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Abstract—In this paper, a multi-channel convolutional neural 

network (CNN) based object detection was used to detect 

suspected trees of pine wilt disease after acquiring aerial 

photographs through a rotorcraft drone equipped with a multi-

spectral camera. The acquired multi-spectral aerial photographs 

consist of RGB, Green, Red, NIR and Red Edge spectral bands per 

shooting point. The aerial photographs for each band performed 

image calibration to correct radiation distortion, image alignment 

to correct the distance error of the lenses of a multi-spectral 

camera, and image enhancement to edge enhancement to highlight 

the features of objects in the image. After that, a large amount of 

data obtained through data augmentation was put into multi-

channel CNN-based object detection for training and test. As a 

result of verifying the detection performance of the trained model, 

excellent detection results were obtained with mAP 86.63% and 

average IoU 71.47%. 

 
Keywords—Pine wilt disease (PWD), Drone, Remote sensing, 

Deep learning, Multi-spectral, Convolutional neural network 

 

I. INTRODUCTION 

ine Wilt Disease (PWD) is caused by close interaction 

between three factors that are tree, mediated insect and 

pathogens. It is a fatal disease that cannot be cured and 

recovered [1]. Pine wilt nematodes, a pathogen that provides a 

direct cause of PWD, are nematodes that resemble threads of 

around 1 mm in size [2]. It cannot move on its own, and invades 

into the body of larvae that normally live in PWD-infected trees. 

Over time, when the larvae grow into adults and move to a 

healthy tree and eat the bark, the pine wilt nematodes penetrate 

into the tree trunks of healthy trees and block the ducts, which 

are the nutrient passages, to block the nutrient supply [3]. As a 

result, the trees infected with PWD stop the rosin secretion by 

the rapidly growing pine wilt nematodes, release volatile 

substances such as alcohol and terpene, thus, brown and die 

rapidly in a short time as shown in Figure 1. PWD was first 

discovered in indigenous species in North America, such as the 

United States, Canada, and Mexico, but now most native 
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species are resistant [4]. However, the suspected trees infected 

with PWD, which has spread to other countries, causes 

browning and death in indigenous species in the region, causing 

much damage. For example, in 1905, the first damage caused 

by PWD occurred in Japan in Northeast Asia. Since then, the 

number of affected areas and countries has increased, including 

Nanjing City in China in 1982, Taiwan in 1985, and Busan City 

in Republic of Korea in 1988 [5], [6]. PWD occurring in 

Republic of Korea are mainly caused by pine species such as 

Pinus densiflora, and Pinus thunbergii in April-October [7]. At 

present, to prevention of PWD is mainly carried out by killing 

the mediated insects rather than killing the pine wilt nematodes 

itself, which has no ability to move and breeds in the trees [8]. 

However, the breeding and movement of mediated insects 

spread rapidly in unspecified directions and is difficult to 

predict [9]. Therefore, it is very important to quickly and 

accurately detect and eliminate the PWD-infected trees in 

which the larvae of the mediated insect lives. 

Currently, researches on image analysis and remote sensing 

techniques for detecting PWD-infected trees are ongoing. First, 

Lee et al. (2014) studied the spectral reflection characteristics 

of the hyperspectral images for PWD-infected trees [10]. As a 

result, it was confirmed that the most significant difference 

appeared in the red wavelength (688nm) region of the 

hyperspectral image according to the before and after of PWD. 

Kim et al. (2018) studied the optimal index for detecting PWD-

infected trees. [11]. As a result, it was confirmed that among the 

10 vegetation indicators, vegetation indicators using red and 

infrared band wavelengths showed a greater variation in images 

before and after PWD-infected. Kim et al. (2010) have detected 

the PWD-infected suspicious trees by visual detection using a 

helicopter based on GIS and GPS information [12]. Park et al. 

(2016) extracted areas where PWD-infected trees lived using an 

object-based classification model based on IKONOS satellite 

images [13]. However, satellite images are vulnerable to low 

spatial resolution and to various noises such as clouds and 

yellow dust. Also, the visual detection method requires large 
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amount of time and high costs. 

