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Abstract— This paper presents new formulations and algo-
rithms for multichannel extensions of non-negative matrix fac-
torization (NMF). The formulations employ Hermitian positive
semidefinite matrices to represent a multichannel version of
non-negative elements. Multichannel Euclidean distance and
multichannel Itakura-Saito (IS) divergence are defined based
on appropriate statistical models utilizing multivariate complex
Gaussian distributions. To minimize this distance/divergence,
efficient optimization algorithms in the form of multiplicative up-
dates are derived by using properly designed auxiliary functions.
Two methods are proposed for clustering NMF bases according
to the estimated spatial property. Convolutive blind source
separation (BSS) is performed by the multichannel extensions
of NMF with the clustering mechanism. Experimental results
show that 1) the derived multiplicative update rules exhibited
good convergence behavior, and 2) BSS tasks for several music
sources with two microphones and three instrumental parts were
evaluated successfully.

Index Terms— Non-negative matrix factorization, multichan-
nel, blind source separation, convolutive mixture, clustering

I. INTRODUCTION

Non-negative matrix factorization (NMF) is an unsupervised
learning technique with a wide range of applications such as
parts-based image representation [3], document clustering [4],
and music transcription [5]. As the top part of Fig. 1 shows,
NMF decomposes a given non-negative matrix X into two
smaller non-negative matrices T and V. When we analyze
an audio/music signal with NMF, we typically employ a
short-time Fourier transform (STFT) to obtain complex-valued
representations in the time-frequency domain. Then, we make
them non-negative by calculating the (squared) absolute values
(see Eq. 1) in order to apply NMF. The bottom part of Fig. 1
shows that NMF extracts frequent sound patterns as five NMF
bases from an audio clip containing five different notes.

A typical issue with NMF-based audio signal analysis is
how to cluster the extracted NMF bases for a higher-level
interpretation of the audio signal. Various NMF models have
been proposed for that purpose. Temporal continuity [6] is
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Fig. 1. Formulation of NMF (top) and its application to a music signal
(bottom). Frequent sound patterns are identified in matrix T along with their
activation periods and strengths shown in matrix V.
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Fig. 2. Multichannel extensions of NMF associate the spatial property with
each NMF basis. This enables us to cluster NMF bases according to the source
location, and thus perform a source separation task.

considered on activation gains V. The sequential modeling of
bases T is conducted with convolutive NMF [7] and hidden
Markov models [8], [9]. Shifted NMF [10], [11] identifies
the bases that correspond to the notes played by an identical
instrument. All these methods are related to single-channel
(monaural) source separation.

As humans/animals have two ears, multichannel processing
is a way of realizing a more general source separation capa-
bility because the spatial properties (directions or locations)
of source signals can be exploited [12]. Specifically with an
NMF-based method, the bases can be clustered according
the spatial property, as Fig. 2 shows. With that in mind,
multichannel extensions of NMF have been studied with the
aim of realizing sound source separation and localization. In
an instantaneous mixture case, the authors of [13], [14] were
interested in the gain of each source to each microphone. Thus,
all the values are still non-negative, and the notion of non-
negativity remains clear. However, in a convolutive mixture
case, the phase difference between different microphones is
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crucial information for source localization and separation.
Thus, we need to handle complex-valued multichannel ob-
servations for these purposes, but the notion of non-negativity
is not obvious. In [15], [16], the power spectrums of source
signals are modeled with non-negative values, but there is
no explicit description regarding non-negativity for mixing
matrices or covariance matrices. In this paper, we propose
that the Hermitian positive semidefiniteness of a matrix is a
multichannel counterpart of non-negativity, and extend NMF
to a multichannel case in a more generic way.

There are several choices available for the
distance/divergence measures used in the NMF cost function
including the Euclidean distance [17], the generalized
Kullback-Leibler (KL) divergence [17], and the Itakura-Saito
(IS) divergence [18]. In this paper, we define multichannel
extensions of the Euclidean distance and the IS divergence,
and extend the NMF model with these two definitions. We
show that minimizing these distance/divergence is equivalent
to maximizing the log-likelihood of the observations with
appropriate statistical models utilizing multivariate complex
Gaussian distributions.

The wide popularity of standard single-channel NMF comes
from the fact that the algorithm is very easy to implement
and works efficiently. In particular, multiplicative update rules
[17] provide rapid convergence and have the attractive property
of guaranteeing the non-negativity of all the matrix elements
once they are initialized with non-negative values. In previous
work on multichannel NMF [15], [16], however, expectation-
maximization (EM) algorithms have been derived. It was
reported that the algorithms were sensitive to parameter ini-
tialization, and thus they used the original source information
for perturbed oracle initializations. This paper presents mul-
tiplicative update rules for multichannel extensions of NMF,
and shows experimentally that their convergence behavior is
similar to that of single-channel NMFs.

With the multichannel extensions of NMF presented in this
paper, we have the estimations of the spatial properties for
each basis. To perform a source separation task, we need to
cluster the NMF bases for a source according to the similarity
of the spatial properties. This paper proposes an automatic
clustering mechanism that is built into the NMF model with
cluster-indicator latent variables. The update rules are slightly
changed but still multiplicative in form.

The main contributions of this paper are summarized as
follows.

1) The notion of non-negativity is defined for a complex-
valued vector (Section III-A).

2) Multiplicative update rules are derived for multichannel
extensions of NMF (Section III-C). These updates pro-
vide faster convergence than the previous EM algorithms
(Fig. 9).

3) Multichannel extensions are found for the Euclidean
distance and IS divergence (Section III).

4) Methods for clustering NMF bases are proposed for a
source separation task (Section IV).

In our previous work [1], [2], we succeeded merely in separat-
ing two sources and found it difficult to separate more sources.
This paper newly proposes a bottom-up clustering method

and a source separation procedure, in which redundant spatial
properties are allowed. Consequently, we have succeeded in
separating three sources for a variety of music sources. In
addition, we changed the update rules for the multichannel
Euclidean NMF from those shown in [1] to make the link to
the standard single-channel Euclidean NMF clearer.

