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1. MOTIVATION

In everyday environments we are frequently immersed by un-
wanted acoustic noise and interference while we want to lis-
ten to acoustic signals, most often speech. Technology for
assisted listening is then desired to increase the efficiency of
speech communication, to reduce listener fatigue, or to just
allow for enjoying undisturbed sounds (e.g., music). While
for normal hearing people assisted listening devices (ALDs)
often mainly aim to achieve hearing protection or increase lis-
tening comfort, for hearing impaired individuals, as the most
prominent user group so far, further progress of assisted lis-
tening technology is crucial for better inclusion into our world
of pervasive acoustic communication.

The essential functionality of ALDs comprises three steps
(see Fig. 1), namely, 1) acquiring the signals of interest, 2)
enhancing desired and removing undesired components from
the acquired signals, and 3) presenting the enhanced signal(s)
to the listener. Given the acquired microphone signals, the
efficiency of such devices is largely determined by the per-
formance of the signal processing algorithms for signal en-
hancement and presentation. Considering that multiple mi-
crophones are now common in many listening devices (e.g.,
hearing aids or mobile phones) and allow to exploit the spatial
diversity in addition to the spectrotemporal diversity, multi-
channel algorithms appear to be decisive for current and fu-
ture ALDs. Moreover, in contrast to single-microphone sig-
nal enhancement algorithms, which have not been shown to
improve speech intelligibility but may reduce, e.g., the listen-
ing effort, multi-microphone signal enhancement algorithms
are capable of increasing speech intelligibility [1], especially
when the sound sources have different spatial characteristics.

Although microphone array signal processing, e.g., for
teleconferencing systems, is a well-established field, dealing
with similar problems and signals [2], the problem setting for
ALDs exhibits a number of distinctive features. First, the mi-
crophone placement is typically constrained by the fact that
the devices should be inconspicuously placed at the user’s
head and should capture the relevant spatial information of
the sound sources. Moreover, while all signal enhancement
algorithms ideally aim at removing the undesired components
and leave the desired components undistorted, the compro-
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Fig. 1. Main processing blocks in an assisted listening device

mises need to be chosen differently depending on the applica-
tion domain: for ALDs, distortion of the desired signal or an-
noying noise artefacts will typically be penalized more than a
higher level of residual undistorted noise, and the balancebe-
tween reduced listener fatigue, increased speech intelligibility
and subjective quality plays an even greater role than in other
speech communication devices. Finally, for binaural systems
that are expected to dominate the future markets, preservation
of the critical binaural cues as necessary for a correct spatial
perception is crucial [3], not just for the desired signal, but
also for the residual noise and interferers.

2. SCOPE OF THE PAPER

In this paper, we will discuss several algorithms for multi-
microphone signal enhancement and presentation that are
suitable for ALDs. The considered acoustic scenario is de-
fined by a single source of interest (‘target source’) at any
point in time, while multiple interfering point sources (e.g.,
competing speakers) and additional incoherent noise (e.g.,
sensor noise, diffuse background noise) may be active simul-
taneously (see Fig. 2). It is assumed that some knowledge
is available to distinguish the target source from the interfer-
ing sources once they are sufficiently enhanced or separated.
Bearing in mind that the wearers of ALDs may move their
heads, the relative positions of both the target source as well
as the interfering sources must be considered as time-varying,
so that source localization and tracking is required.
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Fig. 2. Scenario with target sources0(t), point-like interferers
sp(t), incoherent noise sources, and microphones at the user’s
head

The fundamental concept of all considered multi-microphone
algorithms relies on spatial and/or spectrotemporal diversity,
i.e., the desired components should be separated from the
undesired components in the spatial and/or time-frequency
domain. The algorithms hence correspond to spatial filter-
ing (often termed beamforming) and filtering in the time-
frequency domain, respectively. In addition to exploiting
the statistics of the available observations, the optimum filter
design should also use available prior knowledge, e.g., thees-
timated or assumed position of the target source. This implies
that in this paper ‘blind’ source separation (BSS) algorithms
[4] are only considered in forms that allow the inclusion of
such prior knowledge. Aside from some target-related knowl-
edge, we assume natural unpredictable scenarios which may
be arbitrarily complex and time-varying. This implies that
the filters must be estimated from currently available obser-
vations and cannot be learned in advance, thus algorithms
which are based on trained models (e.g., using non-negative
matrix factorization) are not considered in this paper. In ad-
dition, in time-varying environments the estimation of the
spatial and spectrotemporal information from short observa-
tion intervals is of crucial importance, so that we will focus
on techniques exploiting second-order statistics, keeping the
variance of the estimated quantities small.

Signal model. According to the acoustic scenario in
Fig. 2, we considerP point sourcessp(t), with t as the dis-
crete time index, in a noise field of unknown coherence,
which are recorded by an array ofM microphones. The tar-
get source is denoted bys0(t). Assuming the acoustic paths
between the sources and the microphones to be linear and
time-invariant, themth microphone signalxm(t) is given by
the convolutive mixing model

xm(t) =
P−1∑

p=0

hp,m(t) ∗ sp(t) + nm(t), m = 1 . . .M , (1)

wherenm(t) denotes the noise component in themth micro-
phone signal,hp,m(t) is the room impulse response (RIR) be-
tween thepth source and themth microphone and∗ denotes
convolution. Typically, the signals are processed in the short-
time Fourier transform (STFT) domain, i.e.

xm(k, ℓ) =
P−1∑

p=0

hp,m(k)sp(k, ℓ) + nm(k, ℓ), m = 1 . . .M , (2)

wherexm(k, ℓ), sp(k, ℓ) andnm(k, ℓ) denote the STFTs of the
respective time-domain signals, withℓ representing the frame
index andk representing the frequency bin index1, and where
hp,m(k) denotes the acoustic transfer function (ATF) between
the pth source and themth microphone. For conciseness we
will omit the dependency on the indicesk andℓ in the remain-
der of this paper. In vector form, the equation set (2) can be
written as

x = h0s0 +

P−1∑

p=1

hpsp + n = h0s0 + v , (3)

with x =
[

x1 · · · xM

]T
, andn andhp defined similarly,

and h0 denoting the ATF of the target source. This signal
model will form the basis for the subsequent description of
the main signal processing tasks with ALDs, i.e. source lo-
calisation, signal enhancement and signal presentation.