In recent years, the use of unmanned aerial vehicles (UAV) 

has rapidly expanded, with the ability to support various types 

of imaging equipment such as RGB and multi-spectral cameras 

[14]. UAVs are largely divided into rotor or fixed wing type 

aircraft. The rotorcraft is composed of propeller-type wings and 

is actively used in forest applications. [15]. Also, image data 

captured by attaching a multi-spectral camera to a rotorcraft is 

widely used to distinguish vegetation by providing various 

spectral band information such as Green, Red, NIR and Red 

Edge as well as RGB image information [16], [17]. Collected 

image data is used for image processing and machine learning 

techniques to quickly and accurately detect tree objects [18, 19]. 

For example, Valerie Trichon et al. (2001), a tree detection 

technique was performed using specific descriptors such as 

crown size, crown contour, foliage cover, foliage color and 

foliage texture from images taken using multi-spectral or RGB 

cameras [20]. Saeed Al Mansoori et al. (2018), based on RGB 

image and NDVI vegetation index mask, detected 95% of the 

palm trees using a combination of Circular Hough Transform 

(CHT) and morphological operators [21]. Takeshi Hoshikawa 

et al. (2020) classified and detected trees infected with pine wilt 

disease through a model that combines individual tree detection 

(ITD) and logistic regression-based classification using 

multispectral and visible color imagery acquired by UAV [22]. 

As a result, the classification accuracy was 84%. Mutiara Syifa 

et al. (2020) detected trees infected with pine wilt disease 

through ANN and SVM methods based on the data collected 

through drone remote sensing [23]. As a result, the SVM model 

detection performance higher than that of the ANN model was 

94.13% and 86.59% for each of the two regions. 

Recently, deep learning technologies developed and applied 

in the field of remote sensing. As an example, Morales et al. 

(2018) conducted a study of automatic segmentation using deep 

learning technique based on Mauritia flexuosa aerial image 

taken UAV [24]. As a result, the predicted accuracy of the 

trained model was about 98.1%. Safonova et al. (2019) 

conducted a study to classify Fir Trees damaged by Bark beetle 

using deep learning techniques based on aerial images captured 

by UAV [25]. As a result, the predicted accuracy of the trained 

model was about 98.7%. Xiaoling Deng et al. (2020) detected 

trees infected with Pine wilt disease through an improved Faster 

R-CNN model based on RGB images rather than multi-spectral 

images  acquired by UAV Remote Sensing [26]. As a result, the 

detection model performance was 89%. Most deep learning 

based algorithms used in computer vision are Convolutional 

Neural Network(CNN) designed to mimic artificial neural 

networks, and supervised learning method that predicts after 

learning feature points (e.g., edge, corner, etc.) of many image 

data [27, 28]. Among these deep learning-based algorithms, 

Faster R-CNN is an object detection model and consists of a 

two-stage network in which RPN (Region Proposal Network) 

and R-CNN are merged [29]. 

To our best knowledge, detection of suspicious PWD-

infected trees through multi-channel CNN-based object 

detection has not been conducted yet. Therefore, in this study, 

multi-spectral aerial images were collected through the 

rotorcraft drone of DJI Inspire 2 model, and the suspected trees 

infected with PWD were detected by using multi-channel CNN-

based object detector. Also, the detection accuracies according 

to the combination of each channel and the use of vegetation 

index are compared.  

In summary, the main contributions of this study are 

summarized as follows. 

 This study proposed a method to detect suspected PWD-

infected trees using a multi-channel CNN-based object 

detection method. Through the experiment, it was 

confirmed that the detection accuracy can be improved 

by using the proposed method rather than only 3-channel 

RGB information. 

  
(a)        (b)        (c) 

 

Fig. 1. Aerial photography of trees using drones:(a) is a healthy tree; (b) is a 

tree that is undergoing browning in the early stages of infection with PWD; and 
(c) is a tree that has died due to the infection of the PWD and shows an angular 

form. 

