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right (®®; ; Out Right
In everyday environments we are frequently immersed by un , Monaura
wanted acoustic noise and interference while we want to lis x(kl) | | w(k,)) or Bi
. . ' [o]
ten to acoustic signals, most often speech. Technology fc | \_ ; P et
assisted listening is then desired to increase fhieiency of ot e T , 4

speech communication, to reduce listener fatigue, or tb jus
allow for enjoying undisturbed sounds (e.g., music). While H |
for normal hearing people assisted listening devices (ALDs LI tocaliation / Binaural oo -

often mainly aim to achieve hearing protection or increase | ooy

tening comfort, for hearing impaired individuals, as thesio

prominent user group so far, further progress of assisted li Fig. 1. Main processing blocks in an assisted listening device
tening technology is crucial for better inclusion into owonid

of pervasive acoustic communication.

The essential functionality of ALDs comprises three step
(see Fig. 1), namely, 1) acquiring the signals of interept, 2
enhancing desired and removing undesired components fro
the acquired signals, and 3) presenting the enhanced &ynal ; ) _ .

g g )P g &Y B/veen reduced listener fatigue, increased speech iriteliig

to the listener. Given the acquired microphone signals, th T . )
efficiency of such devices is largely determined by the perg:md subjective quality plays an even greater role than iaroth
speech communication devices. Finally, for binaural syste

formance of the signal processing algorithms for signal en-h i ted to dominate the fut ket . i
hancement and presentation. Considering that multiple minatare expected to dominate the future markets, presemva

crophones are now common in many listening devices (e.g(.),f the C_”“C?' binal_JraI Cues as necessary for_a correcta;pat

hearing aids or mobile phones) and allow to exploit the gpati perception is c_rumal [3.]’ not Ju.St for the desired signalt b

diversity in addition to the spectrotemporal diversity, Ithu also for the residual noise and interferers.

channel algorithms appear to be decisive for current and fu-

ture ALDs. Moreover, in contrast to single-microphone sig- 2. SCOPE OF THE PAPER

nal enhancement algorithms, which have not been shown to

improve speech intelligibility but may reduce, e.g., tts¢dn-  |n this paper, we will discuss several algorithms for multi-

ing effort, multi-microphone signal enhancement algorithmsmicrophone signal enhancement and presentation that are

are capable of increasing speech intelligibility [1], espy ~ suitable for ALDs. The considered acoustic scenario is de-

when the sound sources havéeiient spatial characteristics. fined by a single source of interest (‘target source’) at any
Although microphone array signal processing, e.g., fopoint in time, while multiple interfering point sourcesde.

teleconferencing systems, is a well-established fieldlimipa competing speakers) and additional incoherent noise, (e.g.

with similar problems and signals [2], the problem settiog f sensor noise, fiuse background noise) may be active simul-

ALDs exhibits a number of distinctive features. First, the m taneously (see Fig. 2). It is assumed that some knowledge

crophone placement is typically constrained by the fact thas available to distinguish the target source from the feter

the devices should be inconspicuously placed at the userieg sources once they arefBaiently enhanced or separated.

head and should capture the relevant spatial information ddearing in mind that the wearers of ALDs may move their

the sound sources. Moreover, while all signal enhancemelhieads, the relative positions of both the target source ds we

algorithms ideally aim at removing the undesired compamentas the interfering sources must be considered as timengryi

and leave the desired components undistorted, the comprse that source localization and tracking is required.

énises need to be choserfdrently depending on the applica-

tion domain: for ALDs, distortion of the desired signal or an
ying noise artefacts will typically be penalized moretha
igher level of residual undistorted noise, and the baléece
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whereny(t) denotes the noise component in tigh micro-
phone signalhp m(t) is the room impulse response (RIR) be-
tween thepth source and thenth microphone and denotes
convolution. Typically, the signals are processed in ttegtsh

S
Interference ) time Fourier transform (STFT) domain, i.e.

h (t)
@ s4(t) pm p_1
AN
y Xm(k, €) = Z hpm(K)Sp(k, &) + Nm(k, ), m=1...M, (2)
8 p=0
Interference
wherexm(k, £), sp(k, €) andny(k, £) denote the STFTs of the

@ saAt) respective time-domain signals, withepresenting the frame
/3 (\ index andk representing the frequency bin indeand where
/ﬂ (F\ hom(K) denotes the acoustic transfer function (ATF) between
_ o o the pth source and theith microphone. For conciseness we
Fig. 2. Scenario with target sourag(t), point-like interferers  will omit the dependency on the indicksnd¢ in the remain-
sp(t), incoherent noise sources, and microphones at the useger of this paper. In vector form, the equation set (2) can be
head written as

