating the interfering sources subspace (with arbitrary activity pattern). Third,

we assume that for every desired source, there is at least one time segment when it is the only
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non-stationary source active. These segments are used for estimating the RTFs of the desired

sources. These assumptions, although restrictive, can be met in realistic scenarios, for which

double talk only rarely occurs. A possible way to extract the activity information can be a video

signal acquired in parallel to the sound acquisition. In this contribution it is however assumed

that the number of desired sources and their activity pattern is available.

In the rest of this section we discuss the subspace estimation procedure. The RTF estimation

procedure can be regarded, in this aspect, as a multi-source, colored-noise extension of the single

source subspace estimation method proposed by Affes and Grenier [20]. We further assume that

the various filters are slowly time-varying filters, i.e H(ℓ, k) ≈H(k).

A. Interferences Subspace Estimation

Let ℓ = ℓ1, . . . , ℓNseg
, be a set of Nseg frames for which all desired sources are inactive. For

every segment we estimate the subspace spanned by the active interferences (both stationary

and non-stationary). Let Φ̂zz(ℓi, k) be a PSD estimate at the interference-only frame ℓi. Using

the EVD we have Φ̂zz(ℓi, k) = Ei(k)Λi(k)E†
i (k). Interference-only segments consist of both

directional interference and noise components and spatially-white sensor noise. Hence, the larger

eigenvalues can be attributed to the coherent signals while the lower eigenvalues to the spatially-

white signals.

Define two values ∆EVTH(k) and MEVTH. All eigenvectors corresponding to eigenvalues

that are more than ∆EVTH below the largest eigenvalue or not higher than MEVTH above the

lowest eigenvalue, are regarded as sensor noise eigenvectors and are therefore discarded from

the interference signal subspace. Assuming that the number of sensors is larger than the number

of directional sources, the lowest eigenvalue level will correspond to the sensor noise variance

σ2
v . The procedure is demonstrated in Fig. 2 for the 11 microphone test scenario presented in

the sequel in Sec. VI. A segment which comprises three directional sources (one stationary and

two non-stationary interferences) is analyzed using the EVD by 11 microphone array (i.e. the

dimensions of the multi-sensor correlation matrix is 11×11). The eigenvalue level as a function

of the frequency bin is depicted in the Figure. The blue line depicts MEVTH threshold and the

dark green frequency-dependent line depicts the threshold EVTH(k). All eigenvalues that do not

meet the thresholds, depicted as gray lines in the Figure, are discarded from the interference

signal subspace. The number of the remaining eigenvalues as a function of the frequency bin,

that are used for the interference subspace, is depicted in Fig. 3. It can be seen from the Figure

that in most frequency bins the algorithm correctly identified the three directional sources. Most

of the erroneous reading are found in the lower frequency band, where the directivity of the

array is low, and in the upper frequency band, where the signals’ power is low. The use of two

thresholds is shown to increase the robustness of the procedure.

We denote the eigenvectors that passed the thresholds as Êi(k), and their corresponding

eigenvalues as Λ̂i(k). This procedure is repeated for each segment ℓi; i = 1, 2, . . . , Nseg. These
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Fig. 2. Eigenvalues of an interference-only segments as a function of the frequency bin (solid thin colors). Eigenvalues that do

not meet the thresholds MEVTH (dashed-dotted thick pink) and EVTH(k) (dashed thick blue) are depicted in gray and discarded

from the interference signal subspace.

vectors should span the basis of the entire interference subspace:

H i(ℓ, k) = E(ℓ, k)Θ(ℓ, k)

defined in (25). To guarantee that the eigenvectors i = 1, 2, . . . , Nseg that are common to more

than one segment are not counted more than once they should be collected by the union operator:

Ê(k) ,

Nseg⋃

i=1

Êi(k) (37)

where Ê(k) is an estimate for the interference subspace basis E(ℓ, k) assumed to be time-

invariant in the observation period. Unfortunately, due to arbitrary activity of sources and esti-

mation errors, eigenvectors that correspond to the same source can be manifested as a different

eigenvector in each segment. These differences can unnecessarily inflate the number of estimated

interference sources. Erroneous rank estimation is one of causes to the well-known desired signal
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Fig. 3. The number of major eigenvalues, as a function of the frequency bin, that are used for constructing the interference

subspace.

cancelation phenomenon in beamformer structures, since desired signal components may be

included in the null subspace. The union operator can be implemented in many ways. Here we

chose to use the QRD.