This paper is organized as follows. Section II explains
the basics of the existing single-channel NMF. The proposed
multichannel extensions and the clustering techniques are
described in Sect. III and Sect. IV, respectively. Section V
reports experimental results on the convergence behavior of
the algorithms and source separation performance. Section VI
concludes this paper.

II. NON-NEGATIVE MATRIX FACTORIZATION

This section reviews the formulation and algorithm of
standard single-channel NMF [17]–[19]. Let us assume that
we have a single-channel audio observation, to which we apply
a short-time Fourier transform (STFT).

A. Formulation

Let x̃ij ∈ C be the STFT coefficient at frequency bin i and
time frame j. To apply NMF, we need to convert x̃ ij to a
non-negative value xij ∈ R+ via preprocessing. Typically, we
take the absolute value or its squared value as

xij =

{
|x̃ij |
|x̃ij |2 = x̃ij x̃

∗
ij

(1)

where ·∗ represents a complex conjugate. Then, a matrix X,
[X]ij = xij , is constructed with all the preprocessed values
xij for i = 1, . . . , I and j = 1, . . . , J .

NMF factorizes the I × J matrix X into the product of
an I × K matrix T and a K × J matrix V. The parameter
K specifies the number of NMF bases, and is generally
determined empirically by the user. All the elements of the two
matrices, tik = [T]ik vkj = [V]kj , should be non-negative,
i.e., tik ∈ R+ and vkj ∈ R+.

NMF algorithms are designed to minimize the dis-
tance/divergence between the given matrix X and its factored
form TV. Let

x̂ij =
∑K

k=1 tikvkj (2)

be the factorization approximation of x ij . Then the dis-
tance/divergence can be defined in a general form

D∗(X, {T,V}) =
I∑

i=1

J∑
j=1

d∗(xij , x̂ij) (3)

where d∗ specifies an element-wise distance/divergence. The
following three types of distance/divergence are widely used:
Squared Euclidean distance

dEu(xij , x̂ij) = |xij − x̂ij |2 , (4)

Generalized Kullback-Leibler (KL) divergence

dKL(xij , x̂ij) = xij log
xij

x̂ij
− xij + x̂ij , (5)
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Fig. 3. Three types of distance/divergence with xij = 1: squared Euclid
distance, generalized KL divergence and IS divergence

Itakura-Saito (IS) divergence

dIS(xij , x̂ij) =
xij

x̂ij
− log

xij

x̂ij
− 1 . (6)

Figure 3 shows examples of these distance/divergences with
xij = 1. We observe that KL and IS divergences are
less sensitive to over-approximation than under-approximation.
And from (6), we observe that IS divergence depends only
on the ratio xij/x̂ij . Thus, for instance, dIS(900, 1000) =
dIS(9, 10). This property is favorable when analyzing most
audio signals such as music and speech, where low frequency
components have much higher energy than high frequency
components. This is because low and high frequency com-
ponents are treated equally with similar importance according
to the property.

B. Algorithm: Multiplicative Update Rules

We can minimize the distance/divergence according to (3)
together with (4), (5), or (6) in the following manner. First,
the elements of T and V are randomly initialized with non-
negative values. Then, the following update rules [17], [19]
are iteratively applied until convergence.
Squared Euclidean distance

tik ← tik

∑
j xijvkj∑
j x̂ijvkj

, vkj ← vkj

∑
i xijtik∑
i x̂ijtik

(7)

KL divergence

tik ← tik

∑
j

xij

x̂ij
vkj∑

j vkj
, vkj ← vkj

∑
i

xij

x̂ij
tik∑

i tik
(8)

IS divergence

tik ← tik

√√√√∑
j

xij

x̂ij

vkj

x̂ij∑
j

vkj

x̂ij

, vkj ← vkj

√√√√∑
i

xij

x̂ij

tik

x̂ij∑
i

tik

x̂ij

(9)

These update rules are called multiplicative, since each el-
ement is updated by multiplying a scalar value, which is
guaranteed to be non-negative.

C. Probability distributions related to distance/divergence

There are relations between the three distance/divergences
(4)-(6) and specific probability distributions [18], [20], namely
a Gaussian distributionN , a complex Gaussian distributionNc

and a Poisson distribution PO as shown below. Studying these
relationships helps us to consider multichannel extensions of
NMF in the next section.

Minimizing the distance/divergence D∗(X, {T,V}) is
equivalent to maximizing the log-likelihood log p(X|T,V) or
log p(X̃|T,V), where X̃, [X̃]ij = x̃ij , is a matrix of STFT
coefficients.
Squared Euclidean distance

p(X|T,V) =
I∏

i=1

J∏
j=1

N (xij |x̂ij ,
1
2
) ,

N (xij |x̂ij ,
1
2
) ∝ exp

(−|xij − x̂ij |2
)

. (10)

KL divergence

p(X|T,V) =
I∏

i=1

J∏
j=1

PO(xij |x̂ij) ,

PO(xij |x̂ij) =
x̂

xij

ij

Γ(xij + 1)
exp (−x̂ij) . (11)

where Γ(x) is the Gamma function.
IS divergence

p(X̃|T,V) =
I∏

i=1

J∏
j=1

Nc(x̃ij |0, x̂ij) ,

Nc(x̃ij |0, x̂ij) ∝ 1
x̂ij

exp
(
−|x̃ij |2

x̂ij

)
. (12)

Regarding IS divergence, the likelihood p(X̃|T,V) is calcu-
lated not for the matrix X of preprocessed non-negative values
but for the matrix X̃ of complex-valued STFT coefficients, and
it is thus necessary to specify xij = |x̃ij |2 in a preprocessing
step for the connection to (6).