P-1

The fundamental concept of all considered multi-microghon X = hosp + Z hpsp+Nn=hoso +V, ()
algorithms relies on spatial afmt spectrotemporal diversity, p=1
i.e., the desired components should be separated from the T
undesired components in the spatial Amdime-frequency With x = [ x xv |, andn andhy, defined similarly,
domain. The algorithms hence correspond to spatial filterandho denoting the ATF of the target source. This signal
ing (Of[en termed beamforming) and fi|tering in the time- model will form the basis for the Subsequent description of
frequency domain, respectively. In addition to exploitingthe main signal processing tasks with ALDs, i.e. source lo-
the statistics of the available observations, the optimiterfi calisation, signal enhancement and signal presentation.
design should also use available prior knowledge, e.geshe Signal acquisition. For ALDs in realistic acoustic envi-
timated or assumed position of the target source. This &apli rfonments, the ATFs include the microphone characterjstics
that in this paper ‘blind’ source separation (BSS) algonsh room acoustics and filteringffects due to the user's head.
[4] are only considered in forms that allow the inclusion of The difraction and reflection properties of the user’s head,
such prior knowledge. Aside from some target-related knowlIPinna, and torso are described by the so-called head-gelate
edge, we assume natural unpredictable scenarios which m#gnsfer function (HRTF), which is the frequency- and angle
be arbitrarily complex and time-varying. This implies that dependent transfer function between a sound source and the
the filters must be estimated from currently available obseruser’s ear drum in an anechoic environment [5]. The pair of
vations and cannot be learned in advance, thus algorithni&ft and right HRTFs contain the so-called binaural cues of
which are based on trained models (e.g., using non-negatigesound source, namely the interaural tim@edence (ITD)
matrix factorization) are not considered in this paper. dn a and the interaural level fierence (ILD), which are resulting
dition, in time-varying environments the estimation of thefrom the Time Diference of Arrival (TDOA) between both
Spatia| and Spectrotempora| information from short observ €ars and the acoustic head shadow, respectively. In contras
tion intervals is of crucial importance, so that we will fecu to pointsources, the spatial characteristics of incottereise
on techniques exploiting second-order statistics, keptsie ~ ¢an not be properly described by the ITD and ILD, but rather
variance of the estimated quantities small. by the Interaural Coherence (IC) [5]. Binaural cues play a ma

Signal model. According to the acoustic scenario in jor role in spatial awareness, i.e. for source localizatiad

Fig. 2, we consideP point sourcessy(t), with t as the dis- for determining the spaciousness of auditory objects, aad a

crete time index, in a noise field of unknown coherenceimportam for speech intelligibility due to binaural unrkas

which are recorded by an array bf microphones. The tar- "9 €9 [5]. o . .
get source is denoted Igj(t). Assuming the acoustic paths For capturing the relevant spatial information and binau-

between the sources and the microphones to be linear af@l CUes of the sound sources, in principle, at least twoanicr
time-invariant, themth microphone signakm(t) is given by phones are required, which are preferably mounted on both
the convolutive mixing model sides of the head. Ideally, the microphones are placed as clo

as possible to the corresponding loudspeakers which presen

P-1 INote that (2) is strictly speaking only valid for frames tlzae signifi-
Xm(t) = Z hpm() # Sp(t) + N(t), m=1...M, (1) cantly longer than the RIR length. When this is not the casmrolutive
p=0 transfer function model should be used.



the signals to the ear drums, in order to allow the recreation .. ¢
of the authentic spatial impression for the listener. Ini-typ
cal ALDs, two or three microphones are nowadays available
on each side of the head, with spacings ranging from 7mm
to 15mm. Since the positions of the microphones do not
coincide with the ear drum, and the acoustic path between
the loudspeaker and the ear drurffelis from the HRTF, the
overall response of the device should be equalized in oeder t
match the open-ear HRTF [3%ource localization. The ob-
jective of source localization is to estimate the positiothe
direction of arrival (DOA) of the target source (and posgibl
the interfering sources), be it for supporting signal eticm
or for furnishing signal presentation algorithms with salat Signal presentation. After extracting the target source,
information. Source localization will be addressed in morethe enhanced signal is to be presented to the listener, where
detail in Section 3. we need to distinguish between monaural and binaural sys-
Signal extraction. The main task is to extract from the tems. For a monaural ALD, i.e. a single device on one ear,
given recordings an undistorted version of the target sourcit seems obvious to just feed the enhanced signal to the loud-
while all undesired components are suppressed. Two genespeaker of this device. For a binaural ALD, i.e. a system
approaches can be used to achieve this: jointly considering and processing the microphone sigohls
] . . both ears, dferent signals can be presented to the left and
1. One can aim at separating all point sources and thefhe right ear. This can generate an important binaural advan
pick the target source based on additional knowledge.{age since the auditory system can exploit binaural cuds an
2. One can directly use the additional knowledge to ex—thfa signal processing algqrithms can use information irhm a
tract the target source only. _mlcrophones on both devices [6, ch._ 14]. On t.he other hand,
in a bilateral system where both devices work independently

Intuitively, the second approach promises a lower ovetall a this potential is not fully exploited since not all micropie
gorithmic complexity for a desired performance, as it essensignals from both devices are combined. To exploit the full
tially requires only to separate the target source fromtaiéo ~ potential of binaural processing, both devices need toeoop
sources, and obviously avoids the complexity of estimatingte with each other and exchange information or signals, e.g
the potentially large number of irrelevant sources in a give through a wireless link.
acoustic scene. In addition, the first approach may be linite ~ Besides signal extraction, in binaural ALDs a second
to setups where the number of microphones is larger than thgajor task should be achieved: the auditory impression of
number of point sources. the acoustic scene, i.e. the spatial perception of the ttarge
Signal extraction is typically achieved using a filter-and-source, the residual interfering sources and noise, should
sum structure, depicted in Fig. 3, where each microphone sid€ preserved. This can be achieved either by so-called bin-
nal x, is passed through a linear filtef, and the outputs are aural rendering of the monaural output signal of the signal
summed. The output signglis then given in the STFT do- extraction algorithm, or by directly incorporating the de-
main by sired binaural cues into the spatial filter design. Accagdin

xa(k, £)

2 (k, 0)

Fig. 3. Filter-and-sum structure

M algorithms will be covered in more detail in Section 6.
Y= ) Wokm = wWHx (4)
m 3. SOURCE LOCALIZATION
with wH = [ WOWs e Wy ] The time-domain output
signal may then be computed using the inverse STFT. In principle, any source localization algorithm which can