Signal acquisition. For ALDs in realistic acoustic envi-
ronments, the ATFs include the microphone characteristics,
room acoustics and filtering effects due to the user’s head.
The diffraction and reflection properties of the user’s head,
pinna, and torso are described by the so-called head-related
transfer function (HRTF), which is the frequency- and angle-
dependent transfer function between a sound source and the
user’s ear drum in an anechoic environment [5]. The pair of
left and right HRTFs contain the so-called binaural cues of
a sound source, namely the interaural time difference (ITD)
and the interaural level difference (ILD), which are resulting
from the Time Difference of Arrival (TDOA) between both
ears and the acoustic head shadow, respectively. In contrast
to point sources, the spatial characteristics of incoherent noise
can not be properly described by the ITD and ILD, but rather
by the Interaural Coherence (IC) [5]. Binaural cues play a ma-
jor role in spatial awareness, i.e. for source localizationand
for determining the spaciousness of auditory objects, and are
important for speech intelligibility due to binaural unmask-
ing, e.g. [5].

For capturing the relevant spatial information and binau-
ral cues of the sound sources, in principle, at least two micro-
phones are required, which are preferably mounted on both
sides of the head. Ideally, the microphones are placed as close
as possible to the corresponding loudspeakers which present

1Note that (2) is strictly speaking only valid for frames thatare signifi-
cantly longer than the RIR length. When this is not the case, aconvolutive
transfer function model should be used.



the signals to the ear drums, in order to allow the recreation
of the authentic spatial impression for the listener. In typi-
cal ALDs, two or three microphones are nowadays available
on each side of the head, with spacings ranging from 7mm
to 15mm. Since the positions of the microphones do not
coincide with the ear drum, and the acoustic path between
the loudspeaker and the ear drum differs from the HRTF, the
overall response of the device should be equalized in order to
match the open-ear HRTF [3].Source localization. The ob-
jective of source localization is to estimate the position or the
direction of arrival (DOA) of the target source (and possibly
the interfering sources), be it for supporting signal extraction
or for furnishing signal presentation algorithms with spatial
information. Source localization will be addressed in more
detail in Section 3.

Signal extraction. The main task is to extract from the
given recordings an undistorted version of the target source
while all undesired components are suppressed. Two generic
approaches can be used to achieve this:

1. One can aim at separating all point sources and then
pick the target source based on additional knowledge.

2. One can directly use the additional knowledge to ex-
tract the target source only.

Intuitively, the second approach promises a lower overall al-
gorithmic complexity for a desired performance, as it essen-
tially requires only to separate the target source from all other
sources, and obviously avoids the complexity of estimating
the potentially large number of irrelevant sources in a given
acoustic scene. In addition, the first approach may be limited
to setups where the number of microphones is larger than the
number of point sources.

Signal extraction is typically achieved using a filter-and-
sum structure, depicted in Fig. 3, where each microphone sig-
nal xm is passed through a linear filterw∗m and the outputs are
summed. The output signaly is then given in the STFT do-
main by

y =
M∑

m=1

w∗mxm = wHx , (4)

with wH =
[

w∗1 w∗2 · · · w∗M
]

. The time-domain output
signal may then be computed using the inverse STFT.

While, in principle, additional knowledge may describe
source characteristics in both the time-frequency domain or
the spatial domain, in this paper we will mainly consider ad-
ditional knowledge in the spatial domain, assuming that the
sources are physically located at different positions. Typical
prior spatial knowledge is then given by, e.g., the estimated
or assumed DOA of the target source relative to the head.
With this spatial information, we can support signal extrac-
tion algorithms, e.g., a beamformer pointing towards a given
DOA or BSS algorithms exploiting the target DOA. These al-
gorithms will be covered in more detail in Sections 4 and 5.

y(k, ℓ)

w∗

2(k, ℓ)

w∗

1(k, ℓ)

xM(k, ℓ)

x2(k, ℓ)

x1(k, ℓ)

w∗

M(k, ℓ)

∑

Fig. 3. Filter-and-sum structure

Signal presentation. After extracting the target source,
the enhanced signal is to be presented to the listener, where
we need to distinguish between monaural and binaural sys-
tems. For a monaural ALD, i.e. a single device on one ear,
it seems obvious to just feed the enhanced signal to the loud-
speaker of this device. For a binaural ALD, i.e. a system
jointly considering and processing the microphone signalsof
both ears, different signals can be presented to the left and
the right ear. This can generate an important binaural advan-
tage, since the auditory system can exploit binaural cues and
the signal processing algorithms can use information from all
microphones on both devices [6, ch. 14]. On the other hand,
in a bilateral system where both devices work independently,
this potential is not fully exploited since not all microphone
signals from both devices are combined. To exploit the full
potential of binaural processing, both devices need to cooper-
ate with each other and exchange information or signals, e.g.,
through a wireless link.