When xij = x̂ij , the distance/divergence (4), (5) or (6)
becomes 0 and each ij-term of the log-likelihood defined
above is maximized. Therefore, the distance/divergence can
be derived as the difference between the log-likelihoods of
xij and x̂ij . We show the IS divergence case as an example:

dIS(xij , x̂ij) = logNc(x̃ij |0, xij)− logNc(x̃ij |0, x̂ij)

= − log xij − xij

xij
−

(
− log x̂ij − xij

x̂ij

)

=
xij

x̂ij
− log

xij

x̂ij
− 1 . (13)

III. MULTICHANNEL EXTENSIONS OF NMF

This section presents our multichannel extensions of NMF.
Figure 4 shows an overview of the multichannel extensions (in
red), in contrast with standard single-channel NMF (in blue).
We begin with the multichannel extension of IS divergence
(6), since this extension is the most natural. We then extend
Euclidean distance (4) to a multichannel case. Unfortunately,
we have not found a multichannel counterpart for generalized
KL divergence (5).
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Fig. 4. Variations of NMF presented in this paper. Items that correspond to
standard single-channel NMF are shown in blue. Three distance/divergences
are discussed, and their corresponding probability distributions are presented.
Items that correspond to multichannel extensions of NMF are shown in red.
Two distance/divergence are extended to multichannel.

A. Formulation (IS divergence)

Let M be the number of microphones, and x̃ =
[x̃1, . . . , x̃M ]T ∈ CM be a complex-valued vector for a time-
frequency slot, with x̃m being the STFT coefficient at the m-th
microphone. Let x̃ij be such a vector at frequency bin i and
time frame j. Now, let us introduce a multivariate complex
Gaussian distribution Nc that extends (12)

Nc(x̃ij |0, X̂ij) ∝ 1

det X̂ij

exp
(
−x̃H

ij X̂−1
ij x̃ij

)
, (14)

where X̂ij is an M × M covariance matrix that should be
Hermitian positive definite. Let Xij = x̃ij x̃H

ij or

X = x̃ x̃H =

⎡
⎢⎣
|x̃1|2 . . . x̃1x̃

∗
M

...
. . .

...
x̃M x̃∗

1 . . . |x̃M |2

⎤
⎥⎦ (15)

be the outer product of a complex-valued vector. We then
define the multichannel IS divergence similarly to (13)

dIS(Xij , X̂ij) = logNc(x̃ij |0, Xij)− logNc(x̃ij |0, X̂ij)

= − log detXij − tr(XijX
−1
ij )−

[
− log det X̂ij − tr(Xij X̂

−1
ij )

]
= tr(Xij X̂

−1
ij )− log detXij X̂

−1
ij −M , (16)

where tr(X) =
∑M

m=1 xmm is the trace of a square matrix X.
We assume that the source locations are time-invariant in a

source separation task (see Fig. 2). Therefore, we introduce a
matrix Hik that models the spatial property of the k-th NMF
basis at frequency bin i. The matrix is of size M × M to
be matched with the size of X̂ij . Also, the matrix Hik is
Hermitian positive semidefinite to possess the non-negativity
in a multichannel sense. Then, we model X̂ij with a sum-of-
product form

X̂ij =
K∑

k=1

Hiktikvkj , (17)

-element wise:

Fig. 5. Illustrative example of multichannel NMF: I = 6, J = 10, K = 2,
M = 2. Non-negative values are shown in gray and complex values are
shown in red.

where tik and vkj are non-negative scalars as in the single-
channel case. To solve the scaling ambiguity between H ik and
tik, let Hik have a unit trace tr(Hik) = 1.

In a matrix-wise notation, let X and H be I × J and
I × K hierarchical matrices whose elements are M × M
matrices, i.e., [X]ij = Xij and [H]ik = Hij . Figure 5
provides an illustrative example in which multichannel NMF
factorizes a hierarchically structured matrix X into the product
of H ◦ T and V, where ◦ represents the Hadamard product,
i.e., [H◦T]ik = Hiktik. The multichannel NMF is formulated
to minimize the total multichannel divergence similar to (3)

D∗(X, {T,V,H}) =
I∑

i=1

J∑
j=1

d∗(Xij , X̂ij) (18)

where d∗ is the element-wise multichannel divergence such as
(16) in the IS divergence case.

B. Formulation (Squared Euclidean distance)

In this subsection, we consider a multichannel extension of
Euclidean NMF. Thanks to the versatility of a univariate com-
plex Gaussian distribution Nc, we can model the preprocessed
observations X, [X]ij = Xij , as

p(X|T,V,H) =
I∏

i=1

J∏
j=1

M∏
m=1

M∏
n=1

Nc([Xij ]mn|[X̂ij ]mn, 1)

∝
I∏

i=1

J∏
j=1

exp(−||Xij − X̂ij ||2F ) , (19)

where ||B||2F =
∑M

m=1

∑M
n=1 |bmn|2 is the squared Frobenius

norm of matrix B. Maximizing the log of the likelihood (19) is
equivalent to minimizing the distance (18) with the element-
wise multichannel distance

dEu(Xij , X̂ij) = ||Xij − X̂ij ||2F . (20)

Therefore, multichannel Euclidean NMF has been formulated
as minimizing (18) with (20).

When applying standard single-channel Euclidean NMF, it
is typical that the absolute value xij = |x̃ij | in (1) is employed
rather than the squared value to prevent some observations
from being unnecessarily enhanced. In the same sense, an
amplitude square-rooted version of the outer product (15)
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would be useful in the multichannel Euclidean NMF:

X =

⎡
⎢⎣

|x1| . . . |x1xM | 12 sign(x1x
∗
M )

...
. . .

...
|xMx1| 12 sign(xMx∗

1) . . . |xM |

⎤
⎥⎦ ,

(21)
where sign(x) = x

|x| .