Consider the following QRD of the subspace spanned by the major eigenvectors (weighted in

respect to their eigenvalues) obtained by the previous procedure:
[

Ê1(k)Λ̂
1

2

1 (k) . . . ÊNseg
(k)Λ̂

1

2

Nseg
(k)

]

P (k) = Q(k)R(k) (38)

where Q(k) is a unitary matrix, R(k) is an upper triangular matrix with decreasing diagonal

absolute values, P (k) is a permutation matrix and (·)
1

2 is a square root operation performed on

each of the diagonal elements.

All vectors in Q(k) that correspond to values on the diagonal of R(k) that are lower than

∆UTH below their largest value, or less then MUTH above their lowest value are not counted as

basis vectors of the directional interference subspace. The collection of all vectors passing the

designated thresholds, constitutes Ê(k), the estimate of the interference subspace basis.
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The reduction of the interference subspace rank using the QRD is further demonstrated in

Table. I. Consider three segments for which one stationary and two non-stationary sources may

TABLE I

PROJECTION COEFFICIENTS OF THE INTERFERENCES’ ATFS ON THE ESTIMATED BASIS AT DIFFERENT TIME SEGMENTS AND

THE CORRESPONDING BASIS OBTAINED BY THE QRD BASED UNION PROCEDURE.

Interfering Segment Segment Segment QRD

Source 1 2 3

e1 eN e1 e2 eN e1 e2 e3 eN e1 e2 e3 eN

hns
1 0.40 0.92 0.39 0.57 0.72 0.84 0.53 0.07 0.02 0.92 0.35 0.18 0.02

hns
2 0.20 0.98 0.58 0.81 0.03 0.62 0.74 0.26 0.02 0.76 0.65 0.07 0.01

hs
1 1.00 0.02 0.91 0.41 0.02 0.65 0.32 0.69 0.02 0.31 0.55 0.77 0.02

be active (see detailed description of the test scenario in the sequel). We do not require any

particular activity pattern for these sources during the considered three segments. In the first

segment only one eigenvector passed the thresholds, in the second segment two eigenvectors

passed the thresholds, and in the third segment three major eigenvectors were identified. In the

columns of Table I associated with ei, 1 ≤ i ≤ 3 we depict the absolute value of the inner

product between the normalized ATFs of each of the interference signals and the estimated

eigenvector. The rotation of the eigenvectors from segment to segment is manifested by the

different projections. This phenomenon can be attributed to the non-stationarity of the sources

(in particular the sources can change their activity state across segments) and to estimation errors.

Define a subspace E spanned by the identified eigenvectors. The value eN depicts the norm of

the projection of the normalized ATF, associated with the row, and the null subspace orthogonal

to E . Low level of eN indicates that the ATF in the corresponding row can be modeled by the

basis. Therefore, it is evident that only hs
1 can be modeled by the basis identified in the first

segment, both hs
1 and hns

2 can be modeled in the second segment, and all three ATFs, i.e. hs
1, hns

1

and hns
2 , are modeled by the basis estimated in the third segment. Note, however, that as can be

deduced from the different projections, the identified eigenvectors are different in each segment.

Hence, without any subspace reduction procedure, six eigenvectors would have been identified,

unnecessarily inflating the interference subspace rank. The last column of Table I depicts the

basis obtained by the QRD. The reduced subspace, comprised of only three eigenvectors, can

model all interference ATFs, as evident from the low level of eN associated with all ATFs.

This reduced basis is in general different from the eigenvectors identified in each of the three

segments, but still spans the interference subspace (consisting of the three designated sources).