While, in principle, additional knowledge may describe handle multiple nonstationary wideband sources can be used
source characteristics in both the time-frequency domain dor ALDs [6, ch. 6]. This includes direct methods based
the spatial domain, in this paper we will mainly consider ad-on steered-response power (SRP) [2, ch. 8] or subspace
ditional knowledge in the spatial domain, assuming that thenethods (MUSIC) [7] and the large and popular class of
sources are physically located affdrent positions. Typical indirect two-step methods based on TDOA estimation and a
prior spatial knowledge is then given by, e.g., the estithate subsequent geometric inference of the source position. The
or assumed DOA of the target source relative to the headatter class comprises cross-correlation-based [8] aosiser
With this spatial information, we can support signal extrac relation-based algorithms, e.g., [9, 10].
tion algorithms, e.g., a beamformer pointing towards amive  The main diference of using these algorithms for ALDs
DOA or BSS algorithms exploiting the target DOA. These al-compared to their conventional use results from the fadt tha
gorithms will be covered in more detail in Sections 4 and 5. the microphones are typically mounted close to the head of



the user. Therefore, the propagation paths of a point saarce urally suited for identifying relative head-related impeail
the diferent microphones can not be simply modeled by theesponses (HRIRs) from the source to th&edent micro-
free-field TDOA, but the filtering #ects of the head should phones, delivering TDOA information as long as the di-
be taken into account. As HRTFs vary between individualstect path can be detected in the identified relative impulse
the results produced by source localization algorithmkakil ~ responses. While the adaptive eigenvalue decomposition
ways siifer from some uncertainty if the individual HRTFs method in [9] is able to identify relative HRIRs only for a
and the microphone topology are not exactly known. This isingle source while exploiting nonstationarity, the BS&dd
especially true for binaural systems, where the relative mimethod in [10] can robustly localize multiple sources even i
crophone positions are user-dependent and not fixed. Howmoisy and moderately reverberant environments.
ever, useful approximations can be employed, which are, e.g  Finally, subspace-based source localization algorithms
based on spherical head models [11] or measured HRTFsuch as MUSIC [7] are in principle also suitable for arbigrar
The TDOAs for diterent source directions based on the freenumbers of microphones and sources (assuming the num-
field assumption, measured HRTFs and typical head modekser of sources is known). As they essentially estimate the
is depicted in Fig. 4. In addition, for binaural systems alsasource positions using the eigenvectors correspondiriggto t
binaural computational auditory scene analysis (CASA)alg largest eigenvalues of a spatial covariance matrix, thie est
rithms [12] can be used for localizing multiple sources,,e.g mates for this covariance matrix must befiently reliable
incorporating a probabilistic model of the binaural ILD andfor every frequency bin. Since subspace-based algorithms
ITD cues [13]. are separating the signal and noise subspace, where ttee nois
Given the microphone topology, cross-correlation-basetieeds to be white or whitened, this is typicallyfdiult to
algorithms such as the Generalized Cross-Correlation witachieve for wideband nonstationary sources in time-varyin
Phase Transform (GCC-PHAT) [8] can be used to localizenvironments where only short observation intervals can be
a single source for ALDs when the head filterirfieets are  considered.
taken into account. However, when multiple sound sources
are present, identifying the correct source-specific TDOAs 4. DATA-INDEPENDENT BEAMFORMING
typically becomes very dicult [14]. Generalizations of the

GCC, such as SRP-PHAT [2, ch. 8], coherently add up signal’g‘ SimF_"e but P°p”'ar way for enhanci_ng the target source in
originating from a certain pointin space to estimate thes®u ALDs is data-independent beamforming, where the filters

likelihood at this position. While conceptually suited fam n (4) are designed to enhance sources arriving from the (es-
arbitrary number of microphones and sources, they invoIvB_mated or ass_umed) target DOA and suppress SOUrces not ar-
considerable computational complexity forfistient spatial rving frqm this DOA_" but do n‘.)t account_ for the statistics

resolution and are inherently sensitive to reverberation. of the microphone signals. Various data-independent beam-

More general cross-relation-based algorithms, e.g. P, 1 formers inglude delay-and-sum beamformers, super@ecti
aim at system identification via cross-relation a’nd. ére ’natc—)r differential beamformers [2, ch. 2], [L5]. For the deS|gr) of
such beamformers, the target DOA and the complete micro-
phone topology need to be known. Data-independent beam-
formers have been mainly used for monaural devices [16],
where robustness against microphone mismatch is cruatal du
to the closely spaced microphones [17, 18]. For binaural
devices data-independent beamformers have also been pro-
posed, which however flier from spatial aliasing due to the
distance between the microphones and require consideratio

of the head filtering ects, e.g., [19].
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In contrast to data-independent beamformers, data-depénd
signal enhancement methods exploit both the spectroteahpor
as well as the spatial information of the microphone signals
in order to extract the target sourgg(or a filtered version of

it) from all interferers and noise [20], possibly equalizithe
reverberation #ect caused by the ATH%,. Since the filters

Fig. 4. TDOAs for diferent azimuthal direction (0 deg= - : :
front, 180 deg= back) based on free-field assumption, rnea_adapt to the current statistics of the typically nonstatign

sured HRTFs and two head models, respectively. tsé?ir;zlsp’rgt])llseVmwlilrﬁcﬁetrses;i(ilas an optimum multichannel fil-

1251

0 i i i i i i i i
0 20 40 60 80 100 120 140 160 180

¢ [deg]