C. Algorithm: (Multiplicative Update Rules)

As shown in the next two subsections, the following mul-
tiplicative update rules are derived to minimize the total
distance/divergence (18) with (16) or (20). These update rules
reduce to their single channel counterparts (9) and (7) if
M = 1, Xij = xij and Hik = 1. Therefore, sets of these
updates constitute multichannel extensions of NMF.
IS-NMF (IS divergence)

tik ← tik

√√√√∑
j vkjtr(X̂−1

ij Xij X̂
−1
ij Hik)∑

j vkjtr(X̂−1
ij Hik)

(22)

vkj ← vkj

√√√√∑
i tiktr(X̂−1

ij Xij X̂
−1
ij Hik)∑

i tiktr(X̂−1
ij Hik)

(23)

To update Hik, we solve an algebraic Riccati equation (see
Appendix I)

HikAHik = B (24)

with

A =
∑

j

vkj X̂
−1
ij , B = H′

ik

⎛
⎝∑

j

vkj X̂
−1
ij XijX̂

−1
ij

⎞
⎠H′

ik

where H′
ik is the target matrix before the update.

EU-NMF (Squared Euclidean distance)

tik ← tik

∑
j vkjtr(XijHik)∑
j vkjtr(X̂ijHik)

(25)

vkj ← vkj

∑
i tiktr(XijHik)∑
i tiktr(X̂ijHik)

(26)

Hik ← Hik

(∑
j vkj X̂ij

)−1 (∑
j vkjXij

)
. (27)

Post-processing is needed to make Hik Hermitian and positive
semidefinite. This can be accomplished by Hik ← 1

2 (Hik +
HH

ik) and then by performing eigenvalue decomposition as
Hik = UDUH , setting all the negative elements of D at
zero, and updating Hik ← UDUH with the new D. We con-
firmed empirically that the update (27) followed by the post-
processing always decreases the squared Euclidean distance.
However, we have not yet found a theoretical guarantee.

For both the IS and Euclidean cases, unit-trace normaliza-
tion Hik ← Hik/tr(Hik) should follow.

D. Derivation of algorithm (IS-NMF)

This subsection explains the derivation of the multiplicative
update rules (22)-(24) for IS divergence. For a given obser-
vation X, the total distance (18) together with (16) can be
written as

f(T,V,H) =
∑
i,j

[
tr(Xij X̂

−1
ij ) + log det X̂ij

]
, (28)

where constant terms are omitted. To minimize this function
f(T,V,H), we follow the optimization scheme of majoriza-
tion [21], [22], in which an auxiliary (majorization) function
is used. Let us define an auxiliary function

f+(T,V,H,R,U) =
∑
i,j

(29)

[∑
k

tr(XijR
H
ijkH−1

ik Rijk)
tikvkj

+ log detUij +
det X̂ij − detUij

det Uij

]

where Rijk and Uij are auxiliary variables that satisfy positive
definiteness,

∑
k Rijk = I with I being an identity matrix of

size M , and Uij = UH
ij (Hermitian). It can be verified that the

auxiliary function f + has two properties:

1) f(T,V,H) ≤ f+(T,V,H,R,U)
2) f(T,V,H) = minR,Uf+(T,V,H,R,U)

and the equality f = f+ is satisfied when

Rijk = tikvkjHikX̂−1
ij , Uij = X̂ij (30)

(see Appendix II for the proof).
The function f is indirectly minimized by repeating the

following two steps:

1) Minimizing f+ with respect to R and U by (30), which
makes f(T,V,H) = f+(T,V,H,R,U).

2) Minimizing f+ with respect to T, V or H, which also
minimizes f .

For the second step, we calculate the partial derivatives of f +

w.r.t. the variables T,V and H. Setting these derivatives at
zero, we have the following equations.

t2ik ←
∑

j
1

vkj
tr(RH

ijkH−1
ik RijkXij)∑

j
det X̂ij

detUij
vkjtr(X̂−1

ij Hik)
(31)

v2
kj ←

∑
i

1
tik

tr(RH
ijkH−1

ik RijkXij)∑
i

det X̂ij

detUij
tiktr(X̂−1

ij Hik)
(32)

Hik

⎛
⎝tik

∑
j

X̂−1
ij vkj

⎞
⎠Hik =

∑
j

RijkXijR
H
ijk

tikvkj
(33)

By substituting (30) into these equations, we obtain the
multiplicative update rules (22)-(24).

E. Derivation of algorithm (EU-NMF)

The EU-NMF updates (25)-(27) can be derived in a similar
manner. For a given observation X, the total distance (18)
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together with (20) and (17) can be written as

f(T,V,H) =
∑
i,j

tr

[
(
∑

k

Hiktikvkj)(
∑

k

Hiktikvkj)H

]

−
∑
i,j,k

tikvkjtr(XijH
H
ik)−

∑
i,j,k

tikvkjtr(HikXH
ij ) , (34)

where constant terms are omitted. To minimize this function
f(T,V,H), we again follow the optimization scheme of
majorization [21], [22]. Let us define an auxiliary function

f+(T,V,H,R) =
∑
i,j,k

t2ikv2
kjtr(HikR−1

ijkHH
ik)

−
∑
i,j,k

tikvkjtr(XijH
H
ik)−

∑
i,j,k

tikvkjtr(HikXH
ij ) (35)

with auxiliary variables Rijk that satisfy Hermitian positive
definiteness and

∑
k Rijk = I. It can be verified that the

auxiliary function f + has two properties:

1) f(T,V,H) ≤ f+(T,V,H,R)
2) f(T,V,H) = minRf+(T,V,H,R)

and the equality f = f+ is satisfied when

Rijk = X̂−1
ij Hiktikvkj (36)

(see Appendix III for the proof).
The function f is indirectly minimized by repeating the

following two steps:

1) Minimizing f+ with respect to R by (36), which makes
f(T,V,H) = f+(T,V,H,R).