The novel procedure relaxes the widely-used requirement for non-overlapping activity periods

of the distinct interference sources. Moreover, since several segments are collected, the procedure

tends to be more robust than methods that rely on PSD estimates obtained by only one segment.
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B. Desired Sources RTF Estimation

Consider time frames for which only the stationary sources are active and estimate the

corresponding PSD matrix:

Φ̂
s

zz(ℓ, k) ≈Hs(ℓ, k)Λs(ℓ, k)
(
Hs(ℓ, k)

)†
+ σ2

vIM×M . (39)

Assume that there exists a segment ℓi during which the only active non-stationary signal is the

ith desired source i = 1, 2, . . . , K. The corresponding PSD matrix will then satisfy:

Φ̂
d,i

zz (ℓi, k) ≈ (σd
i (ℓi, k))2hd

i (ℓi, k)
(
hd

i (ℓi, k)
)†

+ Φ̂
s

zz(ℓ, k). (40)

Now, applying the GEVD to Φ̂
d,i

zz (ℓi, k) and the stationary-noise PSD matrix Φ̂
s

zz(ℓ, k) we have:

Φ̂
d,i

zz (ℓi, k)f i(k) = λi(k)Φ̂
s

zz(ℓ, k)f i(k) (41)

The generalized eigenvectors corresponding to the generalized eigenvalues with values other than

1 span the desired sources subspace. Since we assumed that only source i is active in segment

ℓi, this eigenvector corresponds to a scaled version of the source ATF. To prove this relation

for the single eigenvector case, let λi(k) correspond the largest eigenvalue at segment ℓi and

f i(k) its corresponding eigenvector. Substituting Φ̂
d,i

zz (ℓi, k) as defined in (40) in the left-hand

side of (41) yields

(σd
i (ℓi, k))2hd

i (ℓi, k)
(
hd

i (ℓi, k)
)†

f i(k) + Φ̂
s

zz(ℓ, k)f i(k) = λi(k)Φ̂
s

zz(ℓ, k)f i(k)

therefore

(σd
i (ℓi, k))2hd

i (ℓi, k)
(
hd

i (ℓi, k)
)†

f i(k)
︸ ︷︷ ︸

scalar

=
(
λi(k)− 1

)
Φ̂

s

zz(ℓ, k)f i(k)

and finally,

hd
i (ℓi, k) =

λi(k)− 1

(σd
i (ℓi, k))2

(
hd

i (ℓi, k)
)†

f i(k)
︸ ︷︷ ︸

scalar

Φ̂
s

zz(ℓ, k)f i(k) ∴

Hence, the desired signal ATF hd
i (ℓi, k) is a scaled and rotated version of the eigenvector f i(k)

(with eigenvalue other than 1). As we are interested in the RTFs rather than the entire ATFs the

scaling ambiguity can be resolved by the following normalization:

ˆ̃
h

d

i (ℓ, k) ,
Φs

zz(ℓ, k)f i(k)
(
Φs

zz(ℓ, k)f i(k)
)

1

(42)

where (·)1 is the first component of the vector corresponding to the reference microphone

(arbitrarily chosen to be the first microphone).

We repeat this estimation procedure for each desired source i = 1, 2, . . . , K. The value of K

is a design parameter of the algorithm.
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V. ALGORITHM SUMMARY

The entire algorithm is summarized in Alg. 1. The algorithm is implemented almost entirely in

the STFT domain, using a rectangular analysis window of length NDFT, and a shorter rectangular

synthesis window, resulting in the overlap & save procedure [36], avoiding any cyclic convolution

effects. The PSD of the stationary interferences and the desired sources is estimated using the

Welch method, with a Hamming window of length D × NDFT applied to each segment, and

(D − 1) × NDFT overlap between segments. However, since only lower frequency resolution

is required, we wrapped each segment to length NDFT before the application of the Discrete

Fourier Transform (DFT) operation. The interference subspace is estimated from a Lseg ×NDFT

length segment. The overlap between segments is denoted OVRLP. The resulting beamformer

estimate is tapered by a Hamming window resulting in a smooth filter in the coefficient range

[−FLl, FLr]. The parameters used for the simulation are given in Table II.

VI. EXPERIMENTAL STUDY

A. The Test Scenario

The proposed algorithm was tested both in simulated and real room environments with five

directional signals, namely two (male and female) desired speech sources, two (other male

and female) speakers as competing speech signals, and a stationary speech-like noise drawn

from NOISEX-92 [37] database. We used different set of signals for the simulated and real

environments.

