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INTRODUC TION

As the petroleum industry moves into deeper and deeper

waters to tap new reserves of oil and gas, the cost and size

of the offshore structures increases considerably.

SUb stantial interest has been generated in methods of

detecting structural damage by measuring shifts in natural

frequencies from undamaged conditions. Coppolino and Rubin

(1980), !oland and. Dodds (1976J, . Ruhl (1976, 1979) and
Vandiver (1977, 19791 are but a few of the many papers that
have come out in recent years on this subject. Lack of

reproducibility in determination of the natural frequencies

of modes higher than the fundamentals has led researchers to

conclude that detection of damage by above-waterline

measurement of acceleration response to envirorunental loads

is not feasible. The fundamental problem is that

non-failure related sources of change are so large as to

obscure changes in natural frequency which are caused by

significant levels of damage.

These problems have led researchers to consider

alternate measurement techniques, including (1)

below-waterline measurement of global and local modes and

(2) forced excitation with shakers and impulse h~ers.-

Rather than simple measurement of c)1anges in natural'

frequencies, determination of mode shapes and transfer
functions are being attempted. The success of these various
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techniques will depend in part. upon . the development of

powerful digital signal processing tools.

Design verification is another aspect of structural

dynamics which can also benefit from advances in signal
processing. For. the design of safe fatique-resistant
structures in ever more hostile environments, it is

necessary to verify by accurate measurement the adequacy of

present design methods and assumptions. Predicted and

measured values of natural frequencies, damping ratios, and

mode shapes are but a few of the values which should be

compared. Where discrepancies occur, improvements can be

made in future designs.

The multichannel Maximum Entropyr-1ethod (MEM) of

spectral analysis is applied in this research to the problem

of mode shape and transfer function estimation. A brief
review of the development of MEM follows.

In 1967, Burg introduced the concept of the Maximum

Entropy Method of auto-spectral analysis. MEM is one of the

family of nonlinear, data-adaptive methods of spectral

analysis which is capable of generating higher resolution

spectral estimates from relatively shorter data records than

conventional methods (Andersen, 1974; Lacoss, 1971). This

ability to use shorter data records can be an important
,

consideration where (1) stationarity, (2) logistics of data:

collection, and/or (3) computer processing time and cost are

a problem. Because MEM is data-adaptive, it does not suffer
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from the severe "bias¡ versus variance18 tradeoff due to

finite record length requirements of conventional metnoda.

When calculating spectral estimates at one frequency, it is

able to adjust itself to be least disturbed by power at

neighboring frequencies 0

En tropy is a measure of the average information content

contained in a signal (Burg, 1967). Maximizing entropy

therefore maximizes the information transmitted in a signal 0

The concept involves finding a spectral estimate

corresponding to the most random. or unpredictable time

series whose extended correlation function satisfies the
constraint that it agrees with known valuesa

Researchers have succesfully applied the MEM method to

such diverse fields as (1) econometrics (Andersen, 1974),

(2) geophysics (Chave, 1980; Robinson, 1967J, (3) speech

communications (Markhoul, 1975), (4) neurophysics (Gersch
and Sharpe, 1973; Jones, 1974), and (5) radar (Childers,

1978) among othersa Campbell (1980) applied the single
channel version of MEM to the dual problem of natural

frequency and damping ratio estimation of offshore
platfor.sa He was able to more accurately evaluate these

two parameters as well as place 95% confidence bounds on

these estimates.
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Two algorithms for the mul tichannel MEM method of

spectral analysis are implemented to demonstrate. its

superiority relative to conventional methods. These two
algorithms are. (1) a direct on the data method of Burg and

(2) a correlation function extension or Yule-Walker method

both. originally proposed by Strand (1977J~ Henceforth,

these two algorithms will be referred to as the BRGMEM and

RYwEM methods respectively.

Other versions of multichannel MEM algorithms are

available and have been used. . Ulrych and Jensen (1974)

proposed a clever extension of the single channel MEM method

to derive cross-spectral estimates. Ng (1977) demonstrated

the superiority of another Burg-type algorithm, as extended

by Jones (1978) and Nuttall (1976), to the processing of
three real sets of geological data from core samples. Morf

(1978) compared the BRGMEM method with those of Jones (l978)

and Morf et ale (1978) and found the B RGM EM algorithm to
give as good or better resolution as these other two while

generating a stable spectral estimate.

In addition to the magnitude, phase, and coherence

squared estimates normally obtained using mul tichannel
spectral analysis methods, the transfer function estimate is

calculated. Auto-spectral methods give transfer function

estimates with no phase information. Multichannel' or:
c ross-spectral analysis methods produce. a transfer function

estimate that is less biased due to noise in either the
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input or output signals 0

The motivation for the research contained in this

thesis is to apply multichannel versions of MEM . to the

pr:oblem of. mode shape identification and transfer function

estimation in. the hope that both structural monitoring ånd

design verification technologies may benefit.. De sc riptions

of the main sections or chapters of this thesis are given

belowo

In Chapter. 2, a general overview of conventional

methods of spectral analysis is presented. A brief history
of the direct and correlation classes (Periodogram and

Blackman-Tukey respectively) is giveno The classical "bias

versus variance" tradeoff and t.he methods employed to

ameliorate this problem including windowing, segmenting, and

zero appendage are then discussed.. Finally, a discussion of

the Periodogram and Blackman-Tukey methods (BTM) is

presented..

Chapeer 3 contains the development of the single

channel and multichannel MEM methods of spectral analysis..

The two different in te rpreta tions of MEM as an

autoregressive (AR) and a least squares model are presented

and compared. For the multichannel MEM, both the direct

Burg ( B RGr-1 Er.1 ) and the correlation function extènsion_
".

(R~qMEM) algori thr are derived. A discussion of the model'-

order selection criteria is then given.
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In chapter 4, a discussion of the transfer function as

an unbiased estimate, when calculated from. a cross-spectral

analysis, is presented.

Chapter. 5 presents the formulas used in cross-spectral

analysis to estimate auto . and cross-correlations:
. auto-spectra: and cross-spectral magnitude .and phase,
coherence squared,. and transfer functions. A discussion of

the interpretations of these estimates, in the. context of

the applications described above, is then given.

Data for an empirical analysis of the multichannel . BTM

and MEM algorithms was collected from an offshore, single

caisson platform located in 89 ft of water in the Gulf of

Mexico. Chapter 6 contains a description of this platform
which telescopes from a 7 ft diameter at the mudline to 4 ft

at the Mil (Mean IDw Water). It is 265 ft in length

overall, extending 100 ft into the mudline, and supports

three decks. This platform is an ideal structure for
estimating cross~spectral magnitude, phase, coherence
squared, and transfer functions because of (1) the symetry

of the single, vertical caisson,
i

( 2) the lack of
interference from neighboring legs, and (3) the absence of
drilling activity and large unaccountable deck loads. In
this chapter, a description of the instrumentation, load

cases, test set-up, and data processing is given.
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Chapter 7 contains a comparison of the multichannel BTM

and the BRGMEr-1 and R):EM algorithmse The effect of

different windows (Boxcar, Bartlett, Hanning, and Parzen are
\

available) and different window durations (ie. lengths) on

the B'I are presentede Due to the large amount of computer

storage and processing cost required for the BRGMEM

algorithm, a segment and averaging technique similar to that

used in Periodogram estimates was developede If the

individual segments are long relative to the effective

correlation length, they may be assumed to be statistically

independent r Baggeroer, 19 79 J e Each of the segments is

assumed to be a realization of a stationary, Gaussian random

process. The variance of the estimate is reduced by this

averaging technique while the bias is only slightly
increased. Thus, the method can give satisfactory results

at a substantial reduction in computer costSe

As mentioned previously, the primary emphasis of this

research is in the application of multichannel MEM spectral

estimates, especially the transfer function, to mode shape

identification. Also, the transfer function estimate is

used to calculate the dynamic response of the offshore

caisson platform to wave excitation. These applications of

mul tichannel spectral analysis are presented and discussed

in Chapter 8.
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Finally, in Chapter 9, conclusions and recommendations

for future research are presented.
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CHAPTER. 2
CONVNTIONAL METHODS OF SPEC TRAL ANALYSI S

The first . spectral estimator to be used was the
periodograr. The periodograr and its variations are any of

the methods which operate directly on the data by Fourier

transforming to obtain the spectral estimates e Even though

it is still used today, it is not a good estimator because

its variance exceeds its mean value. In 1958 Blackman and

Tukey introduced their autocorrelative method which involves

the Fourier transform of the windowed autocorrelation

function estimate. It is a moving average (MA) or all zero

method which suffers from a severe "bias versus variancell
tradeoff. Resolution is lost due to (1) t.he finite record.

length of the autocorrelation function estimate (assumed

zero beyond known lag products) and (2) the windowing

operation itself. In 1965 Cooley and TUkey sparked a

revival of the Fast Fourier Transform (FFT) which . had been

known for many years but was not practical until the advent

of the high speed digital computere The direct method of
calculating spectral estimtes involving magnitude squaring

of the transform o.f windowed data records became popular.
Unfortunately, this method unreasonably assumes that the

- ~
data is zero outside the selected number of lags and repeats.--

itself periodically. Thus, the conventional methods of

spectral estimation can be grouped into two broad classes:

(1) those obtaining the spectral estimate by direct
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manipulation of the data record and (2) those indirectly

calculating the autocorrelation. function estimate from the

data and then Fourier transforming to the spectral estimate.

Before discussing these two methods,. the lI'bias versus
variancell tradeoff with which both of these methods suffer
will be discussed.

2.1 BIAS VERSUS VARIANCE TRADEOFF

First of all, some definitions are in order concerning

resolution, bias, variance, and stability. Resolution means

being able to discern two peaks rather than one if two
closely spaced peaks are actually present. Bias is the
difference between the actual (ie. true value) and the

estimated value. Variance of the estimate means being able

to place some confidence in the value calculated for the

estimate. An estimator is said to have high stability if it

has small variance. Bias, resolution, and fidelity are

different ways of expressing the same concept. Likewise, so

are variance and stability. We want small bias, which is

the same as saying we want the resolution to be as fine as

possible. Similarly, we want the variance to be as small as

possible, which implies that the statistical stability of
the spectral estimate is as large as possible.

According to Bendat and Piersol (1971), a measure of.

the resolution known as the resolution bandwidth, Be, is
given by
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Be = fs / N (2" la)

(2" lb)Bs = SBW * f s / L

wherè,

fs : sampl ing frequency, Hz

N : total numer of data points in a segment,
or the entire data record

SBW : Standardized Badwidth,
function of window chosen

L : numer of lags selected
Equation 2.la is for use with the direct on the data methods

such. as periodograms. Equation 20lb is for use with the

Blackman-Tukey cQrrelation method using various windows"

The resolution bandwidth is not to be confused with the

frequency interval f used for calculating the spectral

estimates at discrete frequencies. It is given by

ó.f = fny / Nl (202)

where ~

fny = Nyquist frequency, Hz

Nl = numer of spectral lines or frequencies
A finer ó.f, although providing more points within a

frequency interval, will not necessary result in a more

accurate spectral estimate. Only a decrease in the
resolution bandwidth can do this.