2) Minimizing f+ with respect to T, V or H, which also
minimizes f .

For the second step, we calculate the partial derivatives of f +

w.r.t. the variables T,V and H. Setting these derivatives at
zero, we have the following equations.

tik =

∑
j vkjtr(XijHik)∑

j v2
kjtr(HikR−1

ijkHik)
(37)

vkj =
∑

i tiktr(XijHik)∑
i t2iktr(HikR−1

ijkHik)
(38)

Hik =

⎛
⎝tik

∑
j

v2
kjR

−1
ijk

⎞
⎠

−1 ⎛
⎝∑

j

vkjXij

⎞
⎠ (39)

By substituting (36) into these equations, we obtain the
multiplicative update rules (25)-(27).

F. Interpretation of learned matrices H

The multichannel NMF algorithm, (22)-(24) or (25)-(27),
learns matrices T, V and H. The interpretation of the matrices
T and V is the same as with standard single-channel NMF.
This subsection provides an interpretation of the matrices H,
which are particular to the multichannel NMF.

To understand and interpret Hik, we detail it by using the
rank-1 convolutive model [23] as

Hik = hikhH
ik + εikI

Fig. 6. An example of learned spatial properties. They are represented as
arg([Hik]12), the phase difference between the first and second microphones,
for each frequency bin i and NMF basis k.

where h = [h1, . . . , hM ]T ∈ C
M is a mixing vector whose m-

th element hm is the Fourier transform of a windowed impulse
response from the source to the m-th microphone, ε ik is a
small positive scalar, and I is an M × M identity matrix.
Then, we see that the diagonal elements of Hik represent
the power gain of the k-th basis at the i-th frequency bin
to each microphone. And the off-diagonal elements represent
the phase differences between microphones.

With a small microphone array, phase differences among
microphones are typically more visible than gain differences.
Figure 6 shows an example of phase differences that appeared
on learned matrices H. We interpret that the bases of number
k = 1, 2, 5, 6 have similar spatial properties, and thus these
are coming from the same direction. There is another group
of NMF bases regarding k = 4, 7, 8, 9 that constitute another
source coming from a different direction. How to cluster NMF
bases according to such spatial properties will be discussed in
the next section.

IV. CLUSTERING NMF BASES

This section presents two techniques for clustering NMF
bases for a source separation task. The first is a top-down
approach whose clustering mechanism is built in the NMF
model. The second is a bottom-up approach that performs
sequential pair-wise merges. Later, in Section V-C, we describe
a robust source separation procedure that combines these two
techniques.

A. Top-down approach with modified NMF model

Let us consider clustering K matrices Hi1, . . . , HiK into
L < K classes l = 1, . . . , L, and let zlk indicate whether
the k-th matrix belongs to the l-th cluster (z lk = 1) or not
(zlk = 0). Then, Hik in the NMF model can be replaced with∑L

l=1 Hilzlk, and the sum-of-product form (17) is changed to

X̂ij =
K∑

k=1

(
L∑

l=1

Hilzlk

)
tikvkj . (40)

The multichannel Euclidean distance (20) and IS divergence
(16) can still be employed in the NMF model.

Now, we want to optimize the cluster-indicator latent vari-
ables Z, [Z]lk = zlk, in the same manner as T and V. For that
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1

0

Fig. 7. The matrices H shown in Fig. 6 are clustered into two sets of
matrices. They are represented as arg([Hil]12). Latent variables Z show that
k-th basis belongs to the first or second cluster in a soft sense.

purpose, let us allow zlk to have a continuous value such that
zlk ≥ 0 and

∑L
l=1 zlk = 1. We consider that this relaxation

corresponds to estimating the expectation of z lk according
to the posterior probability p(zlk|X,T,V,H) instead of the
value zlk itself. But for simplicity, we do not change the
notation of zlk in (40) even with this relaxation. Figure 7
shows an example, where ten sets of matrices shown in Fig. 6
are clustered into two sets of matrices.

The algorithms to minimize

D∗(X, {T,V,H,Z}) =
I∑

i=1

J∑
j=1

d∗(Xij , X̂ij) (41)

with the element-wise distance/divergence (20) or (16) and
with the model (40) can be derived in a similar manner as
explained in Sect. III-E. The update rules are in the following
forms.
IS-NMF (IS divergence)

tik ← tik

√√√√∑
l zlk

∑
j vkjtr(X̂−1

ij Xij X̂
−1
ij Hil)∑

l zlk

∑
j vkjtr(X̂−1

ij Hil)
, (42)

vkj ← vkj

√√√√∑
l zlk

∑
i tiktr(X̂−1

ij Xij X̂
−1
ij Hil)∑

l zlk

∑
i tiktr(X̂−1

ij Hil)
, (43)

zlk ← zlk

√√√√∑
i,j tikvkjtr(X̂−1

ij Xij X̂
−1
ij Hil)∑

i,j tikvkjtr(X̂−1
ij Hil)

. (44)

For Hil, we solve an algebraic Riccati equation

HilAHil = B (45)

with
A =

∑
k zlktik

∑
j vkj X̂

−1
ij , (46)

B = H′
il

(∑
k zlktik

∑
j vkj X̂

−1
ij Xij X̂

−1
ij

)
H′

il . (47)

where H′
il is the target matrix before the update.