In the simulated room scenario the image method [38] was used to generate the RIR using the

simulator in [39]. All the signals i = 1, 2, . . . , N were then convolved with the corresponding

time-invariant RIRs. The microphone signals zm(ℓ, k); m = 1, 2, . . . ,M were finally obtained by

summing up the contributions of all directional sources with an additional uncorrelated sensor

noise. The level of all desired sources is equal. The desired signal to sensor noise ratio was

set to 41dB (this ratio determines σ2
v). The relative power between the desired sources and all

interference sources is depicted in the simulation results in Tables III-IV.

In the real room scenario each of the signals was played by a loudspeaker located in a

reverberant room (each signal was played by a different loudspeaker) and captured by an array

of M microphones. The signals z(ℓ, k) were finally constructed by summing up all recorded

microphone signals with a gain related to the desired input Signal to Interference Ratio (SIR).

For evaluating the performance of the proposed algorithm, we applied the algorithms in two

phases. In the first phase, the algorithm (consists of the LCMV beamformer and the ANC) was

applied to an input signal, comprised of the sum of the desired speakers, the competing speakers,

and the stationary noise (with gains in accordance with the respective SIR). In this phase, the

algorithm was allowed to adapt yielding y(ℓ, k), the actual algorithm output. In the second phase,

the beamformer was not updated. Instead, a copy of the coefficients, obtained in the first phase,

was used as the weights. As the coefficients are time varying (due to the application of the



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2008 21

Algorithm 1 Summary of the proposed LCMV beamformer implemented as a GSC.

1) Output signal:

y(ℓ, k) , yFBF(ℓ, k)− q†(ℓ, k)u(ℓ, k)

2) FBF with modified constraints set :

yFBF(ℓ, k) , w̃
†
0(ℓ, k)z(ℓ, k)

where

w̃0(ℓ, k) , C̃(ℓ, k)
(
C̃(ℓ, k)†C̃(ℓ, k)

)−1
g

C̃(ℓ, k) ,
[

H̃
d
(ℓ, k) E(ℓ, k)

]

g ,

[

1 . . . 1
︸ ︷︷ ︸

K

0 . . . 0
︸ ︷︷ ︸

N−K

]T

.

H̃
d
(ℓ, k) are the RTFs in respect to microphone #1.

3) Reference signals:

u(ℓ, k) , B(ℓ, k)z(ℓ, k)

where

B(ℓ, k) , IM×M − C̃(ℓ, k)
(
C̃

†
(ℓ, k)C̃(ℓ, k)

)−1
C̃

†
(ℓ, k).

4) Update filters:

q̃(ℓ + 1, k) = q(ℓ, k) + µq
u(ℓ,k)y∗(ℓ,k)

pest(ℓ,k)

q(ℓ + 1, k)
FIR

←− q̃(ℓ + 1, k)

pest(ℓ, k) = αppest(ℓ− 1, k) + (1− αp)‖u(ℓ, k)‖2

5) Estimation:

a) Estimate the stationary noise PSD using Welch method: Φ̂
s

zz(ℓ, k)

b) Estimate time-invariant desired sources RTFs H̃
d
(k) ,

[

h̃
d

1(k) . . . h̃
d

K(k)
]

Using GEVD and normalization:

i) Φ̂
d,i

zz (ℓi, k)f i(k) = λiΦ̂
s

zz(ℓ, k)f i(k)⇒ f i(k)

ii)
ˆ̃
h

d

i (ℓ, k) ,
ˆΦ

s

zz(ℓ,k)f
i
(k)

(
ˆΦ

s

zz(ℓ,k)f
i
(k)

)

1

.

c) Interferences subspace:

QRD factorization of eigen-spaces
[

E1(k)Λ
1

2

1 (k) . . . ENseg
(k)Λ

1

2

Nseg
(k)

]

Where Φ̂zz(ℓi, k) = Ei(k)Λi(k)E†
i (k) for time segment ℓi.

ANC), we used in each time instant the corresponding copy of the coefficients. The spatial filter

was then applied to each of the unmixed sources.

Denote by yd
FBF,i(ℓ, k), yd

i (ℓ, k); i = 1, . . . , K, the desired signals components at the beam-

former output and the total output (including the ANC), respectively, yns
FBF,i(ℓ, k), yns

i (ℓ, k); i =

1, . . . , Nns the corresponding non-stationary interference components, ys
FBF,i(ℓ, k), ys

i (ℓ, k); i =

1, . . . , Ns the stationary interference components, and yv
FBF(ℓ, k), yv(ℓ, k) the sensor noise com-
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TABLE II

PARAMETERS USED BY THE SUBSPACE BEAMFORMER ALGORITHM.