Relying on estimates of either the interference and nois&{|s?}. Using (9), it can be shown that the MVDR filter in
statistics or the target source statistics, two main ctagbsu-  (8) can be written as [20]
pervised optimum multichannel filtering will be discussed i »
Sections 5.1 and 5.2, i.e. Minimum Variance Distortionless _ @,vhg

. . . WMVDR = ——— . (10)

Response (MVDR) beamforming and Multichannel Wiener hgdmlho
Filtering (MWF). In addition, ‘blind’ source separatiorga-
rithms, in particular the variants exploiting target-tethprior ~ As can be seen, the MVDR filter is solely determined by the
information for constraining the optimization problem to e crosspower spectral density matrix of the observations and
plicitly separate the target source, will be considereddn-S the ATFsho. However, due to the high order and the typi-
tion 5.3. In Section 5.4 techniques for estimating the nois€ally time-varying nature of the corresponding RIRg(t),

and interference statistics will be presented. blindly identifying these impulse responses is generaifty d
ficult if at all possible. Hence, instead of using the complet
5.1. MVDR beamformer RIRs, one can consider only the direct path of the RIRs (eorre

sponding to the free-field HRIR for the estimated or assumed
The Minimum Variance Distortionless Response (MVDR)target DOA), which may however lead to target signal distor-
beamformer is a special case of a Linearly Constrained Mintion, or one can use the so-called relative transfer funstio
imum Variance (LCMV) beamformer [21, 20], where the as explained in the next paragraph.
power of the output signal is minimized subject to a sin-
gle constraint assuring an undistorted response for tigettar \1\/pr using relative transfer functions
source (or a filtered version of it). Derent versions of
the MVDR beamformer exist, either using the complete tarBy constraining the desired component in the output signal
get ATF, the direct path of the ATF or the relative transferto be equal to the speech component at an arbitrarily chosen
functions. In practice, the MVDR beamformer is often im- reference microphone[24], the constraint in (6) becomes
plemented using a so-called Generalized Sidelobe Canceler \
(GSC) structure [22, 23, 24, 25]. Ys = Whoso = hor o, (11)

which is equivglent tavi'hy = 1, where the relative transfer
function (RTF)hg is defined as
The power spectral density (PSD) of the filter-and-sum beam- h

a No

former output signay is given by ho h_:[ Roi fez g T?TM ]T. (12)
0,r . g

Derivation of the MVDR beamformer

E(lyi*} = Ew"xx"w} = wH@uw (5) -
By substituting the ATF$, with the RTFshg in (8) and (10),
where®,, = E{xxH} denotes the crosspower spectral densitythe modified MVDR filter is obtained as
matrix of the observed microphone signals. The distoréssl @1, o1
response constraint requires that the desired compontve in Wivor = N WmvDR = o = 9 . @3
output signays, is equal to the target signay, i.e. ! hi'@ch,  hi®gh,

(6) Note that blind identification of RTFs is significantly eas-
ier than blind identification of ATFs. When noise and inter-
Hence, by solving the constrained minimization problem  ference are absent, this can simply be achieved by dividing
the crosspower spectral densities of the microphone signal
When noise an@r interference are present, methods exploit-
ing the non-stationarity of speech or based on the genedaliz
eigenvalue decomposition have been proposed, e.g., [24, 25

Ve = Whosy = S .

n?Niantl)xxw, subjecttowrhg =1, (7)

we obtain the MVDR filter [21, 20]

o h,
WMVDR = m . (8) Generalized Sidelobe Canceler
0 XX''0

By assuming the target source, the interfering sources ang'€ constrained optimization problem of the MVDR beam-

the noise to be mutually uncorrelated and of zero mean, th@'Mer in (7) can be transformed into an unconstrained op-

crosspower spectral density matebx, can be written using timization problem, leading to the highly popular General-
(3) as ized Sidelobe Canceler (GSC) structure [22, 23, 24, 25]; con

@) sisting of three main blocks (see Fig. 5): 1) a fixed beam-
former (FB), ensuring the fulfillment of the constraint ir) (6

where®,, = E{vv"} denotes the crosspower spectral densityor (11), 2) a blocking matrix (BM), creating so-called noise

matrix of the interference and noise componentsggg = referencesi,, and 3) a multichannel interference cancelgr

Dy = Ppsy5,Noh + By,



D) e sen microphone [2, chapters 6,14],[31], or a referencecspee
aalh ) —~O N VD signal [2, ch. 14],[27]. In order to traddtcspeech distortion
w0 —f0 FB ! and noise reduction, the so-called speech-distortiomued
MWF was introduced [27, 31].

Similarly to the MVDR using relative transfer functions,
the MWF neither requires a priori information about the mi-
crophone configuration nor the position of the target squrce
making it an appealing approach from a robustness point of
view. On the other hand, relying on the second-order statis-
tics of the desired and undesired signal components implies
that for the assumed nonstationary processes theseisatist
must be estimated with flicient accuracy at all times, cf.
Section 5.4.

