Multi-Channel Mesh Networks:
Challenges and Protocols'

Pradeep Kyasanur, Jungmin So, Chandrakanth Chereddi, and Nitin H. Vaidya
University of Illinois at Urbana-Champaign

Abstract— Supporting high throughput is an important
challenge in multi-hop mesh networks. Popular wireless
LAN standards, such as |[EEE 802.11, provision for mul-
tiple channels. In this article, we consider the use of
multiple wireless channels to improve networ k throughput.
Commercially available wireless network interfaces can
typically operate over only one channel at a time. Due to
cost and complexity constraints, total number of interfaces
at each host is expected to be fewer than the total channels
available in the network. Under this scenario, several
challenges need to be addressed before all the available
channels can be fully utilized. In this article, we highlight
the main challenges, and present two link-layer protocols
for utilizing multiple channels. We also present a new
abstraction layer that simplifies the implementation of new
multi-channel protocolsin existing operating systems. This
article demonstrates the feasibility of utilizing multiple
channels, even if each host has fewer interfaces than the
number of available channels.

I. INTRODUCTION

In recent years, multi-hop mesh networks have been
advocated as a cost-effective approach for providing
high-speed last mile connectivity, supporting community
networks, etc. Mesh networking architecture may spur
the growth of bandwidth-intensive applications, such as
video sharing among community members. For build-
ing high-speed, yet cost-effective mesh networks, it is
desirable to build systems based on standard wireless
technologies. Widely used wireless LAN standards, such
as|EEE 802.11 [1], provision for multiple channels (e.g.,
IEEE 802.11a has provisioned for up to 12 channels in
the US). Utilizing multiple channels is one approach for
increasing the network capacity. The focus of this article
is the design of mesh network protocols that utilize
multiple channels provisioned for in IEEE 802.11.

Currently available off-the-shelf IEEE 802.11 wireless
interfaces (e.g., [2]) can use only one channel a a

*This research was supported in part by US Army Research Office
grant W911NF-05-1-0246, NSF grant ANI-0125859, and Vodafone
Graduate Fellowship.

Interface 1
HOST : A

Interface m

K — — — —
e

Channel 1

Chaﬁnel m

\
Each interfaceis N
_ _ _ _ activeononly one
channel at atime

Channel ¢

Fig. 1. Channel and interface model.

time, although over time an interface can switch among
different channels. Therefore, the number of channels
on which a host may simultaneously transmit is limited
by the number of interfaces at the host. Reduction in
interface costs in recent years has made it feasible to
equip hosts with multiple wireless interfaces. Never-
theless, it is expected that the number of interfaces at
a host (say, 1-3) will be fewer than the number of
channels available in the network (say, 12 channels in
IEEE 802.11a networks).

The available channels may either overlap, such that
a channel partially shares its spectrum with adjacent
channels, or may be completely non-overlapping. When
channels overlap, transmissions on a channel may cause
interference on adjacent channels. Therefore, protocols
designed for overlapping channels have to account for
possible interference on adjacent channels. For simplic-
ity, in this article we restrict our presentation to protocols
that require non-overlapping channels. We model all
hosts in the network to have m interfaces per host, and
each interface can send or receive data over one channel
at a time. We assume that there are ¢ non-overlapping
channels available in the network. Figure 1 presents our
channel and interface model. In this article, we present
practical solutions for using all the available channels,
even when the number of interfaces at each node is fewer

than the channels available in the network (i.e, m < c).

The effective use of multiple channels in a multi-
hop wireless network requires several challenges to be
addressed. For example, consider a network where all
nodes have one interface, and there are two channels
available. Suppose each node keeps its interface fixed
on a specific channel. Under this scenario, if al nodes
keep their interfaces fixed on a common channel, then
the second channel is wasted. On the other hand, if some
nodes tune into channel one, while other nodes tune into
channel two, nodes on channel one cannot communicate
with nodes on channel two, thereby partitioning the
network. If interfaces are allowed to switch, this problem
is aleviated, but added complexity is introduced in
co-ordinating switching decision between neighboring
nodes.