 
 

Fig. 2. Proposal detection process. After performing image preprocessing with 

different combinations of inputs for 7 types of multispectral images (RGB, 
Green, Red, NIR, Red Edge) and vegetation index (NDVI, NDRE), and then 

the model is trained. The test result is the classification class and predicted 

bounding box coordinates in the image. 
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 We proposed a preprocessing to enhance the accuracy of 

multi-channel object detection for multi-spectral images. 

The calibration, alignment, and image enhancement 

process to be performed for the multi-spectral images 

are presented. 

 A comparative study was conducted according to the 

combination of channels that increase the detection 

accuracy. The accuracy was compared according to 

usage of multi-spectral image and vegetation index. 

Through the experiments, the accuracy was increased 

when using RGB, NIR, Red Edge and normalized 

difference red-edge (NDRE) index. 

This paper consists of the four sections, In the second section, 

the data acquisition and preprocessing of the multi-spectral 

drone aerial photographs, and the multi-channel object 

detection method are presented. The application results 

according to the channel combination are analyzed and 

discussed in third section. Finally, conclusions and findings will 

be presented in the fourth section. 

 

II. MATERIALS AND METHODS 

The overall process of proposed method was summarized in 

figure 2. As shown, the aerial multi-spectral images are 

acquired by using Inspire2 equipped with Sequoia+. After the 

preprocessing, it branches according to the detection task. If it 

is a detection task, the detection is performed by using the 

trained detection model. If it is not a detection task, the data 

labeling task for the detection of dead and browning trees is 

performed. After the data labeling, the data is split into training, 

validation, and test dataset. The training is performed by using 

the pre-processed and augmented training data, and validation 

loss is calculated at each epoch. The model with best validation 

loss is saved during training. Finally, the model with best 

validation loss is used for the detection of dead and browning 

trees and the final accuracy is calculated by using test dataset 

which is not considered in training. The detailed explanation of 

the process will be given in this section. 

 

A. Image acquisition 

1) Study area 

This study was conducted in the area of Daegi-ri, 

Yeongcheon-si, Gyeongsangbuk-do, and Republic of Korea. 

This area is one of the areas affected by PWD in Republic of 

Korea over the past five years. The total area is 180, 663 m2 

and the circumference is about 1.67 km as shown in Figure 3. 

Most of the forest species in the study area consist of Pinus 

densiflora, and Pinus koraiensis. Most of these species are 

vulnerable to PWD. As a result, the area is classified as a region 

that is more likely to be damaged by PWD. Therefore, it was 

considered to be a suitable area to acquire image data of 

suspected trees infected with PWD and was selected as this 

study area.  

 

2) Study equipment 

This study used DJI Inspire 2 of rotorcraft drone and Parrot 

Sequoia+, which is a multi-spectral camera to collect drone 

aerial multi-spectral photography. First, DJI Inspire 2 consists 

of four rotating vanes [30]. It is relatively convenient to operate 

compared to fixed-wing drones and has the advantage of 

maintaining flight at a fixed point, which is easy for aerial 

image shooting. Secondly, the multi-spectral camera Parrot 

Sequoia+ consists of five optical lenses and a sunlight sensor 

[31]. Five optical lenses absorb RGB, Green, Red, NIR and Red 

Edge wavelengths for each lens and output high resolution 

images. In addition, the frame was built by 3D printing to mount 

the Parrot Sequoia+ multi-spectral camera on the DJI Inspire 

2. 

 

3) Drone aerial multi-spectral image 

To collect the drone aerial multi-spectral imagery, a multi-

spectral camera Parrot Sequoia+ was attached to DJI Inspire 2 

rotorcraft to shoot at an altitude of 150 m. The ground sample 

distance (GSD) of the photographed picture is about 8 

cm/pixels, which represents a higher spatial resolution than the 

satellite image. The Parrot Sequoia+ of multi-spectral camera 

supports the RGB, Green, Red, NIR and Red Edge band 

channel, so that five multi-spectral aerial images are captured 

per shooting point. As a result, the drone aerial multi-spectral 

 
Fig. 3. Study area of the mountain near Daegi-ri, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea. The area within the red perimeter in the right-most picture 

is the area where remote sensing was performed in this study. 
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photography captured 4,608 by 3456(RGB band), 1,280 by 960 

pixels(Green, Red, NIR and Red Edge band) at 940 images at 

90 points and 98 points on April 11, 2019 and June 12, 2019. 