2 (k, 0) ‘.@

BM

Fig. 5. GSC implementation of an MVDR beamformer MM SE estimation for the MWF

The MWF aims to extract the target source by minimizing
minimizing the residual interference and noise in the outputhe mean square error (MSE) between the (unknown) source
of the fixed beamformer that is correlated with the noiserrefe signals, and the beamformer output, i.e.
ences. If the target signal leaks into the noise referenges d
to a mismatched blocking matrix (e.g., caused by RTF esti- Wmwr = argminE{|so - YIZ} = arQmiﬂE{ISO - WHXIZ} - (14)
mation errors or by DOA errors, microphone mismatch and v W
reverberation when using free-field HRIRS), the targetalign Assuming the target source and the interfering sources and
will be partially canceled as well. To mitigate this targgf-s noise to be uncorrelated, the solution of (14) is given by
nal cancellation, the interference canceler is typicallg@ed o X .
only during periods when the target source is inactive, see, Wmwr = @y E{XSy} = ®chodss, (15)

e.g., [23]. Moreover, several techniques have been prqoosc;e

to reduce the speech leakage components in the noise refg Stimated, which is a non-trivial task. However, similaidy

ences, e.g., [24, 25] afaf to limit the distorting &ect of  yho \yDR using relative transfer functions, we can also de-

the remaining speech leakage [26, 23, 27], €.9., by imPOssiy, an MWF aiming at extracting the speech component at
ing a quadratic inequality constraint or by using the sdechl an arbitrarily chosen reference microphartgy
speech-distortion-regularized GSC [27].

quiring the ATFshy and the target source PSR s, to be

Vonwe = argmink{lhg, so - wxP?} , (16)
Application in assisted listening devices v

. . .. whichyields
The GSC or one of its more robust variants can be considered

-of-the- i ~ _ - -1 .
as the current state of t_he art solution for monal_JraI -h_ear Wwe = (I)xxlE{XhO,r )= (¢3030hohg + <I>w) st -
ing devices with an endfire microphone array configuration, (17)

e.g.,[28, 29, 30]. A very popular variant is the so-calledajihough it appears that the ATFs and the target source PSD
adaptive directional microphone (ADM) [15, 28, 29], where 5r¢ required to compute (17), the (rank-1) crosspower sgect
the fixed beamformer and the blocking matrix aretential density matrixpe,s,hoh can be estimated from the second-

beamformers forming a front and a back oriented cardioig,ger statistics of the microphone signals, cf. Section 5.4
pattern, and an adaptive scalar minimizes the energy agrivi

f_rom the _back hemisphere. A_two-mlcrop_hone 'mplemema._Speech—distortion-weighted MWE

tion was indeed shown to achieve a considerable speech in*

telligibility improvement for hearing aid users (abou#8B  The MMSE criterion in (16) can be easily generalized to al-

improvement for three babble noise sources) [29]. low for a trade-d between noise reduction and speech distor-
tion [27, 31], by introducing a weighting factare [0, oo]:

5.2. Multi-channel Wiener Filter Frsow = argminE{lho,rso _wH h050|2} +,uE{|va|2} . a8)

The second popular class of multichannel signal enhancemen W

techniques is associated with the Multichannel WienegFilt which is referred to as the speech-distortion-weighted MWF

(MWF), e.g., [2, chapters 3,6,14],[27, 31]. It produces ami (SDW-MWF). The solution of (18) is given by

imum mean square error (MMSE) estimate of either the target »

source [2, ch. 3], the speech component at an arbitrarily cho Wspw = (¢5050h0h§ +;1<I)W) PssNoho;r - (29)



The smaller the factos is chosen, the smaller the resultingm=20,...,M-1,p=0,...,P - 1. TheP separated signals
speech distortion. Ift = 1, the MMSE criterion (16) is ob- yq, stacked in the vector, are then obtained as

tained. Ifu > 1, the residual noise level will be reduced at the

expense of increased speech distortion. y =W"x=W"Hs+W"n. (22)

Known methods for identifying optimum demixing filters
W are based on the assumption that the signals to be separated
It is interesting to note that the MWF can be decomposedre mutually statistically independent and that enforeitag
as an MVDR beamformer, exploiting the spatial informationtistically independent outpuyg of the demixing system yield
of the target and interfering sources, followed by a singlegood estimates of the desired separated source sigpdtsr
channel Wiener Filter (SWF) [2, ch. 3], [32], i.e. the mostly assumed case where the number of microphones is
larger than or equal to the number of sourddsx P), an ap-

Relationship between MWF and MVDR

W _ Byys y O, ho (20) propriate generic cost functiqfi(¢) for frame¢, describing
sow = Dyys + HDy.y, hHeo th, an estimate of the Kullback-Leibler divergence between the
0 0

joint pdf of the output signalg, and the desired independent
outputs, can be formulated as [4, ch. 4]:
wheregy,, andgy,y, denote the PSDs of the desired and un- 1
desired components at the output of the MVDR beamformer - 1% Py.pL(Y(k, 1))
P P Tical®) = Y B0 I log 0 (23)
A=0