The rest of the article is organized as follows. In
Section |1, we discuss the challenges, and approaches
for handling these challenges. We present two link layer
protocols for utilizing multiple channels in Section 111.
Section 1V presents a new abstraction layer in the
operating system kernel for implementing multi-channel
protocols. We conclude in Section V.

Il. MOTIVATION AND CHALLENGES

An important challenge in building mesh networks
is to provide sufficient network capacity to meet the
demands of high-bandwidth applications. The traffic
in mesh networks is expected to be directed between
(Internet) gateway hosts and mesh hosts. In addition,
we expect that in many scenarios, such as community
mesh networks, there will be traffic between mesh hosts
themselves. A question of interest under such traffic
congtraints is whether a large number of channels can
be utilized even if there are few interfaces per node.

We illustrate the benefits of using multiple channels
with a simple example scenario shown in Figure 2. All
nodes in the figure are within transmission range of each
other. Suppose that the network has two channels, and
each node has one interface. In this scenario, if node A is
sending data to node B on one channel, then node D can
simultaneously send data to node C on another channel.
On the other hand, a specific node can receive data from
only one other node at any time (under the restriction
of one interface per node). Therefore, two channels
can be fully utilized only if we carefully schedule the
transmissions. This simple example illustrates the need
for new multi-channel protocols that effectively schedule

Fig. 2. Example scenario: Each node has one interface and two
channels are available.

transmissions to utilize all the available channels, even if
each node has fewer interfaces than available channels.

We have conducted an asymptotic analysis[3] to study
the possibility of benefiting from multiple channels in
large networks, under the constraint of few interfaces
per node. Our results show that in a large network
having n nodes (see [3] for full details of models and
assumptions), even if every node has a single interface,
up to O(logn) channels can be fully utilized. This
result implies that in many practical scenarios, a small
number of interfaces per node suffices to utilize a large
number of channels. However, the theoretical capacity
is achieved with centralized a gorithms, and assumptions
of steady traffic. Although the theoretical results further
substantiate the possibility of utilizing all the available
channels with few interfaces, development of distributed
protocols is chalenging. We next highlight some of the
main challenges.

A. Distribute load across channels

One architecture used in the past, when there are ¢
channels, and m < ¢ interfaces per node, is to use
only m channels in the network. Every node perma
nently fixes its m interfaces to a common set of m
channels. Although this approach does not require new
multi-channel protocols (other than an initial channel
assignment), many channels are left unused, especialy
when the number of interfaces per node is significantly
smaller than the number of available channels. Network
performance can be improved by using al the available
channels, and this requirement implies that traffic should
be distributed over al channels.

There are several approaches for distributing traffic
load across al channels. One possibility is to fix inter-
faces of different nodes on different channels [4]. With
this approach, a node sends out (or receives) data over
only m channels, but by tuning interfaces of different

nodes on possibly non-digoint sets of m channels that
together include al ¢ channels, load is distributed across
al channels. For example, in Figure 2, nodes A and B
can fix their interface to channel 1, and nodes C and D
can fix their interface on channel 2, thereby distributing
traffic along flows A-B and C-D across both channels.
The benefit of this approach is that fixing interfaces on
a channel simplifies protocol implementation. However,
naively keeping interfaces fixed on different channels
may affect network connectivity. For example, in Figure
2, if node A has to send data to node D as well, node A
and node D cannot communicate because their interfaces
are on different channels. Keeping interfaces of nodes
fixed (forever) on different channels results in a network
partition if each node has a single interface. Even if
each node has multiple interfaces, network partitions
may arise if interface assignment is not carefully done.

A second possibility is to frequently switch the in-
terfaces of a node among different channels [5], [6].
Using this approach, over time, a node can potentialy
distribute its load over al ¢ channels. While this ap-
proach is more flexible, the sender and receiver nodes
have to co-ordinate with each other before transmis-
sion, as described in the next sub-section. Furthermore,
switching an interface from one channel to another incurs
a delay, and frequent switching may adversely affect
performance. We will describe one protocol in Section 111
that uses careful interface switching to distribute traffic
across multiple channels, and is well-suited for single
interface networks.