EU-NMF (Squared Euclidean distance)

tik ← tik

∑
l zlk

∑
j vkjtr(XijHil)∑

l zlk

∑
j vkjtr(X̂ijHil)

(48)

Algorithm 1 Multichannel NMF with bottom-up clustering
1: procedure MCHNMF BOTTOMUPCLUSTERING

2: iteration← 0
3: while L > finalClusterSize do
4: iteration← iteration + 1
5: update T by (42) or (48)
6: update V by (43) or (49)
7: if mod(iteration, interval) = 1 then
8: (H,Z)← PAIRWISEMERGE(H,Z)
9: L← L− 1

10: end if
11: update H by (45) or (51)
12: update Z by (44) or (50)
13: end while
14: end procedure

15: procedure PAIRWISEMERGE(H,Z)
16: (l1, l2)← findPair(H)
17: w1 ←

∑
k zl1k

18: w2 ←
∑

k zl2k

19: {H1, . . . , HI} ← weightedMean(H, l1, l2, w1, w2)
20: H← removeAdd(H, l1, l2, {H1, . . . , HI})
21: Z← merge(Z, l1, l2)
22: end procedure

vkj ← vkj

∑
l zlk

∑
i tiktr(XijHil)∑

l zlk

∑
i tiktr(X̂ijHil)

(49)

zlk ← zlk

∑
i,j tikvkjtr(XijHil)∑
i,j tikvkjtr(X̂ijHil)

(50)

Hil ← Hil

(∑
k zlktik

∑
j vkj X̂ij

)−1 (∑
k zlktik

∑
j vkjXij

)
(51)

For both the IS and Euclidean cases, unit-trace normaliza-
tion Hik ← Hik/tr(Hik) and unit-sum normalization zlk ←
zlk / (

∑
l zlk) should follow.

The clustering result obtained with the top-down approach
heavily depends on the initial values of the cluster-indicator
latent variables Z. To prevent an important cluster from dis-
appearing by chance, it is a good idea to have some redundant
clusters by setting the cluster number L at a larger than
expected. Then later, the redundant clusters can be merged
by employing the bottom-up clustering shown in the next
subsection.

B. Bottom-up clustering by sequential merge operation

This subsection explains another way to cluster NMF bases.
It is based on a pair-wise merge operation, in which a pair with
the minimum distance is identified and merged. The pair-wise
distance between the l1-th set and the l2-th set is defined by
using the Frobenius norm as

dH(l1, l2) =
∑I

i=1 ||Hil1 − Hil2 ||F . (52)

Algorithm 1 shows the whole procedure. Inside the basic
updates for NMF, the pair-wise merge operation is interleaved
at a rate specified by a variable interval. In the pair-wise
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Distance: 120cm

Loudspeakers
(BOSE 101VM)

Microphones
(SONY ECM-77B, 
omni-directional) 70°

150°
245°

Room size: 4.45 × 3.55 × 2.5 m
Height of microphones and loudspeakers: 120 cm

Reverberation time
RT60 = 200 ms

4cm apart

Fig. 8. Experimental setup for room impulse responses

merge operation, a pair (l1, l2) with the minimum distance is
found, and a new set {H1l, . . . , HIl} is calculated as element-
wise weighted means of the two sets. Then, the number of
clusters is decreased by 1 as the new set is added and the
l1-th and l2-th sets are removed. The main loop is repeated
until the number of clusters becomes a specified number
finalClusterSize.

C. Source separation

If NMF bases are appropriately clustered, source separation
can be performed by using Wiener filters. Remember that
x̃ij is an M -dimensional complex vector representing STFT
coefficients at frequency bin i and time frame j, and let ỹ(l)

ij

be the STFT coefficient vector for the l-th separated signal.
Then, the separated signals are obtained by the single-channel
Wiener filter for the m-th channel

[ỹ(l)
ij ]m =

[Hil]mm

∑K
k=1 zlktikvkj∑L

l=1[Hil]mm

∑K
k=1 zlktikvkj

[x̃ij ]m , (53)

or by the multichannel Wiener filter

ỹ(l)
ij =

(∑K
k=1 zlktikvkj

)
HilX̂

−1
ij x̃ij , (54)

where X̂ij is the sum-of-product form defined in (40).

V. EXPERIMENTS

A. Experimental Setups

We examined the proposed multichannel extensions of
NMF with stereo (M = 2) music mixtures that contained
three music parts. Sets of stereo mixtures were generated
by convolving the music parts and the impulse responses
measured in a real room whose conditions are shown in Fig. 8.
The impulse responses were measured by using a maximum
length sequence generated by a 17-th order polynomial over
GF(2). We made four sets of mixtures using the music sources
listed in Table I, which can be found at the professionally
produced music recordings page of the Signal Separation
Evaluation Campaign (SiSEC 2011) [24]. The mixtures were
down-sampled to 16 kHz. The STFT frame size was 64 ms and
the frame shift was 16 ms. The algorithms were coded with
Matlab and run on an Intel Xeon W3690 (3.46GHz) processor.

TABLE I

MUSIC SOURCES

ID Author / Song Snip Part

1 Bearlin 85-99 piano
Roads (14 sec) ambient+windchimes

vocals
2 Another Dreamer 69-94 drums

The Ones We Love (25 sec) vocals
guitar

3 Fort Minor 54-78 drums
Remember the Name (24 sec) vocals

violins synth
4 Ultimate NZ Tour 43-61 drums

(18 sec) guitar
synth

Fig. 9. Convergence behavior shown in log-log plots: EU-NMF (top) and
IS-NMF (bottom), single-channel (left) and multichannel (right).

B. Convergence Behavior

Let us first show the convergence behavior of the multichan-
nel NMF algorithms proposed in Sect. III. For comparison, we
run the algorithms of single-channel NMF (7) and (9), multi-
channel NMF (25)-(27) and (22)-(24), and the EM algorithm
for multichannel IS-NMF shown in Appendix IV. We set the
number of NMF bases K = 10, and used a music mixture
with ID = 1.

Figure 9 shows the convergence behavior for 1000 itera-
tions, and Table II shows the computational time. NMF algo-
rithms with IS divergence generally take more time than EU-
NMF. We observe that the convergence behavior of the single-
channel NMF algorithms is similar to that of the proposed
multichannel NMF algorithms. With respect to multichannel
IS-NMF, the proposed algorithms show faster convergence and
computation than the EM algorithm.