The variance, as expressed by the normalized standard
error, e:r, is

e:r = '¡L / N
".

(2 e 3)

Thus, the lib ias versus variance" requirements are
conflicting: a classic tradeoff is required.
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Three methods are used to alleviate this apparent

contradiction. These are. (1) windowing, (2) segmenting, and

(3) zero appendage. Each will now be discussed.

2. 1. 1 Windows

Windows are necessary to reduce bias and variance and

to account for the fact that a tini te realization of an
infinite random process is used rather than a finite time

series.

Multiplication in the time domain with the lag window

is equivalent to convolution in the frequency domain with

t.he spectral window (Bloomfield, 1976 ¡Rabiner and Gold,
1975). Thus, the time domain lag window and the frequency

domain spectral window are Fourier transform pairs. It is

the particular nature of the Fourier transform that a narrow

window in one domain will be wide in the other domain.

TWo-sided windows, as illustrated by Figure 2.1, obey

the following properties in the time domain.

wCO)

wCm)

wCm)

= 1

= wC -m)

= 0

-L(m(L

Iml )L

C2. 4)

The optimum window is the one which exactly reproduces

the true spectrum while giving the minimum variance. In the -

frequency domain, convolution with a, delta CDirac or

Kronecker delta) exactly reproduces a signal. However, to
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obtain minimum variance, the widest possible window is

required. Thus, the classical IIbias versus va.riancell
tradeoff again. The rectangular window is the ideal window.

from the standpoint of minimizing the bias (ie. maximizing

the. resolution) as it: has the narrowest main lob e. However,

it also has the largest side lobes, which result in leakage

of power from neighboring frequencies, thus masking the true

nature of the spectrum. In addition, negative values of the
spectral estimate are possible due to negative values of the

spectral window resulting from the abrupt transition of the
rectangular window at its bounds.

Analogous to wanting a large signal to noise ratio

(SNR) to .minimize the background noise effects ina signal,

the sidelobes should be as small as possible relative to the

main lobe. vve also want the sidelobes to be positive.
Smoothing the window in the time domain achieves these

characteristics. The more smoothing, the better the

variance and sidelobe characteristics of a window become.

However, the main lobe increases correspondingly in width;
thus, increasing the bias of the estimate. Finally, we want

the window bandwidth to be narrower than the minimum

frequency separation between the closest spaced peaks of

interest in the theoretical spectrum. Otherwise, the loss

of resolution could result in smearing of the power - in- the

two adj acent peaks into only one peak.
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In order to find this optimum window, many have been

proposed. They include (among others). from best to worst
bias:

2el.2 Data Record Segmenting

Segmental averaging involves decimating a data record:

of length N into K segments of length M to dec rease the
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variance of the spectral estimate. The assumption is made

that the individual data segments are independent or
uncorrelated. According to Jenkins and Watts (1968), the
variance of the spectral estimate can be made as small as

necessary by smoothing or averaging over shorter and shorter
sub-series (ie. more segments). In the process, the bias.

of the estimate is increased since the data segments are
shorter than the original complete data record of length N

(see Eq. 2.1b). The increase. in bias can be interpreted as

an increas.e in the width of the main lobe of the segment.ed

spectral window since the lag. window is correspondingly

shorter in the time domain.

2.1.3 Zero Appendage

Windowing of the correlation function estimate to make

it physically realizable (ie. finite vs. infinite length),

truncates it resulting in reduced resolution. By adding
zeros to this windowed correlation estimate prior to Fourier

transforming, the number of spectral lines or points

obtained in the spectral estimate is increased. This has

the effect of appearing to increase the resolution. In

actuality, only the numer of spectral points within a
frequency band is increased with some potential for

improvement in the accuracy of the estimate ~ (see
Section 2. 1) .

Filling of the data record with additional zeros (for
spectral estimation applications) in order to inhibit the
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effects of circular convolution when performing FFT' s is

usually not warranted in term of the added computational

costs (especially when using. stochastic data).

202 SPECTRAL ESTIMTES.

The theoretical definition of the power spectrum, S( f) ,
given by Crandali (1973) is the Fourier transform of the
correlation function, R( L ) ,

S(f) = 'LR(-d exp(~j2irf.tJ dT (2,,5)
If the correlation function is obtained from a sample

.

function of an ergodic random process x(t)

R( T)

T/2
= lim (lIT)!T~oo -T/2 x(t) x(t + T) di: (2.6)

In reality, however, we are not given an infinite time
series nor or we allowed to sum the autocorrelation over

~. infinite positive and negative lags. Instead, the spectral

estimate is obtained by the discrete Fourier transform

(Oppenheim and Schaffer, 1975) given by

S(m)
L-l

= ii L R(n) wen) expr-j2irfmliJ
n=O

(2.7)

Thus, both the time series and the correlation function

estimate are finite and assumed to be zero beyond a certain

1 imi t .

2.3 DIRECT METHODS OF SPECTRAL ANALYSIS

Four different direct methods are used. All are
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variations of the periodogram(Childers, 1978; Jones, 1965;

Rainer and Gold, 1975). They are:

(1) Periodogram,

(2) Smooth the periodogram,

(3) Segment .and. average the periodogram, and

(4) Segment, window, and average the periodogram.

The periodogram spectral estimate, S(f) , involves a

magnitude squaring. of the Fourier. transform of the data
record. The data. mayor may not be windowed (see Figure
2~2). It is given by

S(27Tf)
N-l

= (l/NU) I l: x(n) wen) exp( -j27Tfn) 12
n=O

(2.8)

where U is a normalizing factor for the window function to
assure that the spectral estimate is aSYmPtotically

unbiased. It is often assumed to be unity and is defined as

U
N-l

= (l/N) E w2 (n)
n=O

(2.9)

Smoothing the periodogram consists of averaging

adjacent periodogram spectral estimates with even or uneven

weighting (ie. a form of windowing).

The third variation on the periodogram is due to

Bartlett and involves segmenting the data into overlapping

or non-overlapping (juxtaposed) segments to reauce~ the

variance of the estimate. OVerlapping results in reduced

variance and less wastage of the available data. Instead of
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using the original total record length, N, the shorter

segmented record length of M is used and the estimates are

averaged over the K segments to obtain the final spec'tral

estimates.

The final method is identical to the Bartlett method

except that the windowing of each of the segments is

performed prior to calculating the periodogram. This method

is attributable to Welch and is often called the "modified

periodog.ram. "Again, the segments may be overlapped or
non-overlapped with the corresponding reduction in variance.

2.4 CORRELATION METHODS OF SPECTRAL ANALYSIS

Again, four variations of the basic Blackman-TUkey

correlation method of spectral analysis are available
(Childers, 1978). They are:

(1) No window on correlation function estimates
obtained using entire record length,

(2) Window correlation function estimates
obtained using enti.re record length,

(3) No window on correlation function estimates
obtained by segmenting the data record, and

(4) Window correlation function estimates
obtained by segmenting the data recorde

The differences among these four variations of the

correlation methods are (l) whether the correlation function

estimates are calculated using the en,tire data recoi'd o~..-
length N or a segmented version of K segments of length M

(see Section 2.1.2): and (2) whether a window is used on
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these . correlation function estimates prior to Fourier

transforming to the spectral estimates. Figure 2.3
illustrates the basic operations involved. The correlation

function estimates are calculated from the data (entire

record or segments) by Fourier transforming and then inverse

Fourier transforming... Next, a window can be applied to
these es:timates as desired to obtain the spectral estimates.

Figure 2.3 is sufficiently general to represent all four
versions as a Boxcar window, which is equivalent to no
window, could be used.

A biased cross-correlation function estimate at
discrete lags, RCm), is given by

Rxy C m)

N-m-l
= Cl/N) b x(n) yCn + m)

n=O

N-m-l
= (l/N) L yCn) x(n + m)

n=O

O(m(L-l C2.10a)

Ryx ( m) O(m(L-l C2. lOb)

where m is the current number of lags. Strictly speaking, a

covariance function estimate, rather than a correlation
function estimate, is obtained if a zero mean process is
used in Eq. 2.10. However, for simplicity, we will

continue to call R(m) the correlation function estimate.

The maximum lag value L of the correlation function is
usually chosen to be of the order of 10% or less of the
total numer of data points N in the record. This- is' done

to avoid aliasing effects of the circular convolution when'

the FFT is used to compute Eq. 2.l0 (Oppenheim and Schaffer,

1975). It also reduces the bias somewhat.
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A biased correlat.ion function estimate is calculated to

~nsure positive definiteness of the spectral estimate (ie.
no negative values). An unbiased estimate could be obtained

by replacing the division by N with division by (N - m) in

Eq. 2.10. An unbiased estimate has smaller mean square

error but will not necessarily guarantee a positive-definite

spectral estimate.

The corresponding power spectral estimate, S(f), is

calculated by performing a Fourier transform of the windowed

or unwindowed correlation function estimate (see Figure 2.3)

Sxy ( n)
L-l

= ti¿ Rxy(m) w(m) exp(-jirmn/NIJ
m=O

O(n(Nl-l(2. 11)

Windowing is applied prior to Fourier transforming to

reduce the undesireable effects of using a finite length
correlation function instead of the theoretical infinite

sequence (Rabiner and Gold, 1975J. The first variation

(listed at the beginning of this section) is equivalent to
using a Boxcar window or no windowe The second variation

would require the use of one of the windows described in
Section 2.1.l.

The third and fourth variations involve segmenting of
the original data record. The correlation function estimate

is calculated for each segment, averaged, and '. ". then- .-

trans fo rred. The fourth variation, involving windowing of

the correlation function estimates from each segment prior
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to transforming, is the particular Blackman-Tukey procedure

used in this research as a comparison with the multichannel

MEM algorithms. NOte that whether the segments are averaged

and transformed or transformed and averaged makes no

difference in the spectral estiratesobtained.



-42-

CHATER 3
MAXIMUM ENTRCPY METHODS OF SPECTRAL ANALYSIS

In this chapter, the single and multichannel MEM

methods of spectral analysis are developed. Both the direct

on the data approach (BRGMEM) and the correlation extension

method ( RYWEH) are explained. A discussion of the
importance of the model order selection is then presentedo

In order to facilitate understanding of the Maximum EntropY'

concept, a discussion of MEM as a Autoregressive (AR) model

is given.