Besides signal extraction, in binaural ALDs a second
major task should be achieved: the auditory impression of
the acoustic scene, i.e. the spatial perception of the target
source, the residual interfering sources and noise, should
be preserved. This can be achieved either by so-called bin-
aural rendering of the monaural output signal of the signal
extraction algorithm, or by directly incorporating the de-
sired binaural cues into the spatial filter design. According
algorithms will be covered in more detail in Section 6.

3. SOURCE LOCALIZATION

In principle, any source localization algorithm which can
handle multiple nonstationary wideband sources can be used
for ALDs [6, ch. 6]. This includes direct methods based
on steered-response power (SRP) [2, ch. 8] or subspace
methods (MUSIC) [7] and the large and popular class of
indirect two-step methods based on TDOA estimation and a
subsequent geometric inference of the source position. The
latter class comprises cross-correlation-based [8] and cross-
relation-based algorithms, e.g., [9, 10].

The main difference of using these algorithms for ALDs
compared to their conventional use results from the fact that
the microphones are typically mounted close to the head of



the user. Therefore, the propagation paths of a point sourceto
the different microphones can not be simply modeled by the
free-field TDOA, but the filtering effects of the head should
be taken into account. As HRTFs vary between individuals,
the results produced by source localization algorithms will al-
ways suffer from some uncertainty if the individual HRTFs
and the microphone topology are not exactly known. This is
especially true for binaural systems, where the relative mi-
crophone positions are user-dependent and not fixed. How-
ever, useful approximations can be employed, which are, e.g.,
based on spherical head models [11] or measured HRTFs.
The TDOAs for different source directions based on the free-
field assumption, measured HRTFs and typical head models
is depicted in Fig. 4. In addition, for binaural systems also
binaural computational auditory scene analysis (CASA) algo-
rithms [12] can be used for localizing multiple sources, e.g.,
incorporating a probabilistic model of the binaural ILD and
ITD cues [13].

Given the microphone topology, cross-correlation-based
algorithms such as the Generalized Cross-Correlation with
Phase Transform (GCC-PHAT) [8] can be used to localize
a single source for ALDs when the head filtering effects are
taken into account. However, when multiple sound sources
are present, identifying the correct source-specific TDOAs
typically becomes very difficult [14]. Generalizations of the
GCC, such as SRP-PHAT [2, ch. 8], coherently add up signals
originating from a certain point in space to estimate the source
likelihood at this position. While conceptually suited foran
arbitrary number of microphones and sources, they involve
considerable computational complexity for sufficient spatial
resolution and are inherently sensitive to reverberation.

More general cross-relation-based algorithms, e.g., [9, 10]
aim at system identification via cross-relation and are nat-
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sured HRTFs and two head models, respectively.

urally suited for identifying relative head-related impulse
responses (HRIRs) from the source to the different micro-
phones, delivering TDOA information as long as the di-
rect path can be detected in the identified relative impulse
responses. While the adaptive eigenvalue decomposition
method in [9] is able to identify relative HRIRs only for a
single source while exploiting nonstationarity, the BSS-based
method in [10] can robustly localize multiple sources even in
noisy and moderately reverberant environments.

Finally, subspace-based source localization algorithms
such as MUSIC [7] are in principle also suitable for arbitrary
numbers of microphones and sources (assuming the num-
ber of sources is known). As they essentially estimate the
source positions using the eigenvectors corresponding to the
largest eigenvalues of a spatial covariance matrix, the esti-
mates for this covariance matrix must be sufficiently reliable
for every frequency bin. Since subspace-based algorithms
are separating the signal and noise subspace, where the noise
needs to be white or whitened, this is typically difficult to
achieve for wideband nonstationary sources in time-varying
environments where only short observation intervals can be
considered.

4. DATA-INDEPENDENT BEAMFORMING

A simple but popular way for enhancing the target source in
ALDs is data-independent beamforming, where the filtersw
in (4) are designed to enhance sources arriving from the (es-
timated or assumed) target DOA and suppress sources not ar-
riving from this DOA, but do not account for the statistics
of the microphone signals. Various data-independent beam-
formers include delay-and-sum beamformers, superdirective
or differential beamformers [2, ch. 2], [15]. For the design of
such beamformers, the target DOA and the complete micro-
phone topology need to be known. Data-independent beam-
formers have been mainly used for monaural devices [16],
where robustness against microphone mismatch is crucial due
to the closely spaced microphones [17, 18]. For binaural
devices data-independent beamformers have also been pro-
posed, which however suffer from spatial aliasing due to the
distance between the microphones and require consideration
of the head filtering effects, e.g., [19].

5. STATISTICALLY OPTIMUM SIGNAL
EXTRACTION

In contrast to data-independent beamformers, data-dependent
signal enhancement methods exploit both the spectrotemporal
as well as the spatial information of the microphone signals
in order to extract the target sources0 (or a filtered version of
it) from all interferers and noise [20], possibly equalizing the
reverberation effect caused by the ATFsh0. Since the filters
adapt to the current statistics of the typically nonstationary
signals, this will be treated as an optimum multichannel fil-
tering problem in the sequel.



Relying on estimates of either the interference and noise
statistics or the target source statistics, two main classes of su-
pervised optimum multichannel filtering will be discussed in
Sections 5.1 and 5.2, i.e. Minimum Variance Distortionless
Response (MVDR) beamforming and Multichannel Wiener
Filtering (MWF). In addition, ‘blind’ source separation algo-
rithms, in particular the variants exploiting target-related prior
information for constraining the optimization problem to ex-
plicitly separate the target source, will be considered in Sec-
tion 5.3. In Section 5.4 techniques for estimating the noise
and interference statistics will be presented.