SDW-SWF postfilter MVDR beamformer

WMVDR using RTFs. -1

[ ] Byt Ol )
g=0

«k=0
Application in assisted listening devices

In [1] a three-microphone MWF implementation for a monau-Wherepy, . (yq(«, 1)) denotes an estimate for thevariate pdf
ral hearing device was evaluated affelient test sites, and Of & segment of length. of the gth output signaly;, and
compared with other single- and multi-microphone noise refy.pL(Y(k, 1)) denotes an estimate for ti.-variate joint pdf
duction techniques. In this study it was shown that overalfor all P output signals. Averaging ovet frames accounts
the MWF achieved the largest speech intelligibility impeev  for the nonstationarity of the data, while the windowingdun
ments (up to 7 dB), even in highly reverberant environmentstion B(¢, 1) describes the weight of a block average at time
for the cost function at timé, in a similar way as for Recur-
5.3. Blind Sour ce Separation sive I__east quare_s_ adaptat_ion. Fo_rming gradients of tlsis co
function, or simplified versions, with respect to the demix-
Generalizing the approach of extracting a single desirethg matrixW allows for maximization of statistical indepen-
source, Blind Source Separation (BSS) algorithms aim adlency with respect to individual data frames (on-line adapt
extracting multiple sources from observed mixtures, witho tion, K = 1,8(1,¢) = 0 for A # ¢), as well as for an entire
requiring prior knowledge on the positions of the sourcesecording (df-line adaptationK > 1, 8 = constant) [35].
and the microphones, spatiotemporal signal statisticher t It should be noted that using the statistical independence
mixing system. Moreover, they do not need any reference inassumption only, the separation systéfrcan at best be ob-
formation on the activity of the sources in the spectroterapo tained up to a linear filtering uncertainty and a permutation
domain. On the other hand, they do require knowledge on thef the outputs, and thus cannot itself identify the inverse-m
total number of sources and can only separate sources that system which would solve the deconvolution problem and
can be modeled as point sources. Considering time-varyingerfectly dereverberate the source signals [36].
mixing systems, we disregard here approaches that perform Numerous algorithms have been proposed for ICA of con-
BSS based on learning from a large amount of data and focuslutive mixtures, which are often categorized as eithagti
on Independent Component Analysis (ICA)-based methoddomain or frequency-domain algorithms. Time-domain algo-
that are - similar to adaptive filtering approaches - suited trithms estimate the demixing systei as FIR filters [35],

time-varying acoustic scenes [33, 4, 34, 35]. whereas frequency-domain algorithms formulate the demix-
For the following, we rewrite the STFT signal model in ing problem as a scalar source separation problem for each
(3)as frequency independently (‘instantaneous ICA'), and imple
- ment scalar ICA algorithms for each STFT bin [36, 33, 37].
X= Z hpsp+n=Hs+n, (21) Similar to adaptive filtering, where time-domain ap-
p=0

proachesimply a significantly higher computational cormple
describingM noisy observationg of the convolutive mix- ity for obtaining a similar performance as frequency-damai
ture of P point sourcess,. To obtain estimates of the origi- approaches, frequency-domain implementations of ICA (FD-
nal sourcesy, a linear demixingseparation system is ap-  ICA) are computationally more attractive. On the other hand
plied, consisting oM x P filters with frequency responseg,,,  if these are straightforwardly formulated as independ€at |
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problems in each STFT bin, the resulting demixing system
does not perform a linear but a circular convolution, whih i

inadequate for demixing a linear mixing system [35]. As an : -
immediate consequence, the so-called internal permatatio -
and scaling problems result: As the outputs of any uncon-
strained ICA system are only determined up to an unknown
scaling factor and a permutation of their order, for FD—ICAFig_ 6.

the order anq the scaling of the outputs may kgedent for _ment obtained by (a) null-steering beamformer (b) ICA
each STFT bin. Therefore the outputs of the scalar ICA ”n't?T60=300 ms, interfering point source at @t a distance of

have to be rea!igned so that for a given output chaypel 11, of a two-microphone array with spacidg: 15cm).
all frequency bins belong to the same source [37] and are
properly scaled, e.g., by minimizing the average power dif- )
ference of the outputg, relative to the inputs, (‘Minimum knowp number of interferers cannot be handled by such a
Distortion Principle’) [38]. generic ICA system.
In the acoustic signal extraction context, the mechanism
of BSS based on ICA has been shown to be equivalent to a se#. Estimation of interference and noise statistics
of P adaptive beamformers, each of which aims to extract on
source by suppressing all other sources, thereby expidtim

Interference cancelation in a reverberant environ-

Fhe performance of the signal extraction algorithms dis-
cussed in Sections 5.1 and 5.2 critically depends on the

spatial diversity of the microphone signals [39]. Note toat . o : .
adaptive beamforming, the DOA or the RTFs of the targe{a§t|mates of the statistics qf the deswed_ and the gndeswed
signal components, respectively. When implementing these

source should be known, and that it can adapt the require

statisi oy wih g Source actiy niomaon, e S00TT TS LS SPEAl sec el re 2 doman
ICA does not need such information. P

observed alone. While in selected cases, stationarityrgssu

tions may hold reliably to justify a predetermined estimate
Application in assisted listening devices [41], it must usually be assumed that the statistics of both

the desired and the undesired components vary in an unpre-
To illustrate the spatial filtering capacity of ICA, Fig. 6-de djctable way and call for instantaneous estimates.
picts the overall transfer functioW"H from a given source In the spectrotemporal domain, voice activity detection
position in a reverberant environment for a null-steeringgng speech presence probability estimation typically aim a
(delay-and-subtract) beamformer and one output channel Qjentifying regions in the STFT domain where only unde-
an ICA system, thereby demonstrating the actual interfergjed components are present, e.g. [6, ch. 5],[42]. Obijous
ence suppression performance in a reverberant environmefs is very dificult for the given scenario with interfering
[40]. The improved spatial null achieved by ICA confirms gpeech sources which naturally occupy the same frequency
the hypothesis that, due to capturing all correlated compdmnge and whose temporal activity pattern is generally not
nents belonging to the same source in the same output, ICown, especially if their signal level is comparable to the
does not only suppress the direct path but also reflectiongye| of the target source in any of the microphone signals.
of an interfering source, e.g., [40]. Nevertheless, onethas Therefore, the desired and undesired components canyisuall
bear in mind that the suppression of reflections results frorpy pe separated along the time axis. For example, for com-
a compromise in the spatial directivity, which a null-stegr puting the MWF according to (19), itis typically assumedtha
beamformer cannotffer. Obviously, using the same number the interference and noise can be observed during noise-onl
of microphones, ICA cannot use more spatial degrees of fregseriods, so that with the assumed uncorrelatedness of noise