Thereafter, the collected 940 images were classified into 188 

photographing points for each of five multi-spectral images. 

 

B. Image preprocessing and augmentation 

Drone aerial multi-spectral imagery performed six stages of 

image processing. Through the image processing, the hardware 

limitations such as radiation distortion, distance error of each 

camera lenses and resolution difference between RGB and 

mono-band images can be overcome. Also a large amount of 

data set was secured through data augmentation after edge 

enhancement to highlight the characteristics of the target object 

and image cropping for model optimization.  

 

1) Image calibration 

The first step is image calibration. Radiation distortion 

caused by the refractive index of the camera convex lens was 

corrected through image calibration [32]; converted pixel 

values in an image to absolute spectral emission values in 

W/𝑚2/sr/nm; corrected sensor black level, sensor sensitivity, 

sensor gain and exposure settings, and lens vignetting effects. 

All parameters used in the model can be read from XML 

metadata in TIFF files saved by multi spectral cameras. 

Following is the (1) for image calibration. 

 

𝐿𝑖(𝑥, 𝑦) = 𝑉𝑖(𝑥, 𝑦)
𝑎1,𝑖

𝑔𝑖
 

𝑝𝑖(𝑥,𝑦)−𝑃𝐵𝐿,𝑖

𝑡𝑒,𝑖+𝑎2,𝑖𝑦−𝑎3,𝑖𝑡𝑒,𝑖𝑦
 (1) 

 

The following describes the variable arguments of (1), where 

𝑉𝑖(𝑥, 𝑦) is the vignette correction function map; 𝑎1,𝑖 , 𝑎2,𝑖, and 

𝑎3,𝑖 are radiometric calibration coefficients; 𝑃𝑖(𝑥, 𝑦) is the raw 

digital count image; 𝑃𝐵𝐿,𝑖 is the dark level; 𝑔𝑖 is the gain; 𝑡𝑒,𝑖 is 

the exposure time[s]; and y is the pixel number. The vignette 

map, 𝑉𝑖(𝑥, 𝑦), can be represented as  

 

                                           𝑉𝑖(𝑥, 𝑦) =
1

𝐾𝑖
 (2) 

 

where 𝐾𝑖 is a correction factor. 

 

𝐾𝑖 = 1 + 𝑘0,𝑖𝑅𝑖 + 𝑘1,𝑖𝑅𝑖
2 + 𝑘2,𝑖𝑅𝑖

3 

                                + 𝑘3,𝑖𝑅𝑖
4 + 𝑘4,𝑖𝑅𝑖

5 + 𝑘5,𝑖𝑅𝑖
6 (3) 

 

where 𝑘0,𝑖  through 𝑘5,𝑖  are polynomial correction coefficients 

and 𝑅𝑖 is the distance of the pixel to the vignette centers. 

 

                     𝑅𝑖 =  √(𝑥 − 𝑐𝑥,𝑖)
2 + (𝑦 − 𝑐𝑦,𝑖)

2 (4) 

 

where 𝑐𝑥,𝑖 and 𝑐𝑦,𝑖  represent the vignette center and i denotes 

the spectral band number. Now, by combining all the above 

equations (Equations 1-4), the radiance image, 𝐿𝑖(𝑥, 𝑦), can be 

computed. 