3.1 AUTOREGRESSIVE MODEL

Perhaps the simplest model which can be used to

understand the MEM method is the autoregressive or AR model

proposed by Van den Bos (l97l). Figure 3.1 depicts a white

noise with unit variance discrete signal wen) which ~s input

into a linear or shaping filter a(f) 0 The corresponding

output x(n) (true or desired value) is given in the time

domain by

x(n)
L

= LA(m) x(n - m) + wen)
m=l

n=18 L (3.1)

where,

x(n)

A (m)

'.output of AR filter, true or desired value ,.
: AR filter coefficients of model order m

L : desired AR filter order
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wen) : white noise, innovation, or prediction error
between. true and predicted (actual) value

Note that the notation "n=l, L" will be used to denote the
operation n = i, 2, 3, .. 0 L in the remainder of this thesiso
The summation operation of the AR coefficients with the L

past values of the output x represents a convolution

oper-ationwhich gives the predicted. valueo

Mul tiplying both s ides of Eq 0 3 Ð 1 by the z opera to r

(ie~ z=expE-j2'lf~J) and taking the corresponding z or

Fourier transform, the frequency domain equivalent is

XCf)
L

= rACm) expE-j2'lfmtJ XCf) + W(f)
m~

(302)

Noting that the exponential term is the result of the delay.

property of Fourier transforms, we can rearrange Eqo 3.2

into the following standard frequency domain form:

XCf) = A(f) W(f) (303)

where the transfer function of the shaping filter, ACf), is
given by

L -1
A(f) = (1 -

kA(m)
exp( -j2'l fm~Jì (304)

Finally, multiplying Eq. 3.3 by its complex conjugate and
taking expectations, the two-sided spectral estimate for the

autoregressive process between the ~quist frequency, fny,

is given by
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Sx ( f ) -IA(f)/2 sw( f) -fny(f(fny (3.5)

2 0'2 ( L) ó.= L
1£.1 - L A(m) exp( -j21Tfmó.Jì 12m=l . .

where a2( L) or SW( f) /2 ó. is the white. noise variance or

prediction error and the denominator is the magnitude

squared of the Fourier transform of the AR fil ter
coefficients. The is the time increment in seconds

.between sampled data points. Note that the one in the

denominator of Eq. 3.5 is actually the A (0) AR filter.

coefficient term.

Thus, the MEM filter can be cast into a form which most

structural dynænicists are familiar with. The MEM spectral

estimate is obtained by (1) calculating the ARfilter
coefficients out to the desired fil ter order L,
(2) calculating the prediction error due to a white noise
signal at filter order L, (3). taking the magnitude squared

of the Fourier transform of the AR coefficients, and

(4) performing the operations indicated in Eq. 3.5.

3.2 SINGLE CHANNEL MEM METHODS

Wi th this understanding of the MEM as an AR model, the

development of the single channel MEM method is presented.

It is developed in terms of a least squares filter. The'

Levinson-Durbin recursive scheme which utilizes the special

Toeplitz symmetry of the correlation matrix is also
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d iscussede

3.2.1 Least. Squares Filt.er

The Wiener, predict.ion error, and whit.ening filter are

all variat.ions on the. least squares filtere The main

difference among t.hem is the interpretation given to the

error series bet.ween the desired and act.ual signals e Many

aut.hors including Baggeroer (1979)8 Haykin (1979) ,
Kanasewich (1976), Robinson (1967)8 and Wiener 1977) have
expounded on their characteristicse Basically, a mean

square error t.erm is minimized in such a way that the input
signal is whitened (or the output becomesuncorrelated) as
t.he filter order is increased 0

In t.he t.ime domain, t.he error series e(n) is defined as
t.he difference bet.ween t.he desired (or true) signal den) and
the actual (or predicted) signal yen) where

e(n) = den) - yen) n=18 L (306)

In the classical t'liener filter, the actual output. yen) is
given by the convolution sum of L past values of input x(n)

yen)
L

= L A(m) x(n - m)m=l
n= 1 , L (30 7)

where L is the order or number of lags selected for the

filt.ere Figure 302 illustrates how a given inp~t ~ignal
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chosen to be a unit sample function.

In a whitening filter, the desired signal dCn) is

chosen to be white noise and zero. mean with unit variance

such that the . input. is progressively. "whitened". as the

filter order is increased.

Finally, for the prediction error filter, the desired

signal is chosen as the input signal x(n) advanced one time

unit ahead Chence, the prediction error terminology). The.
error series of Eq. 3.6 can equivalently be written as

eCn) = dCn) - yCn) n=l, L C3 . 8)

. L
= xCn) - ¿ ACm) xCn - m)

m=l

Thus, .x(n) represents the desired or current value of the
output and the convolution sum represents the actual or past

values. The prediction error filter coefficients are given

by the ACm) i s. Thus, the output eCn) is made as completely

random or unpredictable as possible Cie. made white 0 r
uncorrelated) .

According to least squares theory, a mean square error

or error power, P CL), is defined as the expected value

CE( )) of the square of the error signal eCn)

P (L) = E(e2Cn)) C3. 9)

L
= E( CxCn) - E ACm) x(n - m) )2)

. m=l

The energy contained in this error power is minimized by
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requiring that the derivative with respect to each filter

coefficient A(n) satisfy

ap(L) /a A(n) =0 n=l, L (3.10 )

Expanding and solving Eq. 3.10 for the filter coefficients,

A(n), a set of L' simultaneous equations known as the

Yule-Walker equations are obtained

LR) (Aì = .frì . (3.11)

or in matrix form:

R(O) R(l) R(2)... ..R(L-l) R(l)
R(l) R(O) R(1)...R(L-2) R(2)
R(2 ) R(l) ReO)... R(L-3) = R(3 )

. . " Ð Ð

.. . 0 .
R( L-1) R( L-2) R(L-3).. .R(O)

where,

LR) : LxL matrix of autocorrelation coefficients,
o to L-l lags

t A ì : Lxl column vector of prediction érror
filter coefficients

1: r-ì : Lxl column vector of autocorrelation
coefficients, 0 to L-l lags

A special Tbeplitz symmetry of the correlation matrix

can be exploited if a final equation known as the error or

prediction error power equation is added to the Yule-Walker

equations (Eq. 3.l1). This error equation is

P( L) 2= E(e (n))
L

= R(O) - mk A(m) R(m)

(3.12)

By rearranging the Yule-Walker equation ~d adding the error

equation as the first row, the Normal or Wiener-Levinson I .

equations are obtained. They are given by
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L
¿ A(m) RCn - m) =

m=O
p( L)

o
n=O
n=l, L

(3.13)

or in matrix form:

RCO) R(l) . R( 2) . . . . . RC L)

RCl) RCO) R(1)... .RCL-l)
R(2 ) R(1) . R:CO)...R(L-2)

. .

. . .
R(L) RC L-l) RCL-2).. .RCO).

whe re the prediction error te rr

1 P(L)
-A C 1 ) 0
-A C 2 ) = 0

.

-ACL) 0

p( L) is equal to the
variance ~2 (L) and we now have L+l simultaneous equations to

solve. The Levinson-Durbin recursive algorithm is then used

to solve for the prediction error filter coefficients A(m).

Note that these filter coefficients are the same as the
autoregressive CAR) filter coefficients of Eq. 3 ~4 except

for sign. The spectral estimate can then be calculated by

Eq. 3.5.

3.2.2 levinson-Durbin Recursion

The levinson-Durbin recursion is an algorithm that

takes advantage of the special ~eplitz symmetry of the

Normal equations whereby all diagonals in the correlation

matrix of Eq. 3.14 are the same. Therefore, a reduction of

the order of L2 multiplies and L storage locations are
required as compared to L3 mul tiplies and L2 storage
locations. The recursion algorithm utilizes linear
superposition to update the filter coefficients to the~next .

..
higher model order using an intermediate .variable known as

the reflection coefficients. The algorithm consists of the
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following steps:

(1) Determine updated filter coefficier:ts from(a) correlation matrix, .
(b) past values of the filter coefficients,
(c) past values of the prediction error:

(2) Update prediction error for next filter order using
(a) past prediction error. and
(b) past reflection coefficient: and

and

(3) Return to step 1 to update £il ter coefficients
until desired fil t~r order is achieved.

These recursion equations have been presented in numerous

publications including. Campbell (19803, C1aerbout (1976),

and Haykins (1979) to name just a few.

.3.3 MULTICHANNL MEM METHODS

There are two basic methods of multichannel MEM which

are developed in this thesis. They are (1) the direct on

the data method of Burg (BRGMEM) and (2) the Yu.le-\"lalker or

correlation extension method (RYWEN).

3.3.1 Direct on the Data Method

There are three different algorithm which have been
developed for the direct on the data or Burg method. They

are:

(1) Whittle, Jones, Nuttall Algorithm
(Jones, 1978: Nuttall, 1978),

(2) Square Root No rralizedI.vinson-Wiener- Rob inson
( Me rf , 19 78 J , and '. ".

(3) Levinson-Wiener-Robinson (LWR) Algorithm
(Strand, .1977).
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The Jones procedure was developed simultaneously and
independently as that of Nuttall. It is based on the

forward filter coefficients and does .not nec.essarily give

positive definite or stable spectral estimates. The

analytical procedure. used is to. minimize the trace of the
sum of weighted forward and backward error matrices by
suitable choice of correlation coefficients.

The Morf algorithm utilizes square root normalized

(averaging) of the forward and backward filter coefficients
prior to calculating the spectral estimate matrix.
According to Morf (1978), it gives about the same resolution

as the Strand algorithm.

The Strand algorithm employs a least squares estimate

of the reflection coefficients with inverse power weighting

to guarantee a positive-definite covariance matrix and a
resul ting stable spectral estimate. Strand. (1977) has

demonstrated superior spectral resolution using this method

while avoiding the problems inherent in the correlation
extension method.

It consists of the following steps:

(1) Input channel x and channel y time series
and other input parameters;

(2) Initialize the LWR recursion parameters:
forward and backward errors and
forward and backward powers;

(3) Perform IWR Recursion for
forward filter coefficients and prediction erro r
by solving bilinear or Lyapunov equation;



CHAPTER 3 (Cont ø ) -52-

(4) Calculate optimum model order according to
Akaikes FPE Model Order Criterion
(see Section 3.4 for references); and

(5) Calculate spectral matrix estimtes using
forward filter coefficients and prediction error.

A discussion of. the Strand . derivation of the filter

coefficients, the spec tal matrixN and the llR recursion will

now be presented.

3.301 ø 1 Derivation of Filter Coefficients l\~atrix.. let x(n)

be. a wide sense stationary, zero mean t.ime series of
p-channels (in our case, p=2) 0

T
t x(n)) = f xl (n) x2 (n) x3 Cn) 0 e .xp(nH n=1, N (3014)

where xl (n) represents the N total data points in time

series or channell, x2(n) the same for channel 2, etc" The

T stands for the màtrix transpose of a real matrix.

Analogous to the prediction error filter model for

single channel time series, the forward and backward filter

errors of length M CM less than or equal to L), ET and BT
respectively, are

M T
ET(M,n) = x(n) + L CF(M,m) x(n - m) 0=1, M

m=l
(3015a)

M T
BT(M,n) = x(n) + L CB(M,m) x(n + m) n=16 M

m=l
(3alSb)

where the real forward and backward filter coefficient.. pxp.-

matrices, CF and CB, respectively are defined by

T
CFCM ,m)

T T T
= (I CFCMl) CF(M2)a..CFCHM)) (3.l6a)



CHAPTER 3 CCont~) -53-

.T
CBCM,m)

T T T
= (I CBCM1) CB(M2).. .CBCMM)) C 3 . 16b )

where I is a pxp identity matrix, M is the current model
order, and m is the coefficient numer.