5.1. MVDR beamformer

The Minimum Variance Distortionless Response (MVDR)
beamformer is a special case of a Linearly Constrained Min-
imum Variance (LCMV) beamformer [21, 20], where the
power of the output signal is minimized subject to a sin-
gle constraint assuring an undistorted response for the target
source (or a filtered version of it). Different versions of
the MVDR beamformer exist, either using the complete tar-
get ATF, the direct path of the ATF or the relative transfer
functions. In practice, the MVDR beamformer is often im-
plemented using a so-called Generalized Sidelobe Canceler
(GSC) structure [22, 23, 24, 25].

Derivation of the MVDR beamformer

The power spectral density (PSD) of the filter-and-sum beam-
former output signaly is given by

E{|y|2} = E{wHxxHw} = wH
Φxxw , (5)

whereΦxx
△
= E{xxH} denotes the crosspower spectral density

matrix of the observed microphone signals. The distortionless
response constraint requires that the desired component inthe
output signalys0 is equal to the target signals0, i.e.

ys0 = wHh0s0
!
= s0 . (6)

Hence, by solving the constrained minimization problem

min
w

wH
Φxxw , subject to wHh0 = 1 , (7)

we obtain the MVDR filter [21, 20]

wMVDR =
Φ
−1
xx h0

hH
0Φ

−1
xx h0

. (8)

By assuming the target source, the interfering sources and
the noise to be mutually uncorrelated and of zero mean, the
crosspower spectral density matrixΦxx can be written using
(3) as

Φxx = φs0s0h0hH
0 +Φvv , (9)

whereΦvv
△
= E{vvH} denotes the crosspower spectral density

matrix of the interference and noise components andφs0s0 =

E{|s0|
2}. Using (9), it can be shown that the MVDR filter in

(8) can be written as [20]

wMVDR =
Φ
−1
vv h0

hH
0Φ

−1
vv h0

. (10)

As can be seen, the MVDR filter is solely determined by the
crosspower spectral density matrix of the observations and
the ATFsh0. However, due to the high order and the typi-
cally time-varying nature of the corresponding RIRsh0,m(t),
blindly identifying these impulse responses is generally dif-
ficult if at all possible. Hence, instead of using the complete
RIRs, one can consider only the direct path of the RIRs (corre-
sponding to the free-field HRIR for the estimated or assumed
target DOA), which may however lead to target signal distor-
tion, or one can use the so-called relative transfer functions,
as explained in the next paragraph.

MVDR using relative transfer functions

By constraining the desired component in the output signal
to be equal to the speech component at an arbitrarily chosen
reference microphoner [24], the constraint in (6) becomes

ys0 = wHh0s0
!
= h0,r s0 , (11)

which is equivalent towH h̃0 = 1, where the relative transfer
function (RTF)h̃0 is defined as

h̃0
△
=

h0

h0,r
=
[

h0,1

h0,r

h0,2

h0,r
· · · 1 · · ·

h0,M

h0,r

]T
. (12)

By substituting the ATFsh0 with the RTFsh̃0 in (8) and (10),
the modified MVDR filter is obtained as

w̃MVDR = h∗0,rwMVDR =
Φ
−1
xx h̃0

h̃H
0Φ

−1
xx h̃0

=
Φ
−1
vv h̃0

h̃H
0Φ

−1
vv h̃0

. (13)

Note that blind identification of RTFs is significantly eas-
ier than blind identification of ATFs. When noise and inter-
ference are absent, this can simply be achieved by dividing
the crosspower spectral densities of the microphone signals.
When noise and/or interference are present, methods exploit-
ing the non-stationarity of speech or based on the generalized
eigenvalue decomposition have been proposed, e.g., [24, 25].

Generalized Sidelobe Canceler

The constrained optimization problem of the MVDR beam-
former in (7) can be transformed into an unconstrained op-
timization problem, leading to the highly popular General-
ized Sidelobe Canceler (GSC) structure [22, 23, 24, 25], con-
sisting of three main blocks (see Fig. 5): 1) a fixed beam-
former (FB), ensuring the fulfillment of the constraint in (6)
or (11), 2) a blocking matrix (BM), creating so-called noise
referencesum, and 3) a multichannel interference cancelergm,
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Fig. 5. GSC implementation of an MVDR beamformer

minimizing the residual interference and noise in the output
of the fixed beamformer that is correlated with the noise refer-
ences. If the target signal leaks into the noise references due
to a mismatched blocking matrix (e.g., caused by RTF esti-
mation errors or by DOA errors, microphone mismatch and
reverberation when using free-field HRIRs), the target signal
will be partially canceled as well. To mitigate this target sig-
nal cancellation, the interference canceler is typically adapted
only during periods when the target source is inactive, see,
e.g., [23]. Moreover, several techniques have been proposed
to reduce the speech leakage components in the noise refer-
ences, e.g., [24, 25] and/or to limit the distorting effect of
the remaining speech leakage [26, 23, 27], e.g., by impos-
ing a quadratic inequality constraint or by using the so-called
speech-distortion-regularized GSC [27].

Application in assisted listening devices

The GSC or one of its more robust variants can be considered
as the current state-of-the-art solution for monaural hear-
ing devices with an endfire microphone array configuration,
e.g.,[28, 29, 30]. A very popular variant is the so-called
adaptive directional microphone (ADM) [15, 28, 29], where
the fixed beamformer and the blocking matrix are differential
beamformers forming a front and a back oriented cardioid
pattern, and an adaptive scalar minimizes the energy arriving
from the back hemisphere. A two-microphone implementa-
tion was indeed shown to achieve a considerable speech in-
telligibility improvement for hearing aid users (about 3.4 dB
improvement for three babble noise sources) [29].