 

2) Image normalization and resizing 

The second step is pixel normalization. The raw DN values 

of all channels except the RGB channel are from 0 to 65535 in 

16-bit format. Therefore, to match the RGB channel, which is 

the DN value in the range of 0 to 255, the DN values of the Red, 

Red Edge, NIR, and Green channel were normalized to the 

same range of RGB image. Because the pre-trained initial 

weights are trained based on RGB images converted to 32-bit 

float, the input image was normalized equal to the range of the 

RGB image. The pre-trained feature extractor used in this study, 

VGG, subtract mean values for RGB channels. The values – 

122.68, 116.779, and 103.939 for RGB respectively are 

calculated from ImageNet dataset. This subtraction is same for 

RGB and normalized multispectral images of the proposed 

model. For the vegetation index, we multiply 100 because the 

value of vegetation index can have a range from -1 to 1. By the 

multiplication, the range of vegetation index channel becomes 

similar with the other channels. Note that, the loss of 

information due to normalization is small because the DN 

values of multi-spectral channel are converted from 16-bit 

unsigned integer to 32-bit float to feed the CNN network. To 

feed the CNN network, the DN values of RGB image are also 

converted from 8-bit unsigned integer to 32-bit float. In 

addition, the RGB image was resized from 4096 by 3456 to 

1280 by 960. 

 

3) Image alignment. 

The third step is image alignment. The position error in the 

image caused by the difference in the distance between the 

camera lenses for each spectrometer of the Parrot Sequoia+ of 

multi-spectral camera was corrected through the SIFT method 

[33]. The detailed method is that after extracting the feature 

points of each spectral image through the SIFT method, each 

spectral image was matched based on the Green band image. As 

a method for matching, as shown in (5) below. Homography 

matrix was calculated through RANSAC estimation technique 

based on each feature point to match the feature points between 

        
(a)           (b)              (c)           (d)           (e)            (f)             (g)  

 

Fig. 4. Images of RGB, multi-spectral and vegetation index. (a) RGB; (b) Green; (c) Red; (d) NIR; (e) Red Edge; (f) NDVI; (g) NDRE. 
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the two images. When accurate homography matrix is 

calculated, all pixels of the image are converted and mapped by 

warping based on the green band image. 

 

                 [
𝑥1

𝑦1

1
] = 𝐻 [

𝑥2

𝑦1

1
] = [

ℎ00 ℎ01 ℎ02

ℎ10 ℎ11 ℎ12

ℎ20 ℎ21 ℎ22

] [
𝑥2

𝑦2

1
] (5) 

 

The following describes the homography arguments of (5). 

where 𝑥1 and 𝑦1 are the pixel value after warping. And H is the 

homography matrix. And 𝑥2 and 𝑦2 are the pixel value before 

warping. 

 

4) Image enhancement 

The fourth step is image enhancement. For the corrected 

image, the image enhancement process using the 3 × 3 

sharpening filter highlights the edges and corners that are the 

feature points of the objects in the image [34]. The following (6) 

performs image enhancement through the sharpening mask 

filter using laplacian. 

 

    𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡(𝑖, 𝑗) = 𝑀 ∗ 𝐼(𝑖, 𝑗), 𝑀 = [
−1 −1 −1
−1 9 −1
−1 −1 −1

] (6) 

 

5) Image cropping 

The fifth step is image cropping. In the existing 1280 × 960 

pixel size image, the image was cropped to 800 × 800 pixel size 

from the center of the image. Equation (7) is a formula for 

cropping to 800 × 800 pixels based on the center of the image. 

 

                        𝐼𝐶𝑟𝑜𝑝(𝑖, 𝑗) = 𝐼(
𝑖

2
− 400,

𝑗

2
− 400)                (7) 

 

6) Image augmentation 

The entire 940 images was divided into a dataset for training, 

validation, and testing at a ratio of around 8:1:1. Subsequently, 

the training set was augmented. From the initial 750 training 

data images, 6000 images were obtained through flipping, 

rotation [35]. 

 

C. Labeling of suspicious trees 

Symptoms of infection with PWD mainly cause browning 

and death. As a result, when observing aerial photographs using 

drones, trees infected with PWD represent trees covered with 

brown leaves and barren trees. Therefore, we mark suspected 

trees infected of PWD in aerial photographs collected to create 

training data to be used for deep learning-based object detection 

model. The marked trees are labeled in a rectangular box, 

separated into two class types (browning and dead). As a result, 

the xmin, xmax, ymin, and ymax coordinate values are 

extracted in XML file format with class information.   