The expected me.an-square values of .ET and BT should be

minimized . in order to have the optimum filter. Therefore,

apply~ngthis least squares criterion
T

Ef (ET(M,n)) (ETCM,n))) = minimum

. T
Et (BTCM,n)) (BT(M',n))J ~ minimum

(3ol7a)

(3.l7b)
As discussed in the single channel models, the result of

carrying out Eq. 3.17 are the Normal equations for the

forward and backward filter. coefficents (Wigg ins and

Robinson, 1965). They are defined by

(iw) fCFCM,m) ì =.. tV)

(RB) tCBCM,m) J _. tWl

C3.18a)

(3.1Bb)
where,

(RF J : forward R-matrix, 'leplitz,
square block sUbmatrices

(RB J : backward R-matrix, 'leplitz,
square block sUbmatrices

T
tvJ forward power matrix, (p (M) 0 0 .0. 0)

T
tVPÌ backward power matrix, (PP C M) 0 0 .. 0 0)

The R4 element or pxp submatrix for a lag of 4 for the two

channel case

tR4l

(p=2) is

= rRllC4,)
LR21(4)

Rl2(4)J
R22(4)

C3.19)

where the diagonals are the autocorrelations and the
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off-diagonals are the cross-correlations between channels 1

and :2 .

The forward and backward prediction errors, PCM) and

PP (M), respectively satisfy

P(M)
T

= E(ET(M,n) ET(M,n) J (3 ø :20a)

T
= iCF(M,m):¡ (RFJ -(CF(M ,m) L

PP (M )
T

= ErBT(M,n) BT(M,n) J

T
= tCB(M,m)J (RB) rCB(H ,m)l

(3ø:20b)

and are positive-definite if the R-matrices areo

3 ø 3 . 1.:2 Spectral Matrix Estimation. The sin91~-s.ided,

multichannel MEM spectral matrix for a positive-definite set

of forward power (prediction error) matrices is a function

of the Fourier transfor. of the forward filter coefficient

matrix (Burg, 1975: Ioannidis, 1975: Jones, 1974).

G(f)
-1 ..

= :2 fi (CF (1!z)) P(M)
-1

rCF (l!z)) (3.21 )

where the forward fi1 ter coefficient matrix CF is defined as

CF ( z )
:2 ~-1

= I + CF(Ml)z + CF(M:2)z +.0.+ CF(MM)z (3ø22)

where z = exp( -j 271 f .1) . Si nc e the fo rward powe r, P .

satisfies the condition that it is greater than zerò) the

£il ter coefficient matrices are nonsingular and invertible.'-
Equation 3.21 reduces to Eq 3.5 for the single channel case

if matrices are replaced by vectors and vectors by scalars.
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The. inverse matrix operations become divisions and the

product of the filter coefficients with theïr complex

conjugates gives the magnitude squared as before.

The backward filter coefficient matrix could
equivalently be . used to calculate the spectral matrix of

Eq. 3.21. It would be given by

G (f) .
-1*

= 2 to (CB C z) ) PP C M )
-1

(CB Cz)) C3.23)
where the backward filter coefficient matrix is defined by

CBCz)
2

= I +CB(Ml)z +CBCM2)z .+...+
M

CBCMM) z (3.24)
3.3.1. 3 Multichannel liiR Recursion. The multichannel MEM

algorithm. presented here is known as the Levinson-

Wiener-Robinson (LWR) recursion. Additional details on this

procedure may be found in Strand (1977) and Ioannidis
(1975) .

Prior to the LWR recursive algorithm, the forward and
backward filter coefficients, CF and CB are zeroed and

initialized. The forward and backward powers, P and PP, are

also initialized to the zero lag correlation product and

equivalenced to each other.

PC 0)

N T
= l/N L x(m) xCm)

m=l
C3.25)

= PP CO)

where N is the total number of data points in the, time

series. Final ly, the Akaike Final Pradiction Error C FPE,

see Section 3.4) value for order zero is calculated.
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The master .loop .of the recursion consists of steps

which can be brf'ken down and sumarized as follows ~

(1) Forward Error ET. '!e forward error or residual ET is

initial ized.

ET(O,n) == xCn) n=li N-l (3 . 26)

(2) E, B, and G Matrices. The E1 B, and G pxp matric~s used

in the recursion for the forward and backward powers are

defined as

E
~M T

== 1/WI * ET(M 1 n) ET(M 1 n)
n=l

N-M T
= i/wm*

nk BT(M,n)
BT(M,n)

N-M T
= l/WI * . E BT(M1n) ETCM 6 n)n=1 .

(3.27a)

B (3..27b)

G ( :3 02 7c )

where wm is a weight to insure positive-definiteness of the

forward and backward power matrices, P and PP..

(3) Forward Reflection Coeffiecient CN. ~e forward

reflection coefficient CN is calculated by solving a
bilinear or Lyapunov equation given by

AA (CN) + CN (BB) = CC (3..28)

where the pxp matrices AA, BB, and CC are defined as
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-1
AA = CPPCM) ) * B

-1
BB = CP (M) ) * E

-1
CC =. -2 * (PPCM) ) * G

C 3 . 2 9A )

C 3 . 29B )

C3.29C)

The method involves the calulation of the Kronecker Product

sum AB (Bellman, 1960) given by

AB
T

= A tJ i + I tJ B C3.30)

where,

I . Identity. pxp matrix.

. input pxp matrix.

. input pxp matrix.

. Kronecker (tensor) product.

A

B

tJ

(4) Backward Reflection Coefficient CNP. The backward

reflection coefficient CNP is calculated based on the
forward reflection coefficient CN as

CNP CM)
-1

= P(M-l)
T

CCNCM)) PPCM-l) (3.3l)
(5) Forward and Backward Filter Coefficient CF and CB. The

forward and backward filter coefficients, CF and CB, are

updated by the recursive relationships using the forward and

backward reflection coefficients CN and CNP.

CF(M,m) = CFCM-l,m) + CBCM-l,M-m) CNCM)
m=l,M-l C3.32a)

CBCM,m) = CBCM-l,m) + CF(M-l,M-m) CNPCM)
m= 1 , £.-1 - C 3 _ 32b )

(6) Forward and Backward Errors ET and BT. The forward and'-

backward errors Cresiduals) are updated using the forward

and backward reflection coefficients CN and CNP.
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T
ETCM+l,m) = ET(M,m+l) + (CNCM)) BT(M,m+l)

m=l, wm-l (3D 33a)

T
BTCM+l,m) = BT(M,m) + (CNP(M)) ET(M,m)

m=l, Wm-:l ( 3 Q 33b )

(7) Forward and Backward Powers P and PPo 'te. iØmodern

Levinson recursion" is then used to update the fOtward and

backward powers, P and PP with the forward and backward

reflection coefficients, CN and CNPo

P(M)
T

= P(M-l) - (CN(M)) PP(M-l) CN(M) (3 c 34a)

P PC M )
T

= PP(M-l) - (CNP(M)) P(M-l) CNP(M) (3,,34b)

(8) Akaikes Final Prediction Error Criterion. Finally, the

next value of the Akaike' s FPE model. order selection

criterion is calculated. One loop of the recursion is now

complete 0

(9) Return. The model order is updated, if it is less than

the model order L selected, and the recursion is repeatedo

3., 3.2 Correlation Method

The correlation, Yule-Walker, or R-method is a

correlation extension method based on the Rissanen (1973)

recursion. It involves the triangular decomposition of the- ,
R-matrix into a diagonal form from which psuedo~farward-_

filter coefficients are calculated (Str~nd, 1977~ UL rych

and BiShop, 1975). Strand has noted superior resolution
wi th the direct on the data approach relative to this
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method. However, he notes that. it has not been severly

tested using a large numer of lags. Ioannidis (1975J has

used the method with much success however.

The basic procedure consists of:

(1) Input correlation matrix .and other input
parameters,

(2) Initialize Rissanen algorithm,

(3) Perform Rissanen recursion,

(4) Calculate FPE optimum model order, and

(5) Calculate estimate of spectral matrix.

3.3.2.1 Rissanen Algorithm. The Risannen algorithm is a
recursive procedure for thesimul taneous decomposition of

the forward and backward correlation matrices, RF and RB,
into the block diagonal forms

*

(BJ (RFJ (BJ = tD ì C 3 . 3 Sa)

*

(BSJ (RBJ (BSJ = t DS ì C3.35b)

where,

(BJ = I
B C 21 ) I
BC3l) B(32) I

C3.36a)

BCM+l,l) BCM+l,2) . . . BCM+l,M) i
= I

B sC 21) I
BS(31) BS(32) I

C3.3Gb)

. . .
BSCM+l,l) BSCM+l, 2).. .BSCM+l,M) i

= (D C 1 ) DC2 ) DC3 ) . . . DCM+l) J (3.37a)

(BSJ

t D ì
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£ DS ì = eDSCl) DS(2) DS(3) e~o DS(M+l)) (3037b)

where the * denotes Her.etian conjugation and the D and DS

matrices are block diagonal. SUbstitutingF.se 3036 and

3837 into F.e 3835 and perfor.ing the Rissanen recursion

gives

M

¿: BCM+l,m+l) RF(M-m) = D(M+l)
m=O

(3 c 38a)

M

¿: BS(M+1, m+l) RB(M-m) = DS(M+l)
m=O

(3 ..3ab)

Taking the Hermet.ian conjugate ofEq 0 3.. 38 and comparing

wit.h Eq. 3e18, t.he equivalence of as and B to t.he forward

and backward fi1 t.er coefficients, CF and ea, .is given by

CF(Mj)
*

= (as (M+l, M-j+l) J j=l, M (3 c 39a)

CB(Mj)
*

= ea CM+1, M-j+l) J j=l, M (3..39b)

The corresponding forward and backward powers, P and PP8 are

given by

P(M)

PP(M)

= DS(t-+l)

= D(M+l)

M=08 . . c C3. 40A)

M=O, . 0 0 ( 3 .. 40B )

Only t.wo rows of the Band BS matrices are required in
storage at anyone t.imes These correspond to the current
row denot.ed by a and as, and, a previous or past row denoted

by Bl and aSl. Therefore, the amount of computer storage

required is minimized.
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Thus, the forwarQ filter coefficients are obtained by a

triangular decomposi tion of the forward and backward

correlation matrices into a form equivalent to the direct on

the data method of Burg. The interested reader is referred
to the papers by Strand (1977) azd Ri ssanen (19 73) for. more

details on this method.

3.4 MODEL ORDER SELECTION CRITERIA

The nonlinear methods of spectral analysis such as MEM

are only as good as the number of lags selected for model.

order or filter length~ As . the filter length is increased

beyond the optimu.rn,the variance of the spectral estimate

increases resulting in spurious detail. The model order
selection criteria atten~t to prevent this from happening by

calculating the optimum numer of lags or model order for

the filter. Thes'e criteria are nothing more than "cost

functions" (Campbell, 1980) which are evaluated up to the

number of lags designated; then the optimum is selected as

the value corresponding to the minimum. Thus, these

criteria give the best mean square model order estimate

which effects a compromise between high resolution and high

variance. Several different model order selection criteria
have been proposed.

It is generally felt that these criteria should on~y be:

used as guidelines. A bracketing technique, similar to the
window closing technique of Jenkins and Watts (1968) for
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conventional spectral analysis, should be used to determine

real convergence. The problems inherent in these criteria

are discussed. by Akaike (1969), Gersch and Sharpe (1973),

and Ulrych and Bishop (l975) among others.