5.2. Multi-channel Wiener Filter

The second popular class of multichannel signal enhancement
techniques is associated with the Multichannel Wiener Filter
(MWF), e.g., [2, chapters 3,6,14],[27, 31]. It produces a min-
imum mean square error (MMSE) estimate of either the target
source [2, ch. 3], the speech component at an arbitrarily cho-

sen microphone [2, chapters 6,14],[31], or a reference speech
signal [2, ch. 14],[27]. In order to trade off speech distortion
and noise reduction, the so-called speech-distortion-weighted
MWF was introduced [27, 31].

Similarly to the MVDR using relative transfer functions,
the MWF neither requires a priori information about the mi-
crophone configuration nor the position of the target source,
making it an appealing approach from a robustness point of
view. On the other hand, relying on the second-order statis-
tics of the desired and undesired signal components implies
that for the assumed nonstationary processes these statistics
must be estimated with sufficient accuracy at all times, cf.
Section 5.4.

MMSE estimation for the MWF

The MWF aims to extract the target source by minimizing
the mean square error (MSE) between the (unknown) source
signals0 and the beamformer output, i.e.

wMWF = argmin
w

E
{

|s0 − y|2
}

= argmin
w

E
{

|s0 − wHx|2
}

. (14)

Assuming the target source and the interfering sources and
noise to be uncorrelated, the solution of (14) is given by

wMWF = Φ
−1
xx E{xs∗0} = Φ

−1
xx h0φs0s0, (15)

requiring the ATFsh0 and the target source PSDφs0s0 to be
estimated, which is a non-trivial task. However, similarlyto
the MVDR using relative transfer functions, we can also de-
sign an MWF aiming at extracting the speech component at
an arbitrarily chosen reference microphoner by

w̃MWF = argmin
w

E
{

|h0,rs0 − wHx|2
}

, (16)

which yields

w̃MWF = Φ
−1
xx E{xh∗0,rs∗0} =

(

φs0s0h0hH
0 +Φvv

)−1
φs0s0h0h∗0,r .

(17)
Although it appears that the ATFs and the target source PSD
are required to compute (17), the (rank-1) crosspower spectral
density matrixφs0s0h0hH

0 can be estimated from the second-
order statistics of the microphone signals, cf. Section 5.4.

Speech-distortion-weighted MWF

The MMSE criterion in (16) can be easily generalized to al-
low for a trade-off between noise reduction and speech distor-
tion [27, 31], by introducing a weighting factorµ ∈ [0,∞]:

w̃SDW = argmin
w

E
{

|h0,rs0 − wHh0s0|
2
}

+ µE
{

|wHv|2
}

, (18)

which is referred to as the speech-distortion-weighted MWF
(SDW-MWF). The solution of (18) is given by

w̃SDW =
(

φs0s0h0hH
0 + µΦvv

)−1
φs0s0h0h∗0,r . (19)



The smaller the factorµ is chosen, the smaller the resulting
speech distortion. Ifµ = 1, the MMSE criterion (16) is ob-
tained. Ifµ > 1, the residual noise level will be reduced at the
expense of increased speech distortion.

Relationship between MWF and MVDR

It is interesting to note that the MWF can be decomposed
as an MVDR beamformer, exploiting the spatial information
of the target and interfering sources, followed by a single-
channel Wiener Filter (SWF) [2, ch. 3], [32], i.e.

w̃SDW =
φysys

φysys + µφyvyv
︸          ︷︷          ︸

SDW-SWF postfilter

×
Φ
−1
vv h̃0

h̃H
0Φ

−1
vv h̃0

︸      ︷︷      ︸

MVDR beamformer

, (20)

whereφysys andφyvyv denote the PSDs of the desired and un-
desired components at the output of the MVDR beamformer
w̃MVDR using RTFs.

Application in assisted listening devices

In [1] a three-microphoneMWF implementation for a monau-
ral hearing device was evaluated at different test sites, and
compared with other single- and multi-microphone noise re-
duction techniques. In this study it was shown that overall
the MWF achieved the largest speech intelligibility improve-
ments (up to 7 dB), even in highly reverberant environments.

5.3. Blind Source Separation

Generalizing the approach of extracting a single desired
source, Blind Source Separation (BSS) algorithms aim at
extracting multiple sources from observed mixtures, without
requiring prior knowledge on the positions of the sources
and the microphones, spatiotemporal signal statistics or the
mixing system. Moreover, they do not need any reference in-
formation on the activity of the sources in the spectrotemporal
domain. On the other hand, they do require knowledge on the
total number of sources and can only separate sources that
can be modeled as point sources. Considering time-varying
mixing systems, we disregard here approaches that perform
BSS based on learning from a large amount of data and focus
on Independent Component Analysis (ICA)-based methods
that are - similar to adaptive filtering approaches - suited to
time-varying acoustic scenes [33, 4, 34, 35].