When each node has at least two interfaces, a third
possibility is to use a hybrid approach [7] that keeps
some interfaces of each node fixed, while other interfaces
can switch among channels. We will describe another
protocol in Section Il that uses a hybrid approach.

B. Channel Co-ordination

In asingle channel network, a sender node may initiate
a communication to a neighboring node whenever the
channel is free. Repeated failuresin communicating with
a receiver is commonly used as an indication that the
receiver is not directly reachable. In a multi-channel
network, with fewer interfaces per node than channels, a
sender node may be within the communication range of a
receiver node, but the interfaces of the two nodes may not
be assigned to any common channel, thereby precluding
communication. Furthermore, when interfaces switch
frequently, a receiver that was previously reachable on
a channel may have switched its interface to another

channel, and is no longer reachable.

For example, in Figure 2, node A may initially send
datato node B over channel 1. Subsequently, node B may
switch over to channel 2 and begin data transmission
to node C. While node B is on channdl 2, if node A
again attempts to send data to node B over channel 1, the
attempt will fail. Such failures may be mistaken as link
breakage, and can adversely affect the performance of
higher layer protocols. Therefore, reachability between a
pair of nodes, at a given time, depends on the channels
assigned to the interfaces of the two nodes at that time,
in addition to the channel conditions.

From the above discussion, it is clear that a sender
node has to be aware of a least one channel on which
the receiver is listening, before communication can be
accomplished. There are several approachesto ensurethe
sender and the receiver share a common channel. When
nodes have only one interface, the interface at a node
may have to be switched to utilize different channels.
Under such a scenario, one possibility is for al nodes
to periodically rendezvous on a common channel [5],
and during the rendezvous time publish the channels on
which they will be on till the next rendezvous time. We
present a protocol based on this technique in Section I11.

A second possibility is for each node to follow a
well-known sequence of switching through channels [6].
Since the sequence is well-known, a sender can predict
when it will share a channel with the intended receiver,
and send the data only when the nodes share a common
channel.

The above two possibilities can be used even if each
node has a single interface, but require fairly tight clock
synchronization among nodes. When each node has at
least two interfaces, other techniques that work with
loose time synchronization can be used. One techniqueis
to require each node to fix one interface on a common
control channel [8] shared throughout the network. A
sender node can negotiate with a receiver node, over the
common channel, a channel to use for later data com-
munication. Both nodes then switch one of their other
interfaces onto the negotiated channel and complete data
transfer. A drawback of this approach is that the common
control channel can become a bottleneck to performance
when the total number of available channelsis large.

A second technique is to alow each node to fix one
interface on a channel [7], with different nodes possibly
using different fixed channels. Each node announces
its fixed channel information to al other neighboring

nodes. Since a sender node is aware of the fixed channel
of a receiver node, it can switch one of its non-fixed
interfaces to the fixed channel of the receiver for sending
data. We present a protocol based on this technique in
Section I11.

C. Support for broadcast

Wireless channdl is a broadcast medium. In a single
channel network, a packet transmitted by a node can
potentially be received by al nodes in the transmission
range of the node. We define this capability as local
broadcast. Local broadcast is used by many protocols,
such as routing protocols, to efficiently disseminate
information in the network. A key challenge in multi-
channel networksis to continue to provide efficient local
broadcast. If all nodes in the network have an interface
on some common channel, then local broadcast packets
can be sent over that channel. Otherwise, supporting
local broadcast requires explicit support from multi-
channel protocols.

For example, suppose node A in Figure 2 intends to
broadcast a packet. Ideally, the packet should be received
by nodes B, C, and D, which are neighbors of node A.
If nodes B, C, and D are on a different channel than
the channel used by A for transmitting the packet, then
local broadcast is not achieved. If nodes are frequently
switching channels, then there may never be atime when
al neighbors of node A have an interface on a common
channel.