The two most. popular criteria are (1) Akaikeg s Final

Prediction Error (FPE) mean square prediction' error scheme

and (2) Akaike's Information Theoretic Criterion (AIC) 0 The

formulas for these two criteria will be presented for both
the single channel and multichannel HEM methods of spectral

analysi s .

3.4.1 Single Channel Criteria

The formlas for Akaike's FPE and AlC criteria for a

zero mean process are

FPECM)

AlC (M)

= t (N + (M+l) J I eN - (M+l)) ì *a2(M)

= N * a2 (M ) + 2M I N

(3041 )

( 3 042 )

where,

M

N

a2(m)

: particular order of the MEM filter,

: total numer of data points in time series,

: prediction error for MEM filter of order M.

The log 0 f the
approaches the value

FPE model

calculated
order asymptotically

by the AIC formula. The

maximum value chosen for the nUIer of lags for the - _ opt.imum

fil ter is usually of the order of 3 times the square roòt ot-:

the total numer of data points, N (Carpbell,1980) 0
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3.4.2 Multichannel Cri"teria

The, basic difference between the single channel and
mul tichannel versions of Akai~e i s FPE and AIC model order

criteria is that the multichannel formulas deal with
matrices rather than vectors. As the equations below

illustrate, the determinant of the prediction error matix is

required. Also, note that the total numer of channels or

time series is used in the formulas.

FPE (M ) = (N + C Mp + 1)) / (N ~ C Mp + l))P *
det I S(M) I C3.43)

AIC eM) = N * ln (SCM)) + 2p/CpM + 1) C 3 . 44 )

where,

p : total number of time series or channels

SCM) : prediction error matrix of order M.
Additional description of these model order criteria can be

found in Haykin (1978), Ioannidis (1975), Jones (1974), and

Kanasewich (1976).
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CHATER 4
TRANSFER FUNCTION ESTIMATION

In this chapter , a derivation and comparison of the
transfer function (frequency response function) using auto

and cross-spectral methods is presented. A discussion of
the two types of estimation errors, bias and random errors,

follows this.

491 AUTO AND CROSS-SPECTRAL DERIVATION

For an ideal, causal, stable, linear physical system as

shown in by Figure 4.1: the system output, yCt), is related

to the input, x(t), by the convolution or superposition

integral
yet) = ¡r: h ( 1') X (t - 1') d't

.0'
(4 e 1)

where h(~) is the unit impulse response. The transfer
function or frequency response function is related to the
impulse response function by the Fourier transform

R(f) = ¡r: h('r) exp( -j2'lf'tJ d T
o

C4. 2)

The Fourier transform of the output is

Y(f) = ¡r: yet) exp(-j2'/f'tJ dt C4.3)
o

SQbstituting Eq. 481 into Eq. 4.3 yields the following

expression
YCf) = RCf) X(f) (4..4), '.

Two equations are obtained if we multiply Eq. 4.4 once with

its complex conjugate and once with the complex conjugate of

the input signal xC t). They are
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.1
H(t)
H(f) . i

Y(t). ..

Y(f)

FIGURE NO.4. 1 .
TRANSFER FUNCTION OF A LINEAR~ CAUSAL SYSTEM

U(t)
TR~

Met)..
NOISE

HC f)

vet)
TRUE

Ne t)
NOISE

..
FIGURE NO.4. 2

EFFECT OF NOISE ON TRANSFER FUNCTION ESTIMATION

XCi;

MEASURED
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IY(f)12 = . la ( f ) I 2 i X ( f) I 2 (4.. Sa)

*X Cf)Y(f) = HCf) I X(f) 12 (4. Sb)
which when we take expectations and mul tip1y by 2fT becomes

the single-sided. auto and cross-spectra in term of the

transfer function H( f) .

GyyCf). = IH(f)!2 Gxx(f)
Gxy("f) = HCf) Gxx(f)

(4.6a)

( 4 . 6b )

Note that we have taken a simplistic and direct approach to

derive these results. They could equally well have been
computed by taking the Fourier transforms of the auto and

cross-correlations, Rxx(t) and Rxy(t) respectively..

Equation 4.6.a is the auto spectral resul1:: whereas,

Eq. 4.6b :is based on c ross-spectral analysis. .. The

advantages of cross-spectral analysis versus autospectral

analysis for the transfer function estimte are (1) phase

information can be obtained, and (2) the estimate is not as

easily biased by noise in the input or output signal..

Consider a system (Bendat and Piersol, 1971J such as

il i ustra ted in Figure 4.. 2 where the input x ( t) and the
output y( t) measurements are related to the actual input

uCt) and output vet) signals through the noise terms met)

and net) by

xCt)

yet)

= u(t.) + met)

= vCt) + net)
(4. 7a)

(4. 7b)

The noise terms are assumed to be uncorrelated with t.he
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signals . and with each other. Performing the manipulations

as described in this section, true and measured single-sided

auto and cross-spectral estimates are given by

Gvv =
I H 12 Guu (4.8a)

Guv = H Guu (4.8b)
Gxx = Guu + Gmr ) Guu (4.9a)
Gyy = Gvv + Gnn ) Gvv ( 4 . 9b )

Gxy = Guv ( 4 . 9c)

where frequency dependence f has been omritted to simplify
the notation. SUbstituting Eqs. 4.8 and 4.9 into Eq. 4.6

and rearranging, the following relationships for the

transfer function estimates are obtained for the

autospectral (Ha( f)) and cross-spectral (Hc (f)) derivations.

IHai2 = Gvv + Gnn =
I HI2

(i
+ Gnn Gvv J (4.10a)

Guu + Gmr + Gmr Gu u

= Guv = I HI
(1 + G;"/GUU J

( 4 . lOb)
Guu + Gmm

IHCI

where,

I HI: true transfer function

I Ha I : autospectral derived transfer function

IHc I cross-spectral derived transfer function

Thus, regardless of the amount of input noise; if output

noise is present, the auto spectral derivation for the

transfer function estimate will always give a biased

estimate of the true transfer function. The cross-spectral

derivation, however, will give an unbiased estimate of the
true value when the input noise satisfies the inequality
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Gmm (.( Guu (4..11)

regardless of the amount of output noise, Gnn.. The re fo re 8

the cross-spectral method of calculating the transf.er
\

function estimate is always superior to the estimate
calculated using only autospectrawhenever independent noise

is present. .

4.2 ESTnltATION ERRORS

Estimation. errors are (1) bias errors due to resolution

deficiencies and (.2) random errors .due to variance extremes.

402.1 Bias Errors

The bias errors are attributable to:

(1) extraneous input noise,
(2) resolution bias errors,
(3) nonlinear system effects, and

(4) correlation of unmeasured inputs
wi th meas urad inputs.

Extraneous input noise will always cause the transfer

function estimate to be underestimated unless the noise is

(1) part of the excitation, (2) uncorrelated with the input

of interest, and/or (3) actually passes through the system.

Resolution bias errors may be resolved by ob tãin ihg. a-
'.

narrow enough resolution bandwidth, Be, to resolve closely
spaced peaks and troughs.
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If the system is nonlinear, then only a linear
approximation of the transfer function can be obtained. The

transfer function 'estimate is the best linear approximation

in a least squares sense to the true value however.

4.2.2 Random Errors

Random errors are due to:

(1) measurement or computational noise,

(2) uncorrelated, unmeasured inputs
that contribute to the output ,and

(3) system nonlineari ties.

The same explanations as presented above for the bias errors

apply here also. The interested reader can find additional

infonnation on transfer function estimation an.d erro r

evaluation in Bendat and Piersol (1971, 1980J.
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CHATER 5
MULTICHANNEL SPECTRAL ANALYSIS

In this chapter, applications of multichannel spectral

analysis are presented. The multichannel formulas and some

discussion on their interpretation is then given~

5.1 APPLICATIONS TO OFFSHORE STRUCTURES

The primary emphasis of this research and thesis is in

the application of mul tichannel spectral estimtes,

especially the transfer function, to mode shape

identification. In addition, the transfer function estL~te

can be used where actual input data, such as wave heights,

are measured. In this case, a transfer function estimate of
the dynamic platform response to ocean wave excitation is

. available.

501.1 Mode Shape Identification

In mode shape analysis, the resonant frequenc ies of the

structure are first identified and then the order and shape

of the normal modes can be determined. The more transducers

(accelerometers) used, the easier the task of identifying
the modes, especially the higher modeso Usually, th~ n~er
of accelerometers used determines the highest orde~'rnode.:
which can be determined.
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Normally, multichannel spectral analysis estimates

include only autospectra and cross-spectral magnitude,

phase, and coherence estimates. As discussed in Chapter 4,

the cross-spectral transfer function estimate tends to be an

unb iased estimate in comparison wi th autospectral
derivations. . Thus, the transfer function estimates obtained

from mul tichannel spectral analysis are particularly useful

in mode shape identification. They can be used to give

relative displacements between accelerometer locations.

5.1.2 Dynamic Response to Wave Excitation

If a wave staff is used to collect input wave

excitation, then a dynamic response (transfer function) can

be calculated for the response of different accelerometers

on the structure. This information is particularly useful
in the verification of theoretical (ie. computer models)

models for future design purposes.

5.2 MULTICHANNEL SPECTRAL ANALYSIS FORMUIAS

The equations used in multichannel spectral analysis

are presented from the time domain and the frequency domain

standpoint. Both the x( t) and y( t) time series are assumed

to be zero mean, real random processes. A number of

excellent, references are available and include Bendat and
Piersol (l97l, 1980), Crandall (1973), and Jenkins and Watts

(1968).
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5.2. 1 Time Domain Analysis

Correlations tell how well future values can be

predicted based on past values. .The. autocorrelation
function estimate (actually covariance for a zero mean

random process) is defined as

Rxx(-r) = Rxx(-i:) = E(x(t) x(t + T)) (5.1)
and is a .real, even function of lag 't. The

c ross-correlation function estimate (again,

c ross-covarianc e) satisfies

Rxy ( T) = Ryx ( - 1:) = E( x ( t ) y ( t +' ) i

= E(y(t)X(t.-T))
(5.2)

and is a real function of lag T.

5. 2. 2 Frequency Domain Aralys i s

The frequency domain equivalent of the correlation

functions are the spectral density function estimates. The

spectra and the correlations are FOurier transform pairs and

satisfy the Wiener-Khintchine relations:

coS(f) = ~ R(i:) exp(-j2irf't) dt' (S.3a)
coR(T) = l/2irllS(f) exp(j2'If't) df (5.3b)

All spectra defined in this thesis are one-sided as opposed

to two-sided (f varies over 0 to co rather than - co to co) and

satisfy
G (f) = 2 5(f) O(f( co (5.. 4)

The total area under the curves are equivalent.

also FourierSingle-sided correlations and spectra are
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transform pairs of one another.

The autospectral and cross-spectral estimates of

magnitude, phase, and coherence are now discussed.