dom than a supervised beamformer, and therefore the spati@hd desired speech, the crosspower spectral density matrix
selectivity of ICA remains limited to what an optimum and desnohH can be estimated as

ideally controlled beamformer can achieve, as long as & use
the same statistics for determining its parameters [39]. Pssonohy = Py — By (24)
The fact that ICA does not require prior knowledge about
source positions, microphone topology, and source agtivit where®,, is estimated continually and®,, during periods
and can well adapt during activity of multiple sources, nsd  of interference and noise only. As a fundamental problem,
it a highly attractive method for ALDs in complex acoustic however, all these methods stillfger from the fact that the
environments with unpredictable interference and noisd, a interference and noise estimates cannot be updated while th
usually unknown source and microphone topologies. Unfortarget source is active, so that they are prone to failurk wit
tunately, however, ICA systems that can robustly and quickl nonstationary noise and interference, such as human geake
separate more than three sources in real-world enviroresment On the other hand, in the spatial domain, reference infor-
have not been presented yet, so that scenarios with an umation for all the interference and noise components can be



obtained by suppressing the target source. Here, the kpatia ##+(%/) C—————) 1=-------m--mg oo e 1O wralk 0
selectivity allowed by the microphone array topology con- PN o m—
stitutes the main limitation. Exploiting the spatial domai :

for obtaining interference and noise reference infornmatio ) -

is an inherent feature of the GSC (cf. Section 5.1), where
the blocking matrix aims to suppress the target source. For
moving sources and multipath propagation scenarios, tobus ‘ wi(k, ) ‘ ‘ —
adaptation schemes for the blocking matrix have already bee

proposed, e.g., [23]. These concepts still require knogded
about the activity of the target source, as the blocking ixatr
should only be adapted when the target source is dominant.
If the DOA of the target source is known, its activity can be
monitored by directing both a delay-and-sum beamformer
and a delay-and-subtract beamformer in this direction ands. PRESENTATION OF THE ENHANCED SIGNALS
inferring the activity from the ratio of its output powerges

e.g., [23]. However, these noise estimates will still beoguib  After extracting the target source using data-independent
timal if the blocking matrix could not be updated while the beamforming or statistically optimum filtering (cf. Sect®
target source changed its position relative to the micrapo 4 and 5), the enhanced signal needs to be presented to the
on the user’s head or the acoustic environment changed. listener. While microphone placement is important to main-

More recently, a constrained BSS scheme has been prgain a close relationship to the individual HRTFs, we also
posed to identify the filters of two-channel blocking matri- N€€d to distinguish between a monaural system, i.e. a single
ces [40], which does not need source activity informaticth an device on one ear, and a binaural system, i.e. a systemyjointl
continuously delivers up-to-date estimates for noise ateti ~ Processing signals at both ears. While for a monaural system
ference. For this, the cost function in (23) is complementedf S€€ms obvious to just feed the enhanced signal to the loud-

by a quadratic constraint for one output (hgp} steering a speaker of this device, for a binaural systerfiedent output
null towards the target source: signalsy,. andyr can be generated and presented to the left

and the right ear (cf. Fig. 7).
5 In a bilateral system, i.e. a set of two independently
Jc(W) = [whd]s . (25)  operating monaural systems, each device uses its own mi-
crophone signals and optimizes its filter fila@ents indepen-
wherew, denotes the vector of demixing filters W which dently, which may lead to a distortion of the binaural cues

produce the output,, andd denotes the steering vector cor- and hence the localization ability [44]. In order to achieve

responding to the DOA of the direct path of the target sourcé"€ binaural processing, both devices need to cooperéte wi
This yields the Constrained ICA cost function each other and exchange information or signals, e.qg., ¢firou
a wireless link. At the time of writing, the first commer-

cial systems reach the market which exchange microphone
Jc-ica(W) = Jica(W) + nJc(W), (26)  signals in full-duplex mode. These systems pave the way
to future implementations of fully-fledged binaural multi-

whose minimization suppresses the target in one outputchaflicrophone signal extraction algorithms, where microghon
nel and thereby provides a reference for all other sources arsignals from both devices are processed and combined in
noise of unknown coherence. The weight is typically Cho_e.ach device. The gain in noise r_educnon pgrformance of a
sen as; ~ 0.5...0.8 with larger values required if interfer- binaural over a mongura}l system is exemplarily shown for an
ing sources are close to the target source. It should be notdlvDR beamformer in Fig. 8.

that, although the constraint captures only the direct,path The objective of a binaural speech enhancement algo-
constrained ICA will intrinsically also aim at suppressidg ~ fithm is not only to selectively extract the target source &m
correlated components, i.e. reflections of the target spimc ~ suppress interfering sources and background noise, but als
the same output, thereby providing an advantage over a-delalp preserve the auditory perception of the complete acousti
and-subtract beamformer as shown in Fig. 6. As the most agcene. This can be achieved by preserving the binaural cues,
tractive advantage, however, the fundamental conceptaf ICi.e. ITD, ILD and IC, of the target source and the resid-
assures a continuous update of the noise estimate witheut thal interfering sources and background noise. In additon t
need of estimating the activity of the involved sources. Remonaural cues, these binaural cues play a major role inegpati
cently, it was also shown that this concept can be genedalizeawareness and localization and are very important for $peec
to identify all RTFs required for the blocking matrix of a GSC intelligibility due to binaural unmasking, e.g., [5].

with an arbitrary number of constraints [43]. All discussed signal enhancement algorithms in Sections