 

D. Vegetation index calculation 

 The vegetation index of the image according to each 

shooting location was calculated using the preprocessed 

multispectral image data set. Equations 8 to 9 below are 

formulas for calculating NDVI(Normalized Difference 

Vegetation Index) and NDRE(Normalized Difference Red-

Edge Index) [36], [37]. 

 

                                      𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 (8) 

 

                               𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅−𝑅𝐸𝐷 𝐸𝐷𝐺𝐸

𝑁𝐼𝑅+𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
 (9) 

 

E. Multi-channel CNN-based object detection 

The model used to detect suspected trees infected with PWD 

is CNN-based object detection model and consists of 2 stage 

network structure that merges region proposal network (RPN) 

which extracts region proposal and R-CNN which performs 

classification and detection prediction, is shown in Figure 5. 

Loss function, which is a function that indicates the difference 

between the predicted value and the ground truth value, is 

shown in (10) below and converges to the minimum value 

through training. Adam Optimizer, which is used to converge 

the Loss function to the minimum value, performs an 

optimization process through the stochastic gradient descent 

based on the gradient amount of the past [38]. 

 

 
Fig. 5. Multi-channel CNN-based object detection model for detecting suspected trees infected with PWD. A structure that combines a multi-channel VGG16-

based RPN model to create a region proposal and an R-CNN model to detect infectious object. 
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𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠

∑ 𝐿𝑐𝑙𝑠

𝑖

(𝑝𝑖 , 𝑝𝑖
∗) 

                                                     +𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗)        (10)  

 

The following describes the variable arguments of  (10). Here, 

i is the index of the anchor within the mini batch; 𝑃𝑖  is the 

prediction whether anchor; i is an object or background; 𝑝𝑖
∗ is a 

ground truth label of 1, where 1 means that the anchor is 

positive and 0 means that the anchor is negative; 𝑡𝑖 is the vector 

containing four coordinates of the bounding box; 𝑡𝑖
∗ is ground 

truth box, associated with a positive anchor; 𝐿𝑐𝑙𝑠  is log loss 

(object loss or not), 𝐿𝑟𝑒𝑔 is smooth L1 loss function (only used 

in positive anchors 𝑝𝑖
∗ = 1); and 𝑁𝑐𝑙𝑠  is normalization. This is 

same as mini batch size, where 𝐿𝑟𝑒𝑔 is normalization and also 

same as the number of anchor locations, where λ  is 10 by 

default. Equation 11 below describes the smooth L1 function in 

described in (10). 

 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2       𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

 

The feature extractor used in this study is based on VGG16 

[39]. Because the proposed method uses multi-channel input, it 

is necessary to increase the number of input channels of a 

feature extractor that generally uses 3 channels. Therefore, the 

number of channels in the front layer is adjusted according to 

the number of multi-channels. RPN consists of thirteen 

convolution layers and R-CNN consists of three fully connected 

layers. The final layer of the RPN consists of a classification 

layer that predicts the presence or absence of an object for a 

region proposal, and a regression layer that predicts the location 

of the region proposal. The final layer of the R-CNN consists 

of a softmax layer that predicts the class of the object and a 

regression layer that predicts the location of the object. In 

addition, it prevented overfitting of training data through 

dropout when moving fully connected layer in R-CNN [40]. 