5.2.2.1 Autospectral Estimates. The two-sided. autospectral

estimates satisfy

Sx x ( f ) = SxxC-f) C5.5)

5.2.2.2 Cross-Spectral Estimates. The

cross-spectral estimate is defined as

two-sided

Sxy ( f) = SyxC-f) = Sxy*C-f)

= Cxy(f) - jQxyCf)

It is a complex-valued function of frequency f. It consists

of (1) the coincident or co-spectra density function,

CxyC f), which is real-valued even function of frequency f:

and the quadrature spectral density function, Qxy(f), which
is a real-valued, odd function of frequency f. These

satisfy

-oo(f( 00 C5.6)

Cxy ( f) = CxyC-f)

= 0.5 * (Gxy(f) + GyxCf)J

The quadrature component satisfies

-00 (f ( 00 C 5. 7)

Qxy(f) = -QxyC-f) -OO(f(oo C5.8)

= j /2 * (G xy C f) - Gyx C f) J

It is shifted in time 90 degrees from the co-spectra density

function estimate. The corresponding values for the
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single-sided cross-spectrum are defined for frequency. over

~he interval (0,=) only.

The cross-spectra given by Eq $ 5e 6 for the two-sided

cross-spectrum can. be alternately defined in terms of a

magnitude and phase for the single-sided cross-spectrum as

Gxy(f) = I Gxy(f) I exp(-jexy(f)) O(f(= (S.9)
where the magnitude, I Gxy( f) I, and the phase, e xy( f) , are

defined as

I Gxy( f)1

e xy ( f)

= SORT (Cxy2 (f) + Qxy2 (f) J O(f( =

= ARCTAN ( Qxy( f) / Cxy( f) J O(f( =

(S.lOa)

(5..1Ob)
i

The magnitude is real-valued and even and the phase is

real-valued and odd function of frequency f 0

5.2$ 2,,3 Coherence Squared Estirates" Another way to display

- the cross-spectra is the coherence squared (or coherence, if

square root is taken) which is a form of normalizing the
cross-spectra. It is defined as

rxy(f) = Gxy2(f) /iGxx(f) * Gyy(f)ì (Sell)
And is a measure of the fraction or portion of one signal

which is due to the other. It satisfies the inequality

o ~ y2xy ( f ) ~ 1 (5 " 12)
When it has a value of zero, x(t) and yet) are said to be

incoherent or uncorrelated (independent if normal~ at the

particular frequency (Bendat and Piersol, 1971, 1980: .
Enochson, 1976).. When the coherence is zero for all

f requenc ie s , then x( t) and yCt) are statistically
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independent. When the coherence

particular frequency, x(t) and yet) are

coherent, correlated, or dependent.

equal s

said
uni ty

to be

at a

fully

5.2.2.4 Transfer Function Estimates. The transfer function

estimate, can be obtained by either an auto or
cross~spectral estimate. However, as discussed in Chapter

4, the cross-spectral estimate is better since output noise

is rejected. It is defined as

Hxy ( f ) = G xy ( f) / G x x ( f) . 0 ( f ( co ( 5..13 )

= Hr(f) - jHi( f)
where Gxx(f) is considered to be the input signal whether or

not it actually is. an exci tation. Analogous to the

cross-spectral estimate, the transfer function is composed

of (1) a component, Hr(f), which is a real-valued, even

function of frequency f: and (2) a component, Hi (f) , which

is a real-valued, odd function of frequency f. It can be

defined in terms of a magnitude (ie. gain), I Hxy(f) I, and

phase, ~xy(f). These must satisfy

Hxy(f) = I Hxy(f) lexp(-j~xy(f) J O(f(oo (5.14)
whe re ,

I Hxy( f) = i Gxy(f) I / Gxx(f) O~f ( 00 (5.15)

~ xy ( f ) = arctan (Hi(f) / Hr(f)J

= exy( f.)

Thus, the phase, ~xy(f), of the transfer function estimate

is identical to the phase of the cross-spectral estimate

0xy( f) .
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5.3 INTERPRETATION OF CROSS-SPECTRAL ESTIMATES

The primary use of the cross-spectral estimates will be

in mode shape identification. A brief discussion of the
possible interpretations of each of the autospectra and
cross-spectral magnitude, phase,. coherence, and transfer

function estimates will be presented.

5.3. lAutospectral Estimates

the autospectral densitiy estimates reveal peaks which

may be due to either normal modes of the structure, machine

noise, or excitation peaks.

5.3.2 Cross-spectral Magnitude Estimtes

The cross-spectral magnitude estimates should be used
in conjunction with the autospectra estimate to locate
natural frequencies and half-power damping estimates.

5.3.3 Phase and Coherence Estimates

The phase and coherence (or coherence squared)

estimtes should be used in conjunction with the auto and
cross-spectral magnitude estimates to determine modal

characteristics. Coupling between modes can cause the phase

values to be other than zero or 180 degrees. Extraneous-
noise in the measurement at a particular location will cause

the coherence value between that accelerometer and all
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others to be less than unity. other possible explanations

for low coherence values could be (1) a nonlinear

relationship between the output signals, (2) different
contributions from uncorrelated sources, and (3) wave

excitation at an angle to the structure causing no response

from one of the accelerometers. The predicted modal

deflections will be underpredicted if the coherence is much

less than unity.

Generally i mode shape identification should not be made

unless a coherence of near unity and a phase of near zero or

180 degreès is obtained with all other outputs.

5.3.4 Transfer Function Estimates
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. CHAPTER 6
CASE STUDY OF A SINGLE CAISSON PRODUCTION PU_'lFORM

In order to compare the multichannel MEM algori thrs
with the conventional Blackran-Tukey approach, data was

collected and analyzed for an offshore caisson platform

located in the Gulf of Mexico and operated by Amoco. The

data was collected in March, 1981 by Prof. Jo Ko

Vandiver, Mike Cook, a Graduate Research Assistant, and Don

Green, an Amoco engineer. In this Chapter, a description of.

the platform, instrumentation, load cases, test set-up, and

data processing is presented.

6.1 CAISSON PIATFORM DESCRIPTION

The offshore caisson platform is located in 89 ft of

water in the Gulf of Mexico. It consists of a single,

vertical cylindrical caisson which telescopes from a 7 ft

diameter at the mudline to 4 ft at the MIW. Figure 6.1 is a

three~dimensionai view of the structure. It supports three

decks: a helicopter, production, and wellhead deck. Figure

602 shows that it is 265 ft overall: extending lOO ft below

the mudline, 89 ft through the water column, and 76 ft above

the surface. Due to the symmetry of the single caisson and

the resultant lack of interference from adjacent legs, it -

makes an ideal structure for an empirical study.
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6.2 INSTRUMENTATION

The instrumentation for this series of tests consisted

of as many as four. accïelerometers, a wave staff, and a
Tandberg 4 channel FH. tape recorder..

6.2.1 Accelerometers

The accele~ometers used were Endevco QA ll6-16 force
balance type. They can measure up to + 1 g, resolve down to

-6 .10 gIs, and have a sensitivity of 1 volt per g.

6 . 2 . 2 Wave Staf f

The wave staff is a capacitance type which converts

changes in surface elevation to variations in voltage

output. A variable capacitor is formed using an insulated
wire. The wire and water act as the two plates of the
capacitor while the wire insulation provides the dielectric.

Two Colpitts oscillators form the detection circuitry. One

oscillator acts as a reference signal while the second

oscillator frequency is governed by the capacitance of the

sensor.

The wave staff was suspended from one side of the

wellhead deck. The lower end was heavily weighted to

prevent it from being deflected from the vertical due to

wave or current action.
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6.2.3 PM Tape Recorder.

A Tandberg 4 channel FM t.ape recorderN Model 100, was

used to record the data. It uses standard 1/4 in. t.ape and

records simultaneously on four channels with the option to

override channel four with voice commentary.

6. 3 SUMMARY OF LOAD CASES

The results from two of t.he five load cases conduct.ed

on the caisson platfor. are presented in this thesis. They

are described below.

6.3. i Description

Load Case No. i was designed to measure input. wave

excitat.ion and platfor. flexure and torsional modes. The

wave staff and three accelerometers N all placed in the same

horizontal plane on the wellhead deck, were used. A biaxial

pair was placed. in the cent.er of t.he deck oriented nort.h and

east.. A third accelerometer was placed in the middle of the

north side of the deck and was also oriented in an easterly

direction to faciiitate torsional mode identification (see

Figure 6" 3) .

Load Case No. 2 was designed to measure the flexural

mode shapes of the platform. Four accelerometers, were -
placed in the same vertical plane running through the

centerline of the platform with accelerometers oriented in a
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northerly direction (see Figu.re 6.4). A summary of this
data for the two load cases ~s presented in Table 6. 1 0

60302 Envir.onmental Conditions

An anemometer was used to measure wind speeds. 0 Visual

observation was used to determine sea state conditions in
all load cases where the wave staff was not used. In load

Case 1, the RMS wave amplitude was calculated from the power

densi ty spectrum calculated from the measured wave staff
data. The significant wave height was then calculated from

this datao Table 6.2 summarizes these environmental.

conditions 0

604 TEST SET-UP

The wave staff was fixed to the platform. The two

possible mounting locations were from the boat landing and
from the center of the north side of the wellhead deck.
Mounting the staff off of the boat landing would have

insured less motion of the sensor element, but would have
resulted in interference from the caissono Therefore, the

wave staff was mounted from the wellhead deck u some 40 ft

above the M ll . The suspended 30 Ib weight helped to
stabilize the gage.
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TABLE 6G 1
SUMMARY OF LOAD CASES

De sc ription Date Input
Wave Input
Torsion Mòde Shape
load Case

3/28/81. Wave
S:taff

Fl exural
Mode shape
load Case

3/25/81 None

TABLE 6.2
SUHMARY OF ENVIRONMENTAL CONDITIONS

De sc ription Wind, knots

Wave Input and 10-12
Torsion Mode Shape
load Case

Flexural ENE ~ 20
Mode shape
load Case

---------------

au tput

lateral plane,
Biaxial & single
Accelerometers

Vertical plane,
4 colinear
Accelerometers

Sea State, .ft
Seas
Hs = 3.32'

Seas
5-8'

Note:
Significant wave height calculated from RMS wave
amplitude of wave PSD
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The FM tape recorder was located in a centralized place

on the proauc~ion deck and all cables were connected ~s

requiredo The amplifier gain was selected to give an

accelerometer output of 100 volts per ge Data was recorded

on the four channel~ at 1-7/8 ipso

The only machinery ooperating on the platform was a

diesel generator on the production deck"

605 DATA PROCESSING

Prior to calculating the spectral. estimates, using

either conventional or MEM methods, the data was processed

using the following programs:

(1) SCRIBE - converts FM tape source for each channel
into digitalTSL form,

(2) TRANSL - translates TSL code into Fortran code,

(3) BZERO - makes a time series zero mean, and

(4) SCALE - scales a time series for proper voltage
conversion factor.