The approach used to support local broadcast depends
on the techniques in use for channel co-ordination.
For example, when channel co-ordination is achieved
through periodic rendezvous on a common channel,
broadcast packets can be sent out during the rendezvous
interval. This approach does not increase the cost of
broadcast when compared to a single channel network,
but increasesthe transmission delay of broadcast packets.
In techniques where different nodes use different fixed
channels, a node may explicitly transmit a copy of the
broadcast packet on all channels. This technique incurs
higher overhead for supporting broadcast than in asingle
channel network.

In genera, the appropriate multi-channel protocol to
use may also depend on the frequency of broadcasts. If
broadcast traffic is more prevalent, approaches that use
a common channel for the whole network may be better
(although these approaches may not effectively utilize
multiple channels).

I1l. PROTOCOLS

Protocols for exploiting multiple channels can be
designed at severa layers of the protocol stack. For
example, the notion of multiple channels can be incor-
porated into a medium access control (MAC) protocol,
or into a link layer solution above the MAC, or into
a routing protocol. Higher benefits may be achievable
by using cross-layer designs. In this article, we restrict
our presentation to two link layer protocols. The link
layer protocols are designed to operate over a single
channel MAC protocol, such as IEEE 802.11. The link
layer protocols are situated between the network layer
and the single channel MAC, and present the abstraction
of asingle channel to higher layers. This allows existing
higher layer protocols to operate unmodified.

The first link layer protocol, caled MMAC, is in-
tended for the scenario where each node may have only
one interface. The second link layer protocol, caled
Hybrid Multi-Channel Protocol (HMCP), is optimized
for the scenario where each node has at least two
interfaces.

A. MMAC

MMAC [5] is a link-layer multi-channel protocoal,
designed primarily for nodes with a single network
interface. A node equipped with a single interface can
only listen to one channel at a time. Therefore, in
order to use multiple channels, the interface has to
be switched between channels. As discussed earlier,
when nodes are allowed to switch channels, a channel
coordination method is necessary because apair of hodes
should be listening on the same channel at the time of
communication.

MMAC coordinates channels before communication
by having nodes negotiate channels using control mes-
sages, before exchanging data traffic. In MMAC, time is
divided into beacon intervals. At the beginning of each
beacon interval, there is a duration of time called “ATIM
window”, when all nodes in the network are forced to
rendezvous (listen) on a common channel, say channel
1. During the ATIM window, a node which has traffic to
send negotiates the channel to use, for subsequent data
transfer with the receiver, using control messages. The
process of channel negotiation is illustrated in Figure 3.

In this scenario, there are 4 nodes placed in chain-like
topology (ordered as A-B-C-D). Node A has packets
for B and node D has packets for C. When a new
beacon interval starts, every node switches to channel
1 and this starts the ATIM window. Since node A has

Channel 10 Selected Channel 0

ﬂ ATIM-O
Al ATIMO_RES(1)0

Beacon

BDﬂ

Channel 10
RTSO DATAO

Beacon[J

Channel 10 ﬂ
Channel 200 ﬂ

Channel 20

ATIM-O
ACK (D)0

CTSO ACKD

ATIM-O |

1
1
ACK@O | cTsd ACKO

1
1
CH ;

DDT

ATIMO ATIM-T
RES(2)]
ATIM Window[

RTSO DATAD Timell

Beacon Interval[]

Fig. 3. Process of channel negotiation and data exchange in MMAC.

packets to send, it waits for a random delay (to avoid
collisions), and sends an ATIM packet to B. In the ATIM
packet, node A includes a preferable channel list (PCL),
which specifies the channel usage in its neighborhood.
When B receives the ATIM packet, it selects a channel
considering sender’'s PCL and its own PCL. The most
preferred channel is the one that is used by minimum
number of nodes in the vicinity of the sender and the
receiver. Suppose node B chooses channel 1. Then, node
B sends an ATIM-ACK packet back to A, including the
selected channel. On receiving the ATIM-ACK, node
A confirms the negotiation by sending an ATIM-RES
packet to B. From ATIM-ACK and ATIM-RES packets,
the neighbors of node A and B know that A and B will
be on channel 1 for the rest of the beacon interval. This
information updates the PCL of the neighbors, so that
they can also choose best channels for their use. When
the ATIM window is over, nodes switch to the selected
channel and communicate on the channel for the rest
of the beacon interval. Since every node must start the
ATIM window at the same time, MMAC requires clock
synchronization among nodes. More detailed description
of the protocol isin [5].