TABLE II

COMPUTATIONAL TIME (IN SECONDS) FOR 1000 ITERATIONS WITH

14-SECOND SIGNALS

Single-ch. Proposed EM
EU-NMF 3.09 291.27 -
IS-NMF 13.24 1303.30 2958.28
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C. Source separation procedure

This subsection explains the source separation procedure
with the multichannel NMF proposed in Sect. IV. We adopted
the following procedure so that the spatial properties of
sources were well extracted.

1) Preprocessing: For EU-NMF: we normalized the power
of the observation vectors at each frequency bin such that∑

j x̃ij x̃H
ij = 1. This was to prevent the low frequency com-

ponents from being dominant in the total distance (18). Then,
we generated matrices Xij as the amplitude square-rooted
outer products (21). For IS-NMF: we generated matrices X ij

by the outer products (15). To prevent the determinant of
multichannel IS divergence (16) from being zero, we then
added a regularization term to each matrix as X ij ← Xij + ε I
with ε = 10−10 and I being an identity matrix.

2) Initialization: Matrices T and V were randomly initial-
ized with non-negative entries. The diagonal elements of H il

were initially all set at 1/M , and the off-diagonal elements
were initially all set at zero. The elements of matrix Z were
initialized with random values around 1/L.

3) Multichannel NMF: We set the number of NMF bases K
at 30 (ten times the number of sources). As for clustering the
bases for each source, we employ both top-down and bottom-
up approaches as follows.

i) 20 iterations to update T and V.
ii) 200 iterations to update T, V, H and Z by the top-down

approach with L = Linit = 9.
iii) Bottom-up clustering with interval = 10 until L = 3.
iv) 200 iterations to update T, V, H and Z by the top-down

approach with L = 3.
Having redundant (L = 9) spatial properties (step ii) followed
by the bottom-up clustering (step iii) contributes to robust
estimations of the spatial properties. Some results will be
shown in the next subsection with Fig. 12.

4) Separation: For EU-NMF, a single-channel Wiener filter
(53) was used for each channel. For IS-NMF, a multichannel
Wiener filter (54) was used. We selected these configurations
because each of these produced better results empirically.

Figure 10 shows an example in which the IS divergence was
minimized by the procedure. The blue line shows how steps
i)–iv) work, especially when parameter L is decreased from
9 to 3. The red line shows the case where only the top-down
approach was employed. In this example, the IS divergence
was better minimized by having redundant (L init = 9) spatial
properties.

D. Source separation results

The separation performance was numerically evaluated in
terms of the signal-to-distortion ratio (SDR) [25]. We need
to know all the source images simg

ml for all microphones m =
1, . . . , M and sources l = 1, . . . , L. To calculate SDRl for the
l-th source, we first decompose the time-domain multichannel
signals y1l, . . . , yMl as

yml(t) = simg
ml (t) + yspat

ml (t) + yint
ml(t) + yartif

ml (t) (55)

where yspat
ml (t), yint

ml(t), and yartif
ml (t) are unwanted error

components that correspond to spatial (filtering) distortion,
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Fig. 10. Convergence behavior of two different clustering strategies. The blue
line (Linit = 9) corresponds to the procedure described in Section V-C. It
used both top-down and bottom-up approaches. The zigzag pattern (iterations
220–280) shows that the IS divergence was increased by a pair-wise merge
operation. The red line (Linit = 3) corresponds to using only the top-down
approach.

TABLE III

COMPUTATIONAL TIME (IN SECONDS) FOR THE SEPARATION PROCEDURE

DESCRIBED IN SECT. V-C AND AN EXISTING METHOD [26].

ID=1 ID=2 ID=3 ID=4
EU-NMF 201.89 280.43 273.34 231.11
IS-NMF 576.73 867.72 838.30 677.55

UBSS [26] 9.98 13.72 12.60 14.42

interferences, and artifacts, respectively. These are calculated
by using a least-squares projection [25]. Then, SDR l is cal-
culated as the power ratio between the wanted and unwanted
components

SDRl = 10 log10

∑M
m=1

∑
t simg

ml (t)2∑M
m=1

∑
t

[
yspat

ml (t) + yint
ml(t) + yartif

ml (t)
]2 .

Figure 11 shows the source separation results obtained
with the procedure described in the last subsection (EU-
NMF and IS-NMF). For comparison, results obtained with the
Underdetermined Blind Source Separation (UBSS) method
[26] are also shown. Four sets of mixtures whose sources are
listed in Table I were examined. The source separation result
obtained with the NMF-based method depends on the initial
values of T, V and Z. Therefore, we conducted ten trials
with different initializations for each set of mixtures. Table III
shows the computational time. Sound examples can be found
at our web page [27].

From these results, we observe the following. For music
recordings with frequent sound patterns, the new NMF-based
methods generally performed better than the existing method
[26] that relies on the spatial property and simple time-wise
activity information of each source. However, the computa-
tional burden of the NMF-based methods was heavy. This
was because many operations related to matrix inversions
and eigenvalue decompositions were involved in the NMF
updates. Among the NMF-based methods, IS-NMF produced
clearly better separation results than EU-NMF with increased
computational effort. This result supports the superiority of IS
divergence for audio signal modeling [18] also in a multichan-
nel scenario.

Figure 12 show the effect of having the redundant spatial
properties mentioned in the previous subsection. We observe
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Fig. 11. Source separation performance evaluated in terms of SDRs averaged
over all the three sources. With NMF-based methods (EU-NMF and IS-
NMF), ten trials were conducted for each mixture ID. The error bars represent
one standard deviation. For comparison, the results obtained with an existing
underdetermined blind source separation method [26] (UBSS) are also shown.
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Fig. 12. Source separation performance with various numbers of redundant
spatial properties Linit. Ten trials were conducted for each mixture ID, and
thus the error bars represent one standard deviation over 40 averaged SDRs.

that even a small number of redundant spatial properties
contributed to a better separation result than not having the
redundancy (Linit = 3). Having too much redundancy also
worked well, but the computational demands also increased.
Therefore, we employed Linit = 9 for the experiments whose
results are shown in Fig. 11.