Fig. 7. General binaural processing scheme



0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ phone signals, i.e. one on each hearing aid [48]. In [48] and
24;23:;&1( ﬁ;:‘ci:;;i:::?)lwl\/{/\{)?{k | [44], it was s_hown both anaIyFicaIIy and using subjectige li _

tening experiments that the binaural MWF preserves the bin-
aural cues of the target source but distorts the binauralalie
interferers and noise, such that all components are p&deiv
as coming from the direction of the target source. Cledlyg, t
is undesired and in some situations (e.gffitaeven danger-
ous. To optimally benefit from binaural unmasking and to
optimize the spatial awareness of the hearing aid useraeve
extensions for the binaural MWF and the MVDR beamformer
have been proposed, which aim at preserving also the bihaura
°r ] cues of the residual noise component by including cue preser
vation terms in the binaural cost function, e.g., [48, 49, 50
o e mm wm o w00 en o sou0 These include either RTF preservation or interferencecreje

£ Hz1 tion constraints for directional interfering sources [48], or

] ) ) IC preservation constraints forftlise noise [50]. Another ap-
Fig. 8. SNR gain of a monaural and a binaural MVDR beam-proach is partial noise estimation, which corresponds te mi
former (difuse noise field) ing the binaural outputs with scaled versions of the noi$y re
erence microphone signals [48].

SNR Gain [dB]

4 and 5 essentially generate a single-channel output si
nal. Since in a binaural system two output signals (i.e. on
for each ear) are required, this single-channel output sign [44, 30] the performance of the binaural MWF and some of
nal can either be binauralized, e.g., using binaural spkctrits extensions has been perceptually evaluated, bothrimster
post-filtering techniques [45, 19, 46] or by mixing the outpu of speech intelligibility and localization performancexs, it
signal with scaled (noisy) microphone signals [47, 48], orwas shown that the binaural MWF achieved significant speech
two different complex-valued spatial filters can be optimizedintelligibility improvements compared to the bilateral MW
where the desired binaural cues are directly incorporatied i and the bilateral ADM. This demonstrates that transmitting
the spatial filter design, e.g., [49, 48, 50]. Although thie la and processing microphone signals from both devices can re-
ter paradigm allows for more degrees of freedom to achievsult in a significant gain in noise reduction, especially whe
noise reduction, there is typically a trad&-between noise multiple interfering sources are present. Second, using a |
reduction performance and binaural cue preservation. calization experiment in the frontal horizontal hemisghigr

In binaural spectral post-filtering techniques, the sam&vas shown that using the binaural MWF with partial noise
real-valued gain is applied to one microphone signal of eacRstimation it is possible to preserve spatial awarenesowit
device, where a gain close to one is applied when the STF¥ignificantly dfecting speech intelligibility.
bin should be retained (target source), and a gain closedo ze
is applied when the STFT bin should be suppressed (inter- 7. SUMMARY AND OUTLOOK
fering source or background noise). This spectral gain can,

e.g., be computed by comparing the estimated binaural cugs this paper we have presented an overview of several mul-
with the expected cues of the target source or based on thighicrophone signal enhancement algorithms for assisted
temporal fluctuations of the ITD [45]. Other commonly usedjistening devices and have addressed other importantsissue
approaches compute the spectral gain based on the outpyfch as microphone placement and binaural signal presen-
signal of a data-independent or statistically optimumispat tation. Using appropriate processing with multiple micro-
filter (e.9., MVDR beamformer, BSS) [19, 46]. Although phones in a binaural ALD allows both speech intelligibility
binaural spectral post-filtering techniques preserve thas  jmprovement as well as a preservation of the auditory percep
ral cues of all sound sources, in essence, they can be viewgdn of the acoustic scene.

as single-channel noise reduction techniques, hencealfipic  Fyture work in this area will focus both on algorithmic
introducing speech distortion and exhibiting single-af&ln  55pects and a better integration of psycho-acoustics. ©n th
noise reduction artefacts (e.g., musical noise), espg@al  ggorithmic side, more accurate and robust estimation and
low input SNRs. careful exploitation of comprehensive spatiotemporal sig

The MVDR beamformer (using RTFs) and the MWEF, dis-nal statistics for all relevant sources in highly time-vagy
cussed in Sections 5.1 and 5.2, can be straightforwardly exscenarios will be necessary to allow for the ultimate de-
tended into a binaural version producing two output signalssired binaural presentation. Learning of acoustic scerari
by estimating the speech component in two reference micrand source characteristics can certainly be expected to con

%Ipplication in assisted listening devices



tribute to reaching this goal. Optimum distribution of the
computational load over the available computing hardware
via bitrate-constrained ‘body area networks’ will constit
another challenge to algorithm developers. On the psychofio]
acoustic side, ideally, meaningful criteria are desirahkt
can directly be integrated into the cost functions to allow
perceptually optimum signal processing at any given time
instant. This may start from incorporating general knowl-
edge about well-known noise maskinjeets combined with
knowledge on the relative importance of certain binaurakcu
as used already in audio coding and reach to more powerful,
yet unknown models for human hearing. For each individuall12]
it should be merged with knowledge about possible hearing
impairments or personal listening preferences, i.e. aadled
auditory consumer profile. One may speculate that with suit-{13]
able user interfaces, the traditional fitting procedurel wi
be replaced by training procedures supervised by the user
and even the cost functions for optimizing the multichannel
filtering will be as individual as the user himself. All these [t
developments will certainly benefit from the integratiotoin
handy but powerful personal computing platforms which are
already emerging. (15

9]

[11]
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