We have performed simulations with ns-2 simulator to
evaluate the performance of MMAC. We have compared
MMAC with IEEE 802.11 DCF which uses a single
channel, and DCA [8] which is another multi-channel
protocol. DCA requires at least two interfaces per node,
so that one interface can be dedicated to stay on a fixed
channel and exchange control messages. Figure 4 is a
plot of aggregate throughput in a network of 64 nodes
and 32 flows. There are 3 orthogonal channels, and the
bit rate of each channel is 2 Mbps. As the traffic load
increases, MMAC achieves higher throughput compared
to IEEE 802.11 DCF and DCA.

In summary, MMAC addresses the channel coordina-

Aggregate Throughput, 32 Flows
2500 T T

2000 i/ =
1500 d

1000

Aggregate Throughput (Kbps)
[
o

L L
1 10 100 1000
Packet Arrival Rate per flow (packets/sec)

Fig. 4. Aggregate throughput in a scenario with 64 nodes and 32
flows. The number of channels is 3.

tion problem by having al nodes periodically rendezvous
on a common channel and negotiate channels with each
other. A pair of nodes select a channel which is used
by minimum number of nodes in the neighborhood, and
the channel usage information is obtained by overhear-
ing control messages in the negotiation period. This
technique ensures that the traffic load is distributed
across channels. MMAC can support efficient broadcast
by exchanging broadcast messages during the ATIM
window when all nodes are on a common channel. With
these technigues, MMAC achieves high performance
by utilizing multiple channels, even when nodes are
equipped with a single interface.

B. HMCP: Hybrid Multi-channel Protocol

We now describe HMCP [7], [9], alink-layer protocol
that assumes each node has at least two interfaces. Every
node divides its available interfaces into two groups.
The interfaces in the first group are designated as “fixed
interfaces’, and are fixed (for long intervals relative to
packet transmission times) on specified channels, caled
“fixed channels’. Different nodes are free to choose a
possibly different set of fixed channels. The interfaces
in the second group are called “switchable interfaces’,
and these interfaces can frequently switch among the
remaining non-fixed channels. To simplify rest of the
discussion, we assume each node has exactly two inter-
faces, one of which is fixed and the other is switchable.

The fixed channels can be explicitly advertised to
neighbors by broadcasting “Hello” messages. Whenever
a sender needs to send packets to a receiver, it can
switch its channel to the receiver’'s fixed channel and
send packets. Thus, once the fixed channel of a node is
discovered through the reception of a “Hello” message,
explicit channel synchronization is not needed.

A (fixed =1) B (fixed = 2) C (fixed = 3)
Initialy: switchable=3 switchable=1 switchable = 2
Step 1. switchable=2
Step 2: switchable = 3
Fig. 5. Example of link layer protocol operation with 3 channels,

2 interfaces.

The selection of fixed channel among nodes can be
done in a distributed fashion. Each node maintains a
Neighbor Table containing the fixed channels being used
by its neighbors. A node periodically checks the number
of other nodes also using the same channel as itself, for
the fixed channel. If the estimated number is significantly
larger than average, then the node changes its fixed
channel to a less used channel, and advertises this
information using a “Hello” message. More details are
in[9].