Parameter Description Value

General Parameters

fs Sampling frequency 8KHz

determines σ2

v Desired signal to sensor noise ratio 41dB

PSD Estimation using Welch Method

NDFT DFT length 2048

D Frequency decimation factor 6

JF Time offset between segments 2048

Interferences’ Subspace Estimation

Lseg Number of DFT segments used for estimating a single

interference subspace 24

OVRLP The overlap between time segments that are used for

interferences subspace estimation 50%

∆EVTH Eigenvectors corresponding to eigenvalues that are more than EVTH

lower below the largest eigenvalue are discarded from the signal subspace 40dB

MEVTH Eigenvectors corresponding to eigenvalues not higher than

MEVTH above the sensor noise are discarded from the signal subspace 5dB

∆UTH Vectors of Q(k) corresponding to values of R(k) that are more than

UTH below the largest value on the diagonal of R(k) 40dB

MUTH Vectors of Q(k) corresponding to values of R(k) not higher than 5dB

MUTH above the lowest value on the diagonal of R(k)

Filters Lengths

FLr Causal part of the Beamformer (BF) filters 1000 taps

FLl Noncausal part of the BF filters 1000 taps

BLr Causal part of the BM filters 250 taps

BLl Noncausal part of the BM filters 250 taps

RLr Causal part of the ANC filters 500 taps

RLl Noncausal part of the ANC filters 500 taps

ANC Parameters

µ0 Normalized Least Mean Squares (NLMS) adaptation factor 0.18

ρ Forgetting factor for the estimation of the normalization power pest(ℓ, k) 0.9

ponent at the beamformer and total output respectively. The entire test procedure is depicted in

Fig. 4.

One quality measure used for evaluating the performance of the proposed algorithm is the

improvement in the SIR level. Since, generally, there are several desired sources and interference

sources we will use all pairs of SIR for quantifying the performance. The SIR of desired signal

i relative to the non-stationary signal j as measured on microphone m0 is defined as follows:

SIRns
in,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
sd

i (ℓ, k)hd
im0

(ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
sns

j (ℓ, k)hns
jm0

(ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Nns.
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i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, . . . , K xx = d

1, . . . , Ns xx = s

1, . . . , Nns xx = ns

1 xx = v

sd

1
(ℓ, k)hd

1
(ℓ, k)

sd

K
(ℓ, k)hd

K
(ℓ, k)

ss

1
(ℓ, k)hs

1
(ℓ, k)

ss

Ns

(ℓ, k)hs

Ns

(ℓ, k)

sns

Nns

(ℓ, k)hns

Nns

(ℓ, k)

sns

1
(ℓ, k)hns

1
(ℓ, k)

∑

Adaptive

Beamformer

Beamformer

copy coefficients

M

M

(N + 1) × M

y(ℓ, k)

yxx

i
(ℓ, k)

v(ℓ, k)

i

xx = {d, s, ns, v}

Fig. 4. Test procedure for evaluating the performance of the algorithm.

Similarly, the input SIR of the desired signal i relative to the stationary signal j :

SIRs
in,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
sd

i (ℓ, k)hd
im0

(ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
ss

j(ℓ, k)hs
jm0

(ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Ns.
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These quantities are compared with the corresponding FBF and total outputs SIR:

SIRns
FBF,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
yd

FBF,i(ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
yns

FBF,j(ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Nns

SIRs
FBF,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
yd

FBF,i(ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
ys

FBF,j(ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Ns

SIRns
out,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
yd

i (ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
yns

j (ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Nns

SIRs
out,ij[dB] = 10 log10

∑

ℓ

∑NDFT−1
k=0

(
yd

i (ℓ, k)
)2

∑

ℓ

∑NDFT−1
k=0

(
ys

j (ℓ, k)
)2 ; 1 ≤ i ≤ K, 1 ≤ j ≤ Ns.

For evaluating the distortion imposed on the desired source we also calculated the Segmental

Signal to Noise Ratio (SSNR) and Log Spectral Distortion (LSD) distortion measures relating

each desired source component 1 ≤ i ≤ K at microphone #1, namely sd
i (ℓ, k)hd

i1, and its

corresponding component at the output, namely yd
i (ℓ, k).