For the following, we rewrite the STFT signal model in
(3) as

x =
P−1∑

p=0

hp sp + n = Hs + n , (21)

describingM noisy observationsx of the convolutive mix-
ture of P point sourcessp. To obtain estimates of the origi-
nal sourcessp, a linear demixing/separation systemW is ap-
plied, consisting ofM×P filters with frequency responsewmp,

m = 0, . . . ,M − 1, p = 0, . . . , P − 1. TheP separated signals
yq, stacked in the vectory, are then obtained as

y =WHx =WHHs +WHn . (22)

Known methods for identifying optimum demixing filters
W are based on the assumption that the signals to be separated
are mutually statistically independent and that enforcingsta-
tistically independent outputsyq of the demixing system yield
good estimates of the desired separated source signalssp. For
the mostly assumed case where the number of microphones is
larger than or equal to the number of sources (M ≥ P), an ap-
propriate generic cost functionJ(ℓ) for frameℓ, describing
an estimate of the Kullback-Leibler divergence between the
joint pdf of the output signalsyq and the desired independent
outputs, can be formulated as [4, ch. 4]:

JICA(ℓ) =
∞∑

λ=0

β(λ, ℓ)
1
K

K−1∑

κ=0

log
p̂y,PL(y(κ, λ))

P−1∏

q=0

p̂yq,L(yq(κ, λ))

, (23)

wherep̂yq,L(yq(κ, λ)) denotes an estimate for theL-variate pdf
of a segment of lengthL of the qth output signalyq, and
p̂y,PL(y(κ, λ)) denotes an estimate for thePL-variate joint pdf
for all P output signals. Averaging overK frames accounts
for the nonstationarity of the data, while the windowing func-
tion β(ℓ, λ) describes the weight of a block average at timeλ
for the cost function at timeℓ, in a similar way as for Recur-
sive Least Squares adaptation. Forming gradients of this cost
function, or simplified versions, with respect to the demix-
ing matrixW allows for maximization of statistical indepen-
dency with respect to individual data frames (on-line adapta-
tion, K = 1, β(λ, ℓ) = 0 for λ , ℓ), as well as for an entire
recording (off-line adaptation,K > 1, β = constant) [35].

It should be noted that using the statistical independence
assumption only, the separation systemW can at best be ob-
tained up to a linear filtering uncertainty and a permutation
of the outputs, and thus cannot itself identify the inverse mix-
ing system which would solve the deconvolution problem and
perfectly dereverberate the source signals [36].

Numerous algorithms have been proposed for ICA of con-
volutive mixtures, which are often categorized as either time-
domain or frequency-domain algorithms. Time-domain algo-
rithms estimate the demixing systemW as FIR filters [35],
whereas frequency-domain algorithms formulate the demix-
ing problem as a scalar source separation problem for each
frequency independently (‘instantaneous ICA’), and imple-
ment scalar ICA algorithms for each STFT bin [36, 33, 37].

Similar to adaptive filtering, where time-domain ap-
proaches imply a significantly higher computational complex-
ity for obtaining a similar performance as frequency-domain
approaches, frequency-domain implementations of ICA (FD-
ICA) are computationally more attractive. On the other hand,
if these are straightforwardly formulated as independent ICA



problems in each STFT bin, the resulting demixing system
does not perform a linear but a circular convolution, which is
inadequate for demixing a linear mixing system [35]. As an
immediate consequence, the so-called internal permutation
and scaling problems result: As the outputs of any uncon-
strained ICA system are only determined up to an unknown
scaling factor and a permutation of their order, for FD-ICA
the order and the scaling of the outputs may be different for
each STFT bin. Therefore the outputs of the scalar ICA units
have to be realigned so that for a given output channelyq

all frequency bins belong to the same source [37] and are
properly scaled, e.g., by minimizing the average power dif-
ference of the outputsyq relative to the inputsxm (‘Minimum
Distortion Principle’) [38].

In the acoustic signal extraction context, the mechanism
of BSS based on ICA has been shown to be equivalent to a set
of P adaptive beamformers, each of which aims to extract one
source by suppressing all other sources, thereby exploiting the
spatial diversity of the microphone signals [39]. Note thatfor
adaptive beamforming, the DOA or the RTFs of the target
source should be known, and that it can adapt the required
statistics only with given source activity information, while
ICA does not need such information.

Application in assisted listening devices

To illustrate the spatial filtering capacity of ICA, Fig. 6 de-
picts the overall transfer functionWHH from a given source
position in a reverberant environment for a null-steering
(delay-and-subtract) beamformer and one output channel of
an ICA system, thereby demonstrating the actual interfer-
ence suppression performance in a reverberant environment
[40]. The improved spatial null achieved by ICA confirms
the hypothesis that, due to capturing all correlated compo-
nents belonging to the same source in the same output, ICA
does not only suppress the direct path but also reflections
of an interfering source, e.g., [40]. Nevertheless, one hasto
bear in mind that the suppression of reflections results from
a compromise in the spatial directivity, which a null-steering
beamformer cannot offer. Obviously, using the same number
of microphones, ICA cannot use more spatial degrees of free-
dom than a supervised beamformer, and therefore the spatial
selectivity of ICA remains limited to what an optimum and
ideally controlled beamformer can achieve, as long as it uses
the same statistics for determining its parameters [39].

The fact that ICA does not require prior knowledge about
source positions, microphone topology, and source activity,
and can well adapt during activity of multiple sources, renders
it a highly attractive method for ALDs in complex acoustic
environments with unpredictable interference and noise, and
usually unknown source and microphone topologies. Unfor-
tunately, however, ICA systems that can robustly and quickly
separate more than three sources in real-world environments
have not been presented yet, so that scenarios with an un-
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Fig. 6. Interference cancelation in a reverberant environ-
ment obtained by (a) null-steering beamformer (b) ICA
(T60=300 ms, interfering point source at 0◦ at a distance of
1.1m of a two-microphone array with spacingd = 15cm).

known number of interferers cannot be handled by such a
generic ICA system.