Figure 5 depicts a simple data transfer example using
HMCP. Each node has two interfaces - one fixed and
one switchable. Assume that node A has packets to
send to node C via node B. Suppose nodes A, B, and
C have their fixed interfaces on channels 1, 2, and 3
respectively. Assume that initially nodes A, B, and C
have their switchable interfaces on channels 3, 1, and
2 respectively. In the first step, node A switches its
switchable interface from channel 3 to channel 2, before
transmitting the packet, because channel 2 is the fixed
channel of node B. Node B can receive the packet since
its fixed interface is aways listening to channel 2. In
the next step, node B switches its switchable interface
to channel 3 and forwards the packet, which is received
by node C using its fixed interface. Once the switchable
interfaces are correctly set up during a flow initiation,
there is no need to switch the interfaces for subsequent
packets of the flow (unless a switchable interface has
to switch to another channel for sending packets of a
different flow).

In the proposed protocol, nodes in a neighborhood
may be listening to different channels, and therefore a
single broadcast transmission does not reach all neigh-
bors. Therefore, local broadcast is implemented by send-
ing a copy of the broadcast packet on all channels.
Consequently, the total overhead of local broadcast is
larger than in a single channel network. However, if
the overhead is measured in terms of packets sent per
channel, then this approach continues to have the same

30

One channel —+—
25 %, HMCP - 2 - |
HMCP -5

EAN HMCP - 12 @

Throughput (Mbps)

1 2 3 4 5 6 7 8 9 10
Chain length (in hops)

Fig. 6. Performance of single FTP flow.

overhead as in a single channel network.

We have evaluated the performance of HMCP using
simulations in Qualnet. Here, we will present a sample
result to illustrate the benefits obtained by using multiple
channels and multiple interfaces. In Figure 6, we evaluate
the performance of HMCP in simple chain topologies.
The length of a chain is varied from 1 to 10 hops. A
FTP flow is setup from the first node to the last node
of the chain. Figure 6 compares the flow throughput
with a 1 channel network (labeled “One channel”), and
the flow throughput of HMCP with varying number of
channels (labeled “HMCP - z” where z is the number
of channels available). The experiment assumes that our
protocol uses two interfaces. Each channel is assumed to
support a data rate of 54 Mbps, which is the highest data
rate specified in IEEE 802.11a. As we can see from the
figure, the FTP throughput in single channel networks
rapidly degrades when the number of hops along a chain
increases (this behavior is well-known). However, the
FTP throughput degradation is less severe when multiple
channels are used.

When multiple channels are available, HMCP assigns
the fixed channel of successive nodes along the chain to
different channels. Also, when an intermediate node is
receiving data using one interface, it can simultaneously
forward data to the next node using the second interface.
Consequently, HM CP offers higher throughput by using
different channels on successive hops, and by using the
two interfaces to receive and send data in parallel.

The key observation from Figure 6 is that multiple
channels can significantly improve throughput of a flow
in multi-hop scenarios. Furthermore, even with only a
few interfaces (2 in this example), having large number
of channels (up to 12 channels in this example) is
beneficial.

IV. IMPLEMENTING MULTI-CHANNEL PROTOCOLS

In the previous sections, we have identified the chal-
lenges, and presented simple protocols for multi-channel
wireless networks. Implementing multi-channel proto-
cols that require interfaces to switch frequently is non-
trivial. In this section, we identify the additional features
that have to be added to operating systems, with Linux as
an example, to support protocolsthat require interfacesto
switch. We then present the design of a new abstraction
layer to manage interface switching across multiple
channels. The abstraction layer aso offers the benefit
of presenting a single virtual interface to higher layers,
independent of the number of physical interfaces present.
This alows existing higher layer protocols to operate
unmodified, even if the number of physical interfaces or
channels is changed.

A. Need for extra support in current operating systems

Some of the difficulties in using existing operating
systems, such as Linux, to support multiple channels are
as follows.

1) Specifying channel to use for reaching a neighbor:
An implicit assumption made in many operating systems
is that there is an one-to-one mapping between channels
and interfaces. This assumption is satisfied in a single
channel network because an interface is fixed on the
single channel used in the network. This assumption
continuesto be met in a network where each node has m
interfaces, and the interfaces of a node are aways fixed
on some m channels. However, aswe discussed in earlier
sections, it is possible that the number of interfaces per
node is significantly fewer than the number of channels.
Therefore, protocols may require an interface to send
data over multiple channels, by switching across chan-
nels. When interfaces have to switch across channels, the
assumption that there is an one-to-one mapping between
channels and interfaces is broken.