B. Simulated Environment

The algorithm was tested in the simulated room environment using reordered speech utterances,

made in a quiet room [40]. The RIRs were simulated with a modified version [39] of Allen and

Berkley’s image method [38] with various reverberation levels ranging between 150–300mSec.

The simulated environment was a 4m× 3m× 2.7m room. A nonuniform linear array consisting

of 11 microphones with inter-microphone distances ranging from 5cm to 10cm was used for one

set of experiments, and an 8 microphone subset of the same array was used for the second set of

experiments. The microphone array and the various sources positions are depicted in Fig. 5(a).

A typical RIR relating a source and one of the microphones is depicted in Fig. 5(c). The SIR

improvements, as a function of the reverberation time T60, obtained by the FBF branch and by

the LCMV beamformer are depicted in Table III for the 8 microphone case and in Table IV

for the 11 microphone case. The SSNR and the LSD distortion measures are also depicted for

each source. Since the desired sources RTF are estimated when the competing speech signals

are inactive, their relative power has no influence on the obtained performance, and is therefore

kept fixed during the simulations.

The results in the Tables were obtained using the second phase of the test procedure described

in Sec. VI-A. It is shown that on average the beamformer can gain approximately 11dB SIR

improvement for the stationary interference in the 8 microphone case (15dB for 11 microphone

case), and approximately 13dB SIR improvement for the non-stationary interference in the 8

microphone case (15dB for 11 microphone case).

The SSNR and LSD distortion measures depict that only low distortion is imposed on the

desired sources. This result is subjectively verified by the assessment of the sonograms in

Fig. 6. It can be easily verified that the interference signals are significantly attenuated while
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Fig. 5. Room configuration and the corresponding typical RIR for simulated and real scenarios.

TABLE III

SIR IN DB FOR THE FBF OUTPUT AND THE TOTAL LCMV OUTPUT AND SPEECH DISTORTION MEASURES (SSNR AND LSD

IN DB) BETWEEN THE DESIRED SOURCE COMPONENT RECEIVED BY MICROPHONE #1 AND RESPECTIVE COMPONENT AT

THE LCMV OUTPUT. 8 MICROPHONE ARRAY, 2 DESIRED SPEAKERS, 2 INTERFERING SPEAKERS AND ONE STATIONARY

NOISE WITH VARIOUS REVERBERATION LEVELS.

T60 Source Input SIR FBF SIR Total SIR SSNR LSD

sns
1 sns

2 ss
1 sns

1 sns
2 ss

1 sns
1 sns

2 ss
1

150ms sd
1 6.00 6.00 13.00 18.75 22.35 19.12 18.49 21.72 24.00 9.59 1.14

sd
2 6.00 6.00 13.00 18.74 22.34 19.11 18.68 21.88 24.19 10.18 1.65

200ms sd
1 6.00 6.00 13.00 18.06 20.62 19.54 18.29 21.30 24.66 7.20 1.54

sd
2 6.00 6.00 13.00 18.10 20.66 19.58 18.87 21.88 25.24 8.41 2.01

250ms sd
1 6.00 6.00 13.00 18.47 19.79 19.89 18.36 20.88 24.51 7.02 1.81

sd
2 6.00 6.00 13.00 18.48 19.80 19.90 19.43 21.95 25.58 7.74 2.37

300ms sd
1 6.00 6.00 13.00 17.56 17.63 19.46 18.27 19.3 23.64 6.94 2.18

sd
2 6.00 6.00 13.00 17.38 17.45 19.28 18.62 19.65 23.99 7.68 1.82
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TABLE IV

SIR IN DB FOR THE FBF OUTPUT AND THE TOTAL LCMV OUTPUT AND SPEECH DISTORTION MEASURES (SSNR AND LSD

IN DB) BETWEEN THE DESIRED SOURCE COMPONENT RECEIVED BY MICROPHONE #1 AND RESPECTIVE COMPONENT AT

THE LCMV OUTPUT. 11 MICROPHONE ARRAY, 2 DESIRED SPEAKERS, 2 INTERFERING SPEAKERS AND ONE STATIONARY

NOISE WITH VARIOUS REVERBERATION LEVELS.