A sampling rate, fs, of 6,,4 Hz (0,,16 second interval)

was used in the data reduction. A total of 80 minutes (4800

see, 30720 data points) of data was collected"

The multichannel Burg direct on the data method is

implemented in the program BRGEM G Da ta is acc epted

directly as input" The correlation based programs,. the.-
81 ackman-Tukey program BTSPEC and the Yule-Walker MEM

program RYWEM, require auto and cross-correlations as
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input. These are calculated. using the programs ACORPM. and

XCOR for the auto and cross-correlations respectively.
These correlations were calculated to lag lengths of 512

points or 80 seconds. This value was chosen as an

appropriate tradeoff between resolution and va.riance. A.
total of 29696 points were used (58 segments of 512 points

each) .
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CHATER 7
COMPARISON OF MULTICHANNEL SPECTRAL ANALYSIS METHODS

In this chapter, a.. comparison of t.he different
multichannel methods of spectral analysis is made. These

include the Blackman-Tukey (BTSPEC), and MEM direct on the

datà (BRGMEM) and correlation extension methods (RYWEM).

First8 a discussion of the effect of the four different

windows and the window duration on the Blackman-TUkey method

is presentede Then8 the effect of the segmenting and

averaging procedure on the MEM direct on the data (BR&~EM)

For all comparisons 8 the toad Case 2 Helicopter and

~'lellhead deck accelerometers are usede As discussed
previously in Section 6., 5, the BTSPEC and RYWMEM programs

require correlations as input. The BRGMEM program

calculates the cross-spectral estimates directly from the
data. A sampling frequency of 6.4 HZ was used to digitize a

total of 80 minutes (4800 seconds, 308720 data points) ., An

"overlap and save" technique was used to calculate the
correlation function estimates from 58 segments of 512

points each (29.,696 points) e
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7.1 BIACKMAN-TUKEY METHOD

In this section the effect of different window shapes

and durations on the mul tichanpel Blackman-Tukey method is

discussed.

7. l.l Effect of Window Shape

The effect of different windows, as discussed in

Chapter 2.0, on the multichannel Blackran-'Ikey method. will

be presented. The windowing is performed. on the correlation

function estimates prior to Fourier transforming for the

spectral estimates. Figures 7.1 - 7.4 illustrate the effect
of the Boxcar, Bartlett,. Hanning, and Parzen windows

respectively on the magnitude cross-spectral estimate for a

window .duration or length of 512 lags (ie. the entire

correlation lag length). The corresponding resolution

bandwidths, Be, are 0.00625, 0.01875, 0.01667, and 0.00057

Hz respectively. OJviously, as discussed in Section 2. l.l,
only the Hanning window is capable of giving a satisfactory

IIbias versus variancell tradeoff without severe sidelobe

leakage. This leakage is very evident in Figures 7.1 and
7.4.

7.1.2 Effect of Window Duration

Figures 7.5 and 7.6 show the magnitude cross-spectral

i.
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EFFECT OF BOXCAR WINDOW ON BLACKMAN-TUKEY METHOD
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EFFECT OF BARTLETT WINDOW ON BLACKMAN- TUKEY METHOD
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FIGURE NO.7. 3
EFFECT OF HANNING WINDOW ON BLACKMAN-TUKEY METHOD
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FIGURE NO.7. 4
EFFECT OF P ARZEN WINDOW ON BLACKMAN- TUKEY METHOD
MAXLAG = 5 t 2
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estimate calculated using the. Hanning window for window

durations of 128 and 256 lags respectively. The

corresponding resolution bandwidths, Be, are O~ 06667 and

0.03333 Hz respectively. Comparing these two figures with

Figure 7.9:3 for 512 lags., a window durati.on of at least. 256

lags is required to give satisfactory results 0 The effect

of sidelobe leakage on the cross-spectral magnitude estimate

in Figure 7~5 can be clearly seen.

7. '2 BRGMEM DIRECT ON THE DATA METHOD

The effect of segmenting ard averaging, analogous to
that used. for periodograms to decrease the variance at a

small loss of resolution, is shown in this section. Figures

707 - 7.9 represent the multichannel spectral estimates for

the magnitude cross-spectrum, phase, and coherence squared
respectively. Note that the phase est.imates are the
absolute value of the phase estimate t.o eliminate rapid

crossovers between + 180 degreese A series of three graphs
for each estimate, numered a, h, and c, are shown for the

different segment and averaging combinations listed below.

(1 ) Graph a:
1 segment of 2048 point.s ( 3 20 s ec) ,

(2 ) Graph b:
9 segments of 2048 points ( 2 880 sec total), and

(3 ) Graph c:
1 segment of 18432 points (2880 sec).

A 1 ag of 80 was selected as the optimum model order (filter
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length) based on the multichannel Akaikei s FPE model order

criterion.

Based on the similarity of the shapes of the three

curves in each figure, we can say

averaging technique can be Used with
confidence where the analyst is faced with:

(1) a restricted budget,

(2) time constraint, and/or

(3) small core (memory limited) computere

Thus, even the use of only 2048 data points (320 seconds

data) gives satisfactory cross-spectral estimates 0

the segmenting and

some degree of

of

7.3 COMPARISON OF THREE MULTICHANNEL METHODS

In this sectiong a comparison of the multichannel

Blackran-TUkey and the two MEM methods is made. The Haning

window is used on the Bl aCkman-Tukey method. '!e MEM direct

on the data (BRGi'1EM) method is represented by the segment

and average technique of 9 segments at 2048 data points per

segment v Figures 7010 - 7e12 represent the multichannel

c ross-spectral magnitude, phase, and coherence squared

estimates respectively. Again, the phase estimates shown

are the absolute value of the phase estimates 0 A series of

three graphs for each estimate, numered a, bi and c8 are

shown for the different multichannel spectral analysis ~

methods listed below v

(1) Graph a:
BTSPEC, Hanning window,
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(2) Graph b:
BRGMEM, 9 segments ~ 2048 points,

( 3) Graph c:
RYWMEM e

Each of the BTSPEC, BRGMEM, and RYWMEM methods is shown with

a windQw duration.: or model order of 80, selected based on
Akaike' s Final Prediction Error (FPE) model. order criterione

Obviously, ~he BTSPEC curves don Ðt even come close at

this low a window duration of correctly calculating .the
cross-spectral estimatese A resolution bandwidth, Be, of
Oe 1067 Hz was used. The effect of sidelobe leakage on the
cross-spectral magnitude estimte is clearly seen in
Figure 7.l0ae Both multichannel MEM methods, however, give

reasonable results e The RYW~~ results seem to be smoother

overall than those calculated using the BBGMEM methode The

cross-spectral magnitude estimates obtained using the RYWEM

method appear to somewhat more pronounced in the higher

frequency range than the corresponding estimates obtained

with the BRGMEM methode Also, the RYWMEM method gives phase.

estirateswith less fluctuations than the BRGMEM method 0

When shorter data segments of 512 points each were averaged

using the BRGM~~ method (the same total numer of data

points) , these fluctuations in the phase estimates were

eliminated (graph not shown).

Thus, either of the multichannel MEM methods will 0. give .-

superior resul ts relative to conventional multichannel

spectral analysis methods. One of the reasons why the



CHAPTER 7 (Cont.) - ll9-

Blackmart~Tukey method gave such good comp~ritive results is

due to the large amount of data processed. The real time
and cost saving of the MEM method is in its ability to
calculate spectral estimates using only, small amounts of
data with low model orders or. fil ter lengths. The BRGMEM

method can be used to give reasonable spectral estimates

where the segmenting and averaging technique is employed and

large amounts of data are not processed. Otherwise,

excessive amounts of computer storage and time are required

relative to the RYWEM method.



-120-

CHATER 8
APPLICATION OF MULTICHANNEL MEM METHODS

TO CAISSON RESPONSE RECORDS

In this. chapter, the applications of multichannel

spectral analysis methods to offshore structures are

presented. Specifically, the time series accelerometer data

collected on the caisson platform discussed in Chapter 6 is

analyzed to determine (1) a dynamic frequency response (ie.

transfer function) to wave excitation and (2) mode shape

identification of the platform.

8.1 DYNAMIC RESPONSE TO WAVE E~ ITA TION

The dynamic frequency response to wave excitation is

calculated using the wave height data and the north

component of the biaxial pair of accelerometers (NAi'l)

located in the center of the wellhead deck in Load Case l$

Figure 8.1 shows 80 seconds of the 4800 seconds (80 minutes)

of .wave height data collected with the wave staff $ The time

history has the distinctive characteristics of a Gaussian

wide band random process. Figure 8.2 illustrates 80 seconds

of the time history of the (NAW) accelerometer. Both time

histories contain 512 data points sampled at 6$ 4 hz.

The two autocorrelations are shown in Figures 8.3,. and.-
8.4 respecti vely . Both autocorrelations were calculated

using the computer program ACORP employing the technique of

Oppenheim and Schaffer (l975) of overlap and save FFTi s. A
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total of 58 segments of 512 data points each (29696 total
data points) were used to give a DC removed, biased

estimate. The autocorrelation of . the NAW acceleròmeter

exhibits the classical shape of a Gaussian narrow band

.random process as one would expect from a Gaussian input to

a lightly-damped oscillator.

The cross-correlation is shown in Figure 8.5. The
computer program ~OR was used to give a DC removed, biased

estimate. The low values for negative lag values indicate

that there is not much correlation for past values, which is .

as it should be for a causal process.

Theautospectral estimates for the wave excitation and

NAW accelerometer are shown in ~igures 8.6 and 8. 7
respectively. The auto and cross-spectral estimates were

calculated to a model order of 60 lags according to Akaike's

FPE model order criterion. The wave height spectrum has the

typical "Pierson-Moskowitz" shape. The first or main peak

at approximately 0.l4 Hz is the predominant frequency of
wave energy. The second peak at approximately Ö.32 Hz
represents a coupling between the wave staff and platform
flexure (see Figure 8. 7) . As discussed in Section 6.4, the
wave staff was attached rigidly from the wellhead deck.

Therefore, the wave staff physically moved with the platform

response.
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The results of the cross-spectral analysis are shown in

Figures 8.8 - 8.10 . for the cross-spectral magnitude,

coherence squared, and transfer function estimates

respectively. The coherence shows a high degree of

correlation (0. 7) at 0.32 Hz. The transfer function

estimate looks good. except for the coupling problem. The

second and third peaks at approximately 1. 68 and 2.66 Hz are

due to noise which shows up in all the time histories.
These peaks are identified on all the plots as such. Causes

of this noise will be discussed in Section 8.3.

8.2 MODE SHAPE IDENTIFICATION

In this section, the multichannel spectral analysis

methods are applied to the caisson platform accelerometer
data to determine mode shapes. The flexural and torsional

mode shapes are evaluated using the transfer function

estimates.

8.2.l Flexural Modes

The helicopter (NAH) and wellhead (NAW) deck

accelerometers of Load Case 2 are presented in this section
as an example of the mode shape identification procedure.

As discussed in Chapter 6, both had the same northerly

orientation and were located in the same vertical plane

through the center of the caisson platform. The NAH and NAW

accelerometer time histories are shown in Figures 8.11 and
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8.12 respectively. Again, each curve represents 80 seconds

(512 data points) of data with- a sampling frequency of .6.4

Hz. Both time histories have the same shape as they both
have the same orientation. ~ote that the magnitude of the

wellhead deck response is less than that of the helicopter
deck.

The corresponding autocorrelations are shown in Figures

8.13 and 8.14. Again, the computer program ACORPwas used

with 58 segments of 512 data points each (29696 total data

points) to obtain a DC removed, biased correlation function.

estimate. The maximum lag length is 80 seconds or 512 lags.
Note that both curves have the same shape.