VI. CONCLUSION

We have presented new formulations and algorithms for
multichannel NMF. We started with a simple model (17)
where each NMF basis tik , i = 1, . . . , I , has its own spatial
properties Hik. Then, to cluster the NMF bases according
to their spatial properties, we introduced the second model
(40), which includes cluster-indicator variables Z. Multiplica-
tive update rules were derived to minimize the multichan-
nel IS divergence (16) or multichannel Euclidean distance
(20). Experimental results show that the derived multichannel
algorithms were as efficient as the standard single-channel
algorithms in terms of the number of iterations to converge.
Multichannel NMF with IS divergence produced better source
separation results than with Euclidean distance for several
stereo music mixtures. Future work will include the automatic
determination of such model complexity parameters as the
number of NMF bases K and sources (spatial properties) L,
for example by employing Bayesian nonparametrics [28], [29].

Computationally efficient implementations of the multichannel
NMF algorithms, such as one using a general-purpose graphics
processing unit (GPGPU), will also constitute future work.

APPENDIX I
SOLVING AN ALGEBRAIC RICCATI EQUATION

To solve (24), we perform an eigenvalue decomposition of
a 2M × 2M matrix [

0 −A
−B 0

]
(56)

and let e1, . . . , eM be eigenvectors with negative eigenvalues.
It is theoretically guaranteed that there are exactly M negative
eigenvalues. But in reality there may be computer arithmetic
errors. Thus, we actually sort the 2M eigenvectors accord-
ing to the corresponding eigenvalues in ascending order and
employ the first M eigenvectors.

Then, let us decompose the 2M -dimensional M eigenvec-
tors as

em =
[

fm
gm

]
for m = 1, . . . , M (57)

with fm and gm being M -dimensional vectors. The new H ik

is calculated by

Hik ← GF−1 (58)

with F = [f1, . . . , fM ] and G = [g1, . . . ,gM ]. Again to
compensate for computer arithmetic errors, we ensure H ik is
Hermitian by Hik ← 1

2 (Hik + HH
ik).

APPENDIX II
PROOF FOR THE AUXILIARY FUNCTION (29)

Let us consider the minimization of f + defined in (29) with
respect to R and U subject to the constraint

∑
k Rijk = I. By

introducing Lagrange multipliers Λ ij of size M×M , we have

F = f+ +
∑

ij Re
{
tr

[
(
∑

k Rijk − I)HΛij

]}
. (59)

By setting the partial derivative of F with respect to R∗
ijk at

zero

∂F
∂R∗

ijk

= (tikvkjHik)−1RijkXij + Λij = 0 , (60)

we have Rijk = −(tikvkjHik)ΛijX
−1
ij . Adding this for k =

1, . . . , K gives Λij = −X̂−1
ij Xij with the fact that

∑
k Rijk =

I. Therefore, the minimum of the auxiliary function f + is
obtained when

Rijk = tikvkjHikX̂−1
ij (61)

and the minimum value is equal to f defined in (28).
The partial derivative of f + with respect to Hermitian

matrix U∗
ij is given by [30]

∂f+

∂U∗
ij

= U−1
ij −

det X̂ij

detUij
U−1

ij . (62)

Setting this zero gives Uij = X̂ij .



11

APPENDIX III
PROOF FOR THE AUXILIARY FUNCTION (35)

Let us consider the minimization of f + defined in (35)
with respect to R subject to the constraint

∑
k Rijk = I. By

introducing Lagrange multipliers Λ ij of size M×M , we have

F = f+ +
∑

ij Re
{
tr

[
(
∑

k Rijk − I)HΛij

]}
. (63)

The partial derivative of F with respect to Hermitian matrix
R∗

ijk is given by [30]

∂F
∂R∗

ijk

= −t2ikv2
kjR

−1
ijkHH

ikHikR−1
ijk + Λij . (64)

Setting this zero and introducing a matrix U ij we have

Λij = (tikvkjR
−1
ijkHik)(tikvkjR

−1
ijkHik)H = UijU

H
ij . (65)

A solution for this equation is given by

Uij = tikvkjR
−1
ijkHik ⇔ Rijk = tikvkjHikU−1

ij , (66)

and adding this for k = 1, . . . , K gives

Uij =
∑

k Hiktikvkj = X̂ij (67)

with the fact that
∑

k Rijk = I. Therefore, the minimum of
the auxiliary function f + is obtained when

Rijk = tikvkjHikX̂−1
ij (68)

and the minimum value is equal to f defined in (34).

APPENDIX IV
EM ALGORITHM FOR COMPARISON

This appendix shows an EM algorithm designed to min-
imize the total multichannel IS divergence, (18) with (16),
according to the NMF model (17). The EM algorithm shown
here is a simplification of the EM algorithm shown in [16].
For the STFT coefficient vectors x̃ij ∈ CM , let ỹijk ∈ CM

be latent vectors that satisfy x̃ij =
∑

k ỹijk .
1) E-step: calculate the expectation of the outer product of

ỹijk by

E[ỹijk ỹH
ijk ] = Ŷijk + Ŷijk

(
X̂−1

ij XijX̂
−1
ij − X̂−1

ij

)
Ŷijk (69)

with

X̂ij =
∑

k

Ŷijk , Ŷijk = Hiktikvkj . (70)

2) M-step: update the NMF model parameters by

tik ← 1
JM

∑
j

1
vkj

tr
(
H−1

ik E[ỹijk ỹH
ijk]

)
, (71)

vkj ← 1
IM

∑
i

1
tik

tr
(
H−1

ik E[ỹijk ỹH
ijk ]

)
, (72)

Hik ← 1
tikJ

∑
j

1
vkj

E[ỹijk ỹH
ijk ] . (73)
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