The initial parameter (e.g., Weight, bias) of the first 

convolution layer of VGG, which is feature extractor of the 

proposed model, extended by concatenation from 3 channel to 

multi-channel. Then, the weights of extended pre-trained model 

were set as the initial value of the multi-channel CNN-based 

object detector. The pre-trained initial weights generally give 

higher accuracy than the randomly set initial value parameter 

[41], [42]. In addition, in order to build a training model that 

shows high detection performance, hyper-parameters were 

manually determined through a number of experiments. In 

particular, the decision value for the threshold for extracting 

region proposals from CNN was determined from the low value 

to the high value through sequential enhancement to determine 

the optimal value. As a result, when the overlapping area of 

anchor box and label ground truth is 0.5 or more to make region 

proposals, the region proposal of the object class is made. When 

0.3 or less, a background class region proposal is created. The 

ratio of object and background region proposal was set at 1:1 

ratio. As a result, the maximum number of region proposals 

created was 12000. In order to filter out a large number of 

region proposal, the overlapping area between each region 

proposal created through non-maximum suppression (NMS) 

was filtered out. As a result, the final region proposal is 2000. 

After that, the learning rate was set to 0.0005, the batch size was 

set to 10, and epoch was set to 100.  

 

III. RESULTS AND DISCUSSION 

This section presents the results of training and test based on 

the data set refined by the image preprocessing and the multi-

channel CNN-based object detection. The evaluation index, 

mAP, was used to evaluate the performance of the trained 

 
Fig. 6. AP graph of each classes (Dead, Brwoning). The graph in the first row is graphs related to the browning class, and the graph in the second row is graphs 
related to the dead class. Also, the graphs in the last column are graphs for calculating the AP, and the area of the colored area is the AP result value for each class. 
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model. As a result, we can confirm the performance of multi-

channel CNN-based object detection on suspicion multi-

spectral aerial photography.  

 

A. Analysis of the training model 

The language used to develop the learning model is Python, 

and the development environment used is the Tensorflow 1.12 

version of the framework. TensorFlow is an open source 

software library that utilizes distributed graphics processing 

unit (GPU) resources to deliver high learning performance 

through high-performance numerical computation. Hardware 

resources for training and testing used I7-8086K CPUs and  

accelerated by using GeForce GTX 1080 Ti GPUs. 

There are 6,190 image patches: 6000 for training 95 for 

validation, and 95 for test refined through image processing and 

augmentation consist of five types of multi-spectral 

images(RGB, Green, Red, NIR and Red Edge). The final 

dataset, consisting of RGB, Green, Red, NIR and Red Edge 

band image patches, was divided into each spectral band dataset 

consisting of 1, 238 image patches (1, 200 types of images are 

used for training, 19 types of images are used for remaining 

validation and testing) of different capture points and data 

augmentation types. After that, based on the divided training 

data set, RGB (3 channels), Green, Red, NIR, Red Edge, NDVI, 

NDRE (1 channel each) were merged into various combinations. 

Although the green and red channels of RGB have almost 

similar values to the green and red channels of a multi-spectral 

camera, they were input together because of the difference in 

scale and resolution between two lenses. In Table 1, 4 types of 

multi-channel combination were compared through cross-

validation of 3 random sampling. As a result of training, the 

maximum performance of the training model showed the lowest 

loss function value in the 99 epochs. Also, the loss value of the 

validation data set shows a low value similar to that of the 

training data set. Therefore, the overfitting of the training data 

set did not occur. 

 

B. Evaluation index 

The performance verification of the proposed method is 

evaluated by the mAP value. mAP is an average value of AP 

for each class and is used as an evaluation index for analyzing 

the performance of an object detection model. The AP for each 

class is calculated by predicting the ground-truth of each 

labeled object for all test images. The correct answer must 

satisfy both of the following conditions. First, the intersection 

over union (IoU), which is the intersection of the prediction 

object and the ground-truth object, is calculated and satisfied if 

the value is 0.5 or more. Second, the class of prediction object 

and ground-truth object should same to satisfy. After that, the 

ground-truth object of each labeled object that is identified as 

correct is sequentially listed to calculate the precision and recall 

values. Equation (13) and (14) are recall and precision. In (13) 

and (14), TP is true  positive, FP is false positive, and FN is 

False negative. True is the correct answer of ground-truth, and 

False means the incorrect answer of ground true. In addition, 

positive is the result predicted by the correct answer, and 

negative means the result predicted by the incorrect answer. 