5.4. Estimation of interference and noise statistics

The performance of the signal extraction algorithms dis-
cussed in Sections 5.1 and 5.2 critically depends on the
estimates of the statistics of the desired and the undesired
signal components, respectively. When implementing these
algorithms, it is typically assumed that there is a domain
where either the desired or the undesired components can be
observed alone. While in selected cases, stationarity assump-
tions may hold reliably to justify a predetermined estimate
[41], it must usually be assumed that the statistics of both
the desired and the undesired components vary in an unpre-
dictable way and call for instantaneous estimates.

In the spectrotemporal domain, voice activity detection
and speech presence probability estimation typically aim at
identifying regions in the STFT domain where only unde-
sired components are present, e.g. [6, ch. 5],[42]. Obviously,
this is very difficult for the given scenario with interfering
speech sources which naturally occupy the same frequency
range and whose temporal activity pattern is generally not
known, especially if their signal level is comparable to the
level of the target source in any of the microphone signals.
Therefore, the desired and undesired components can usually
only be separated along the time axis. For example, for com-
puting the MWF according to (19), it is typically assumed that
the interference and noise can be observed during noise-only
periods, so that with the assumed uncorrelatedness of noise
and desired speech, the crosspower spectral density matrix
φs0s0h0hH

0 can be estimated as

φs0s0h0hH
0 ≈ Φxx −Φvv , (24)

whereΦxx is estimated continually andΦvv during periods
of interference and noise only. As a fundamental problem,
however, all these methods still suffer from the fact that the
interference and noise estimates cannot be updated while the
target source is active, so that they are prone to failure with
nonstationary noise and interference, such as human speakers.

On the other hand, in the spatial domain, reference infor-
mation for all the interference and noise components can be



obtained by suppressing the target source. Here, the spatial
selectivity allowed by the microphone array topology con-
stitutes the main limitation. Exploiting the spatial domain
for obtaining interference and noise reference information
is an inherent feature of the GSC (cf. Section 5.1), where
the blocking matrix aims to suppress the target source. For
moving sources and multipath propagation scenarios, robust
adaptation schemes for the blocking matrix have already been
proposed, e.g., [23]. These concepts still require knowledge
about the activity of the target source, as the blocking matrix
should only be adapted when the target source is dominant.
If the DOA of the target source is known, its activity can be
monitored by directing both a delay-and-sum beamformer
and a delay-and-subtract beamformer in this direction and
inferring the activity from the ratio of its output powers, see,
e.g., [23]. However, these noise estimates will still be subop-
timal if the blocking matrix could not be updated while the
target source changed its position relative to the microphones
on the user’s head or the acoustic environment changed.

More recently, a constrained BSS scheme has been pro-
posed to identify the filters of two-channel blocking matri-
ces [40], which does not need source activity information and
continuously delivers up-to-date estimates for noise and inter-
ference. For this, the cost function in (23) is complemented
by a quadratic constraint for one output (hereyp) steering a
null towards the target source:

JC(W) =
∥
∥
∥wH

p d
∥
∥
∥

2

2
, (25)

wherewp denotes the vector of demixing filters inW which
produce the outputyp, andd denotes the steering vector cor-
responding to the DOA of the direct path of the target source.
This yields the Constrained ICA cost function

JC−ICA(W) = JICA(W) + ηJC(W), (26)

whose minimization suppresses the target in one output chan-
nel and thereby provides a reference for all other sources and
noise of unknown coherence. The weight is typically cho-
sen asη ≈ 0.5 . . .0.8 with larger values required if interfer-
ing sources are close to the target source. It should be noted
that, although the constraint captures only the direct path,
constrained ICA will intrinsically also aim at suppressingall
correlated components, i.e. reflections of the target source, in
the same output, thereby providing an advantage over a delay-
and-subtract beamformer as shown in Fig. 6. As the most at-
tractive advantage, however, the fundamental concept of ICA
assures a continuous update of the noise estimate without the
need of estimating the activity of the involved sources. Re-
cently, it was also shown that this concept can be generalized
to identify all RTFs required for the blocking matrix of a GSC
with an arbitrary number of constraints [43].
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Fig. 7. General binaural processing scheme

6. PRESENTATION OF THE ENHANCED SIGNALS

After extracting the target source using data-independent
beamforming or statistically optimum filtering (cf. Sections
4 and 5), the enhanced signal needs to be presented to the
listener. While microphone placement is important to main-
tain a close relationship to the individual HRTFs, we also
need to distinguish between a monaural system, i.e. a single
device on one ear, and a binaural system, i.e. a system jointly
processing signals at both ears. While for a monaural system
it seems obvious to just feed the enhanced signal to the loud-
speaker of this device, for a binaural system different output
signalsyL andyR can be generated and presented to the left
and the right ear (cf. Fig. 7).

In a bilateral system, i.e. a set of two independently
operating monaural systems, each device uses its own mi-
crophone signals and optimizes its filter coefficients indepen-
dently, which may lead to a distortion of the binaural cues
and hence the localization ability [44]. In order to achieve
true binaural processing, both devices need to cooperate with
each other and exchange information or signals, e.g., through
a wireless link. At the time of writing, the first commer-
cial systems reach the market which exchange microphone
signals in full-duplex mode. These systems pave the way
to future implementations of fully-fledged binaural multi-
microphone signal extraction algorithms, where microphone
signals from both devices are processed and combined in
each device. The gain in noise reduction performance of a
binaural over a monaural system is exemplarily shown for an
MVDR beamformer in Fig. 8.