The cross-correlation is shown in Figure 8. l5. Again,
the computer program XCOR was used. The same input

parameters used in the computer program ACORP were used

here. Both auto and cross-correlations exhibit the
classical shapes of a Gaussian narrow band random process.

Based on Akaike's FPE model order criterion for the

BRGMEM direct on the data MEM method, an optimum value of 80

lags was used in the cross-spectral analysis. Figures 8.l6

and 8.1 7 illustrate the autospectral estimates for the'

helicopter and wellhead decks respectively. Only the

fundamental flexural peak can be discerned using linear
plots as this peak at approximately 0.32 Hz possesses most

of the spectral energy of the response spectra for both

accelerometers.
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Figures 8. l8- 8.20 show the cross-spectral estimates of
magnitude, phase, and coherence squared respectively.
Again, to prev~nt rapid crossovers between + 180 degrees,
the absolute value of the phase estimate has been plotted in

all phase graphs. '!e semi-log plot o.f Figure 8.18 for the

cross-spectral magnitude estimates shows the relative energy

content among the first three flexural modes. Obviously, as

illustrated in the autospectra, only the fundamental

flexural mode contains any significant amount of energy.

The first three flexural modes have been estimated to be

located at 0.32, 1.20, and 3.06 Hz respectively. Only the
first two modes are positively identified, however, because

of the low coherence estimates for the third mode.

The transfer function estimates for the cross-spectral

analysis between the helicopter deck and the production,
wellhead, and boat landing accelerometer locations are shown

in Figures 8.21 - 8.23 respectively. Table 8.1 lists a
sumary of the cross-spectral estimates for each of the

first three flexural modes for each of these three

combinations of accelerometer locations. These transfer

function estimates were used with the helicopter deck as a

psuedo-input to give relative acceleration magnitudes (ie.

relative accelerometer location displacements if doubly

integrated) between the decks for mode shape identification.
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TABLE 8.1
SUMMARY OF CROSS-SPECTRAL ESTL~ATES

FIRST THREE FLEXURAL MODES

Phase
Acceleromet.ers (DegJ Coherence ~ Transfer Function

...

Fundamen tal Fl exure = 0.32 Hz

liAR and NAP o . 1000 0.85
NAH and NAW 0 1.00 O. 70
NAH and NAB 0 1000 0.40

Second Flexure = 1.20 Hz

NAB and NAP 0 1,,00 0.57
NAB and NAW 12 0.70 0.07
NAH and NAB 180 0.95 0.65

Thi rd Flexure = 3.06 Hz

NAB and NAP 15 0.00 0.15
NAB and NAW 180 0.05 0.15
NAB and NAB 180 0.00 0.10

TABLE 8.2
COMPARISON OF CAlCUIATED NATURAL FREQUENCY ESTIMATES

Description Mode 1, Hz Mode 2, ~ Mode 3, Hz

Finite Element Model
Mul tichannel Spec tral
Analysis

0.33
0..32

1..12
1.20

3.3
3..06
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A two-dimensional model incorporating geometrical,
mass, and stiffness properties of the caisson platform as
well as soil conditions was used to perform a finite element

analysis (Cook, . 1981J. The model, consisting of two .DOF

beam and truss. elements (translational and rotational), is

shown in Figure 8.24. Concentrated masses for the deck

weights, and added mass equal to the displaced volume of the

caisson in the water colum were used in the modeling. The

soil properties were approximated with linear springs. The

natural frequencies and mode shapes of the three lowest
flexural modes were calculated.

A comparison of the first three estimated flexural mode

natural frequencies with those calculated using Cook IS

finite element model is shown in Table 8.2. Hong (1976J
calculated a value of 0.30 Hz for the fundamental flexural

mode. A comparison of the first two relative mode shapes is

given in Figure 8.25. Thus, the natural frequencies and

mode shapes estimated using the MEM multichannel spectral

analysis techniques compare favorably with other reported
results. As mentioned previously, the third flexural mode

is suspect due to the low coherence squared values.

8.2.2 Torsional Mode Shape

In this section, an attempt is made to identify the
fundamental torsional mode shape using the two east oriented

accelerometers located on the wellhead deck in Load Case 1.
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These accelerometers are the east component of the biaxial

pair in the center of the wellhead deck (EAW) and the east

accelerometer located. on the northern edge of the wellhead.

deck (EAT). The EAW accelerometer is used as the input

signal in the hopes that the relatively small torsional
response of this accelerometer (due to its location in the

center of the deck) will produce a large transfer function

estimate at the natural frequency in torsion.

The time history for the EAW accelerometer is shown in

Figure 8026. It is identical to that of the EAT

accelerometer. The auto and cross-correlation function
estimates are shown in Figures 8.27 and 8028 respectively 0

Figure 8.29 is a linear plot of the autospectral

estimates for the EAW accelerometer. Again, the

autospectrum for the EAT accelerometer is identical.
Estimates of cross-spectral magnitude, phase, coherence

squared, and transfer function are shown in Figures

8030 - 8033 respectively. The large peak at approximately

2.13 Hz was initially believed to be an aliased or folded

replica of the actual fundamental torsional natural

frequency. Aliased frequencies are given by the formula

2 * n * fc + f ( 8 0 l)
where,

n

fc

f

: even integer 1,2,3,...

: cutoff or Nyquist frequency, Hz

: aliased frequency of interest, Hz
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A crude estimate of 4.3 Hz for the fundamental. natural

frequency in torsion was calculated using

.£6 = (1/2~) * SQRT(~ /I J (8.2)

where,

~

~

: fundamental natural frequency in torsion, Hz

: equivalent torsional spring for the caisson,
ft-lb/rad

I : mass moment of inertia for the caisson,
slugs-ft2

As an additional check, the EAW an~ EAT data records were

re-digi tized at a higher sampling frequency of 12.8 Hz. The

expected torsional peak at 4.3 Hz was not obtained in the

cross-spectral magnitude estimates. The best explanation

for the cause of this peak is other sources of noise on the
platform which have not yet been positively identified, or
some local platform mode.

8.3 SPURIOUS NOISE PEAKS

Appearing in every auto and cross-spectral estimate

plot are spikes or peaks located at approximately 1.68 and

2.66 Hz. Based on the phase and coherence estimates, these

peaks do not represent true energy content of the response
spectra. Rather they are due to noise. To test if the

noise was due to. the tape recorder, one channel of the tape

recorder was grounded and an empty data record was recorded

and digitized at a sampling frequency of 6.4 Hz.

Figure 8.34 shows a plot of the biased autocorrelation

function estimates to 512 lags. A MD~ autospectral estimate
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for 80 lags is shown in Figure 8.35. Again, the same

procedure as discussed in Section 6.5, was used to calculate

these estimates. Based on the results of this test, the

noise peaks located at 1.68 and 2.66 Hz~ are definitely
attributable to tape recorder noise, probably caused by

transport flutter. In addition, other noise peaks at 1.34,

2.01, and 2.20 Hz were also identified. None of these peaks

corresponded to the suspected torsional peak at 2.13 Hz.
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CHAPTER 9
SUMMARY AND CONCLUSIONS

Two different versions of the . mul tichannel MaximUm

Entropy Method of spectral analysis have peen implemented

and compared with a rnul tichannel version of the
Blackman-Tukey method. The two MEM multichannel computer

programs are a direct on. the data method of Burg (BRGMEM)

and a correlation extension or Yule-Walker method (RYWEM),

both originally formulated by Strand. The BRGMEM method.

employs a least squares estimate of the reflection
coefficients with inverse power weighting to guarantee a
positive-definite covarianc.e matrix and a resulting .stable
spectral estimate. The RYWMEM method is based on the

triangular decomposition of the correlation matrix using an

algori thr developed by Rissanen. The mul tichannel

Blackman-Tukey code gives the user the choice of four

different windows: (1) Boxcar, (2) Bartlett, (3) Hanning,

and (4) Parzen. Both multichannel MEM methods gave superior

results relative to the Blackman-Tukey method. 'I e RYWlvJ EM

spectral estimates seemed to be smoother than those

calculated using the BRGHEM method. This was especially
evident in the phase estimates. Where large amounts of data

are to be processed, the user may want to use the RYWMEM

method to avoid the large computer storage and time

requirements.
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The BRGMEM method was implemented in a .form that

allowed segmenting and averaging of the data, much like
periodogram spectral estimates are calculated to mimimize

the variance. 'For comparison, one segment at 2048 data

points, nine segments at 2048 data points each, and one
segment at 18432 dat.a points were analyzede The t.wo
shorter, segmented dat.a records gave satisfactory
cross-spectral estimat.es relative to the longer data record
of 18432 data points (48 minutes) e Therefore, where the
analyst is faced with time, budget, and/or computer memory

storage constraints: .the segmenting and averaging technique

using the mul tichannel BRGMEM computer program has merit.

A transfer function estimate using the multichannel

methods of spectral analysis was used in mode shape

identification of an offshore caisson platform located in 89

ft. of water. Transfer function estimates obtained from

roul tichannel spectral anålysis are known t.o be superior to

those estimates obtained using autospectral methods in terms

of their relative insensitivity to input and output noise.
These transfer function estimates, using accelerometers as

psuedo-inputs, give relative acceleration amplit.udes (which,

if doUbly integrated, would be relative displacement

amplitudes) between two accelerometers. Comparison of these

relative acceleration magnitudes with the relative _
displacement amplitudes obtained from a finite element model

of the caisson platform gave reasonable agreement. The

third flexural mode values were not useable, however,
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because of low coherence values. Thus, this technique can
be a useful tool (ìn conjunction with the cross-spectral
estimates of magnitude, phase, and coherence) in mode shape

. identi fication.

Future research can go in several different directions.

One is to implement the multichannel MEM methods for three

or more channels of inputs and outputs on the larger VAX
11/780 computer. This will enable the calculation of

partial correlation and cross-spectral estimates which

consider the effect of multiple inputs on a particular

output. The current MEM versions only consider the

influence of one input or channel on the other channel or

output.

Several different modifications to the Burg algorithm
have been proposed to alleviate the problems of spontaneous

line splitting, frequency shifting, and rounding errors of

the Levinson recursion which sometimes affect this method.
Noteable among these are the papers by (1) Barrodale. and

Erickson (1980) which presents a least squares Cholesky

algorithm for short data records which avoids the
shortcomings inherent with the !beplitz form, and (2)

Fougere (1976) which presents a modification to the Burg

algorithm to prevent spontaneous tone splitting and

fr~quency shifting. Their ideas should be investigated

further to determine their usefulness in multichannel

spectral analysis of offshore structures.
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Another area of future research invol ves the
development and implementation of an ARMA (Autoregressive,

Moving Average) 'model for single andmu1tichannel spectral

analysis. The ARMA model utilizes zeros as well. as poles
and therefore requires smaller model orders or filter

lengths to achieve the same degree of resolution. The MEM

method is more prone to introduce spurious peaks in the

spectral estimates due to its all pole nature. Thus,

substantial savings in computer time and more accurate

spectral estimates may be possible over the all pole MEM

methods.
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