After that, the precision and recall values are set to each axis of 

the two-dimensional coordinate plane, and the calculated area 

for each class is displayed on the coordinate plane, and the 

corresponding points are connected to calculate the area. The 

equation for calculating the area is the same as (15), and when 

the r (is recall) value increases sequentially, P (is precision) 

becomes the maximum value, it becomes 𝑃𝑖𝑛𝑡𝑒𝑟𝑝value, and this 

value multiply the recall value. The AP values are derived as a 

result of summing all the multiplied values by repeating this 

method. Then, the average value of the calculated AP for all 

classes is mAP, which is shown in (16).  

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (12) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13) 

 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14) 

 

𝐴𝑃 = ∑(𝑟𝑛+1 − 𝑟𝑛) 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1),  

                        𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) = 𝑚𝑎𝑥
�̃�≥𝑟𝑛+1

𝑝(�̃�) (15) 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑘

𝑛
𝑘=1

𝑛
 (16) 

 

In (15), n is a number that indicates an increase sequentially 

when recall value that is from 0 to 1, 𝑟𝑛 is the recall value when 

TABLE Ⅰ 

 RESULT OF EVALUATION INDEX VALUE ACCORDING TO COMBINATIONS OF INPUT DATA 

Input data (The number of channel) 
mAP Dead AP Browning AP 

Mean Best Worst Mean Best Worst Mean Best Worst 

RGB (3 channel) 77.06 80.16 73.34 93.12 95.02 91.98 60.99 68.33 51.66 

RGB + Green + Red + NIR + Red Edge (7 channel) 81.06 84.32 79.49 91.23 91.97 90.34 70.89 76.66 67.36 

RGB + NIR + Red Edge + NDVI (6 channel) 81.91 86.75 72.36 88.95 92.01 84.41 74.87 83.05 60.31 

RGB + NIR + Red Edge + NDRE (6 channel) 82.70 86.63 84.84 93.96 95.48 93.58 76.66 77.77 76.11 
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n is 0 and 𝑟𝑛+1  is the recall value when n is 1; 𝑃𝑖𝑛𝑡𝑒𝑟𝑝  is the 

point where precision is maximized by continuously inputting 

the recall value; and �̃�  is the predicted recall value as it 

increases continuously. And 𝑃(𝑟)̃  is the precision when the 

predicted recall value increases continuously.  

 

C. Inference result 

Prediction and evaluation results of the trained model (6 

channels : RGB + NIR + Red Edge + NDRE) using the test 

dataset are shown in table 1. The graphs of the model AP results 

in two classes for browning and dead, which is a symptom of 

PWD infection, are shown in Figure 6. Figure 6 shows the 

results of achieving the average performance for three 

crossover experiments, the AP value for the dead symptom is 

95.48% and the AP value for the browning symptom is 77.77%. 

Therefore, the performance of multi-channel CNN-based object 

detection through data augmentation is mAP 86.63%, which is 

the average value of AP for browning and dead classes. The 

following Figure 7 is a visualized figure of the inferred class 

and bounding box, which will be an RGB image. 

 

IV. CONCLUSIONS 

Recently, most deep learning-based tree detection models 

using aerial photography are based on RGB images. However, 

it is difficult to expect high detection performance because the 

detection model using the RGB image does not simply consider 

vegetation information of various band spectrums. In this paper, 

we propose a multi-channel CNN-based object detection to 

detect trees suspected of being infected with PWD. The 

proposed model detects suspected trees of PWD after training 

based on multispectral aerial photography in RGB, Green, Red, 

NIR and Red Edge bands acquired through a rotary wing drone 

equipped with a multispectral camera. In addition, in order to 

improve detection accuracy, image preprocessing was 

performed through image calibration, image alignment, and 

image enhancement. As a result of the study, the multi-channel 

CNN-based object detection model using RGB, NIR, red edge, 

and NDRE index was the best, and the final detection 

performance was mAP 86.63%. The proposed detection model 

can be applied to more detailed tree detection for dead and 

browning symptoms. Therefore, the proposed detection model 

is expected to be useful for detecting trees with symptoms of 

various diseases. 
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