T60 Source Input SIR FBF SIR Total SIR SSNR LSD

sns
1 sns

2 ss
1 sns

1 sns
2 ss

1 sns
1 sns

2 ss
1

150ms sd
1 6.00 6.00 13.00 19.46 20.54 19.66 20.53 22.79 28.07 11.33 1.12

sd
2 6.00 6.00 13.00 19.46 22.34 19.11 20.39 22.98 27.93 13.41 1.13

200ms sd
1 6.00 6.00 13.00 18.39 18.43 20.02 18.97 20.91 26.20 9.51 1.39

sd
2 6.00 6.00 13.00 18.46 19.50 20.09 19.13 21.07 26.36 10.02 1.81

250ms sd
1 6.00 6.00 13.00 18.98 19.24 19.29 18.86 20.57 26.07 8.49 1.56

sd
2 6.00 6.00 13.00 18.73 18.99 19.04 19.19 20.90 26.40 8.04 1.83

300ms sd
1 6.00 6.00 13.00 19.18 17.96 18.93 19.53 19.79 26.21 7.78 1.86

sd
2 6.00 6.00 13.00 18.73 17.51 18.48 19.49 19.75 26.17 7.19 1.74
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(b) Algorithm’s output

Fig. 6. Sonograms and waveforms for the simulated room scenario depicting the algorithm’s SIR improvement.

the desired sources remain almost undistorted. Speech samples demonstrating the performance

of the proposed algorithm can be downloaded from [40].

C. Real Environment

In the real room environment we used as the directional signals four speakers drawn from

the TIMIT [41] database and the speech-like noise described above. The performance was

evaluated using real medium-size conference room equipped with furniture, book shelves, a large

meeting table, chairs and other standard items. The room dimensions are 6.6m× 4m× 2.7m. A

linear nonuniform array consisting of 8 omni-directional microphones (AKG CK32) was used

to pick up the sound signals (with the same configuration as in the simulated environment).

The various sources were played separately from point loudspeakers (FOSTEX 6301BX). The
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(b) Algorithm’s output

Fig. 7. Sonograms and waveforms for the real room scenario depicting the algorithm’s SIR improvement.

algorithm’s input was constructed by summing up all components contributions and additional,

spatially white, computer-generated sensor noise signals. The source-microphone constellation

is depicted in Fig. 5(b). The RIR and the respective reverberation time were estimated using

the WinMLS2004 software (a product of Morset Sound Development). A typical RIR, having

T60 = 250mSec, is depicted in Fig. 5(d).

In Fig. 7 sonograms of the input signal and the algorithm’s output are depicted. The input

SIR was 6dB. A total SIR improvement of 15.28dB was obtained for the interfering speakers

and 16.23dB for the stationary noise. The ANC contributed 1.32dB for the competing speakers,

and 3.15dB for the stationary noise.

VII. CONCLUSIONS

We have addressed the problem of extracting several desired sources in a reverberant envi-

ronment contaminated by both non-stationary (competing speakers) and stationary interferences.

The LCMV beamformer (implemented as a GSC structure) was designed to satisfy a set of

constraints for the desired and interference sources. A novel and practical method for estimating

the interference subspace was presented. The ANC branch is identically zero for perfect estimate

of the constraints set. However, for erroneous estimate of the constraint matrix the ANC branch

significantly contributes to the interference reduction, while imposing only minor additional

distortion on the desired signals.

Unlike common GSC structures, we chose to block all directional signals, including the

stationary noise signals, by the BM. By treating the stationary sources as directional signals

we obtained deeper nulls [35], which do not suffer from fluctuations caused by the adaptive

process. In time varying environments, however, different adaptive forms may be used.
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A two phase off-line procedure was applied. First, the test scene (comprising the desired and

interference sources) was analyzed using few seconds of data for each source. Then, the BF

was applied to the entire data. The proposed estimation methods assume that the RIRs are time-

invariant. We note however, that this version of the algorithm can be applied for time-invariant

scenarios. Recursive estimation methods for time-varying environments is a topic of ongoing

research.

Experimental results for both simulated and real environments have demonstrated that the

proposed method can be applied to extracting several desired sources from a combination of

multiple sources in a complicated acoustic environment.
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