The one-to-one mapping assumption is reflected in
kernel routing tables only specifying the interface to use
for reaching a neighbor. Consider the scenario where
a node has a single interface, but has to send data to
one neighbor over channel 1, and another neighbor over
channel 2. Now, associating the routing table entry of
each node with only the interface information does not
specify the need to use different channels for reaching
the neighbors. Without this information in kernel tables,
user space applications cannot transparently send data
over multiple channels.

2) Secifying channels to use for broadcast packets:
Certain multi-channel protocols (e.g., HMCP) require a
copy of the broadcast packet to be sent out over multiple
channels. Other protocols may require a broadcast packet
to be sent on a specified common channel. Therefore,
support is required to specify on what channels (one
or more) broadcast packets have to be sent out. With-
out such support, higher layer applications that require
broadcast may have to be modified to explicitly specify
channels to use for broadcast.

3) Managing interface switching: As we discussed
above, an interface may have to be switched between
different channels to enable communication with neigh-
boring nodes on different channels, and to support broad-
casts. When an interface is currently sending a packet
on some channel ¢1, and a new packet is received that
has to be sent over some other channel c¢,, then the
interface hasto be scheduled to switch to channel ¢, only
after communication on channel ¢; completes. If higher
layer applications explicitly control when an interface
has to be switched, then the applications have to be
modified to carefully consider the current interface status
before initiating a switch. Furthermore, consistency may
have to be maintained between requests from different
applications.

Therefore, there is a need to provide support in the
kernel for maintaining consistency between different
switch requests. Furthermore, when a packet cannot
be sent out immediately because the interface is on a
different channel at that time, then the packet has to
be buffered for later transmission. Therefore, there is
a need to support buffering of packets, and subsequent
scheduling and transmission of buffered packets.

B. Proposed abstraction layer

The above challenges motivate the design of a new
abstraction layer that is located between the network
layer (and ARP) and the interface device drivers. The
abstraction layer provides support for managing multiple
interfaces, interface switching, and packet buffering. The
layer exposes a single virtual interface to the higher
layers. In addition, the abstraction layer provides an
interface for higher layers to specify the channel and
interface to be used for each destination node. This in-
formation is stored in a table, called the “Unicast table”,
within the layer. The abstraction layer maintains a second
table, called the “Broadcast table’, which contains a list
of channels (and interfaces) on which a broadcast packet
has to be sent out. The layer provides an interface to the
higher layers for setting up the broadcast table.

______________________ I
: UNICAST TABLE BROADCAST TABLE |
| |__IPaddr | Interface| Channel Channel Interface | |
| 192.168.0.1 ath0 1 1 ath0 |
1192.168.01 ath1 2 2 ant !
I . 3 athl |
N =
I : V -7 I
| Queues of athO Assignto Queues of athl |
1 queues ™ |
|
| |
' Scheduler Scheduler :
|

Fig. 7. Components of the abstraction layer: Example assumes two
interfaces and three channels are available.

The abstraction layer associates each interface with a
separate queue for all the available channels. When a
unicast packet is handed down to the layer, the channel
and interface to be used for that packet is looked up
in the unicast table. Based on the lookup, the packet is
inserted into the appropriate channel queue. Similarly,
when a broadcast packet is handed down to the layer, a
copy of the packet is inserted into queues corresponding
to every channel on which the packet has to be sent out.

The abstraction layer currently uses a simple round
robin scheduler that services the channel queues of every
interface. An interface is switched to another channel
if the interface has been on the current channel for at
least 7)., time, and another channel queue associated
with the interface has packets pending. It is possible
to implement more sophisticated schedulers that support
different channel switching palicies.

Figure 7 represents the components of the abstraction
layer. The table values are filled for an example scenario
having two interfaces (called “ath0” and “athl”) and
three channels. In this example, we assume that local
broadcast is supported by sending a copy of the broadcast
packet on al three channels. Hence, the broadcast table
has entries to send out the broadcast packet on three
channels.