The objective of a binaural speech enhancement algo-
rithm is not only to selectively extract the target source and to
suppress interfering sources and background noise, but also
to preserve the auditory perception of the complete acoustic
scene. This can be achieved by preserving the binaural cues,
i.e. ITD, ILD and IC, of the target source and the resid-
ual interfering sources and background noise. In addition to
monaural cues, these binaural cues play a major role in spatial
awareness and localization and are very important for speech
intelligibility due to binaural unmasking, e.g., [5].

All discussed signal enhancement algorithms in Sections
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4 and 5 essentially generate a single-channel output sig-
nal. Since in a binaural system two output signals (i.e. one
for each ear) are required, this single-channel output sig-
nal can either be binauralized, e.g., using binaural spectral
post-filtering techniques [45, 19, 46] or by mixing the output
signal with scaled (noisy) microphone signals [47, 48], or
two different complex-valued spatial filters can be optimized,
where the desired binaural cues are directly incorporated into
the spatial filter design, e.g., [49, 48, 50]. Although the lat-
ter paradigm allows for more degrees of freedom to achieve
noise reduction, there is typically a trade-off between noise
reduction performance and binaural cue preservation.

In binaural spectral post-filtering techniques, the same
real-valued gain is applied to one microphone signal of each
device, where a gain close to one is applied when the STFT
bin should be retained (target source), and a gain close to zero
is applied when the STFT bin should be suppressed (inter-
fering source or background noise). This spectral gain can,
e.g., be computed by comparing the estimated binaural cues
with the expected cues of the target source or based on the
temporal fluctuations of the ITD [45]. Other commonly used
approaches compute the spectral gain based on the output
signal of a data-independent or statistically optimum spatial
filter (e.g., MVDR beamformer, BSS) [19, 46]. Although
binaural spectral post-filtering techniques preserve the binau-
ral cues of all sound sources, in essence, they can be viewed
as single-channel noise reduction techniques, hence typically
introducing speech distortion and exhibiting single-channel
noise reduction artefacts (e.g., musical noise), especially at
low input SNRs.

The MVDR beamformer (using RTFs) and the MWF, dis-
cussed in Sections 5.1 and 5.2, can be straightforwardly ex-
tended into a binaural version producing two output signals,
by estimating the speech component in two reference micro-

phone signals, i.e. one on each hearing aid [48]. In [48] and
[44], it was shown both analytically and using subjective lis-
tening experiments that the binaural MWF preserves the bin-
aural cues of the target source but distorts the binaural cues of
interferers and noise, such that all components are perceived
as coming from the direction of the target source. Clearly, this
is undesired and in some situations (e.g., traffic) even danger-
ous. To optimally benefit from binaural unmasking and to
optimize the spatial awareness of the hearing aid user, several
extensions for the binaural MWF and the MVDR beamformer
have been proposed, which aim at preserving also the binaural
cues of the residual noise component by including cue preser-
vation terms in the binaural cost function, e.g., [48, 49, 50].
These include either RTF preservation or interference rejec-
tion constraints for directional interfering sources [48,49], or
IC preservation constraints for diffuse noise [50]. Another ap-
proach is partial noise estimation, which corresponds to mix-
ing the binaural outputs with scaled versions of the noisy ref-
erence microphone signals [48].

Application in assisted listening devices

In [44, 30] the performance of the binaural MWF and some of
its extensions has been perceptually evaluated, both in terms
of speech intelligibility and localization performance. First, it
was shown that the binaural MWF achieved significant speech
intelligibility improvements compared to the bilateral MWF
and the bilateral ADM. This demonstrates that transmitting
and processing microphone signals from both devices can re-
sult in a significant gain in noise reduction, especially when
multiple interfering sources are present. Second, using a lo-
calization experiment in the frontal horizontal hemisphere it
was shown that using the binaural MWF with partial noise
estimation it is possible to preserve spatial awareness without
significantly affecting speech intelligibility.

7. SUMMARY AND OUTLOOK

In this paper we have presented an overview of several mul-
timicrophone signal enhancement algorithms for assisted
listening devices and have addressed other important issues,
such as microphone placement and binaural signal presen-
tation. Using appropriate processing with multiple micro-
phones in a binaural ALD allows both speech intelligibility
improvement as well as a preservation of the auditory percep-
tion of the acoustic scene.

Future work in this area will focus both on algorithmic
aspects and a better integration of psycho-acoustics. On the
algorithmic side, more accurate and robust estimation and
careful exploitation of comprehensive spatiotemporal sig-
nal statistics for all relevant sources in highly time-varying
scenarios will be necessary to allow for the ultimate de-
sired binaural presentation. Learning of acoustic scenarios
and source characteristics can certainly be expected to con-



tribute to reaching this goal. Optimum distribution of the
computational load over the available computing hardware
via bitrate-constrained ‘body area networks’ will constitute
another challenge to algorithm developers. On the psycho-
acoustic side, ideally, meaningful criteria are desirablethat
can directly be integrated into the cost functions to allow
perceptually optimum signal processing at any given time
instant. This may start from incorporating general knowl-
edge about well-known noise masking effects combined with
knowledge on the relative importance of certain binaural cues
as used already in audio coding and reach to more powerful,
yet unknown models for human hearing. For each individual
it should be merged with knowledge about possible hearing
impairments or personal listening preferences, i.e. a so-called
auditory consumer profile. One may speculate that with suit-
able user interfaces, the traditional fitting procedures will
be replaced by training procedures supervised by the user
and even the cost functions for optimizing the multichannel
filtering will be as individual as the user himself. All these
developments will certainly benefit from the integration into
handy but powerful personal computing platforms which are
already emerging.
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