In summary, the main benefits of our proposed ab-
straction layer is to completely hide the complexity of
managing multiple channels and interfaces from higher
layers. Therefore, existing routing protocols, ARP mech-
anisms, etc. can be used without any modifications. The
abstraction layer is generic enough to support different

| HMCP implementation| space

| Abstraction layer |

| Interface | | Interface |

Fig. 8.
support.

Implementation of HMCP protocol using abstraction layer

multi-channel protocols, and simplifies the implementa-
tion of protocols that require frequent interface switch-

ing.

C. Prototype implementation

We have implemented a prototype of the HM CP proto-
col in Linux. The abstraction layer was implemented as a
kernel module. The main components of the HMCP pro-
tocol - exchanging “Hello” messageswith neighbors, and
deciding fixed channel assignments, were implemented
as a user-space daemon. The user space daemon sets up
the unicast and broadcast tables in the abstraction layer
through “ioctl” calls exported by the kernel module. All
other user applications run unmodified. Figure 8 depicts
the prototype architecture.

The implementation runs on low-cost hardware from
Soekris that is equipped with two wireless interfaces. We
have validated the prototype with simple experiments
that use 4 channels and two interfaces. Prototype de-
velopment has demonstrated the feasibility of utilizing
multiple wireless channels with commodity hardware,
even if number of interfaces per node is fewer than the
number of channels.

V. CONCLUSIONS

In this article, we have considered multi-channel
protocols for the scenario where each node has fewer
interfaces than the number of available channels. We
argued that this scenario is likely in practice, and identi-
fied several challenges that have to be addressed before
multiple channels can improve network performance. We
presented two link layer protocols, MMAC and HMCP,
for utilizing multiple channels. MMAC was designed
for networks having a single interface per node, while
HMCP was optimized for networks having at least two
interfaces per node. Performance evaluations suggested
that the proposed protocols can substantialy improve

network throughput by leveraging all the available chan-
nels.

Implementing multi-channel protocols is complicated
by the lack of sufficient support in existing operating
systems. Therefore, we presented a new abstraction layer
that simplifies the implementation of new multi-channel
protocols, and described the implementation of HMCP
over the abstraction layer as an example. Our work has
demonstrated that large number of channels, provisioned
for in current wireless technologies, can be successfully
utilized in practical systems with carefully designed
multi-channel protocols.

REFERENCES

[1] IEEE Sandard for Wireless LAN-Medium Access Control and
Physical Layer Specification, P802.11, 1999.

[2] “Atherosinc,” http://www.atheros.com.

[3] P Kyasanur and N. H. Vaidya, “Capacity of Multi-Channel Wire-
less Networks: Impact of Number of Channels and Interfaces,”
in ACM Mobicom, 2005.

[4] A. Raniwala and T. Chiueh, “Architecture and Algorithms for
an |EEE 802.11-Based Multi-Channel Wireless Mesh Network,”
in Infocom, 2005.

[5] J. So and N. H. Vaidya, “Multi-channel MAC for Ad Hoc
Networks: Handling Multi-Channel Hidden Terminas using a
Single Transceiver,” in Mobihoc, 2004.

[6] P Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted Seeded
Channel Hopping for Capacity Improvement in |[EEE 802.11 Ad-
Hoc Wireless Networks,” in ACM Mobicom, 2004.

[7] P. Kyasanur and N. H. Vaidya, “Routing and Interface Assign-
ment in Multi-Channel Multi-Interface Wireless Networks,” in
WCNC, 2005.

[8] S.-L.Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi-
Channel MAC Protocol with On-Demand Channel Assignment
for Multi-Hop Mobile Ad Hoc Networks” in International
Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN), 2000.

[9] P Kyasanur and N. H. Vaidya, “Routing and Link-layer Protocols
for Multi-Channel Multi-Interface Ad hoc Wireless Networks,”
Tech. Rep., University of Illinois a Urbana-Champaign, May
2005.

