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Abstract

Microphone leakage or crosstalk is a common problem in multichannel close-talk audio recordings (e.g., meetings or
live music performances), which occurs when a target signal does not only couple into its dedicated microphone, but
also in all other microphone channels. For further signal processing such as automatic transcription of a meeting, a
multichannel speaker interference reduction is required in order to eliminate the interfering speech signals in the
microphone channels. The contribution of this paper is twofold: First, we consider multichannel close-talk recordings
of a three-person meeting scenario with various different crosstalk levels. In order to eliminate the crosstalk in the
target microphone channel, we extend a multichannel Wiener filter approach, which considers all individual
microphone channels. Therefore, we integrate an adaptive filter method, which was originally proposed for acoustic
echo cancellation (AEC), in order to obtain a well-performing interferer (noise) component estimation. This results in
an improved speech-to-interferer ratio by up to 2.7 dB at constant or even better speech component quality. Second,
since an AEC method requires typically clean reference channels, we investigate and report findings why the AEC
algorithm is able to successfully estimate the interfering signals and the room impulse responses between the
microphones of the interferer and the target speakers even though the reference signals are themselves disturbed by
crosstalk in the considered meeting scenario.
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1 Introduction
Meetings, here considered as a face-to-face conversa-

tion in a meeting room of at least two persons (c.f.

Fig. 1), belong to the most natural ways of humans to

communicate with each other. Investigations of social

behavior or interaction forms in such a meeting have

a long research history in psychology [1, 2] and have

also become a vital research topic in Computer Science,

which is caused by two aspects: First, an automatic meet-

ing analysis facilitates psychological studies which rely on
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time-consuming transcription and annotation work. Sec-

ond, human-computer interaction still lacks in interpret-

ing social signals such as irony or emotions. Therefore, the

field of social signal processing aims to teach computers

how to understand and interpret human social behav-

ior [3–6]. A typical application is a meeting of at least

two persons, in which different relevant aspects such as

“what is being said?”, “who speaks to whom?”, “how is

spoken?” (emotions), “why is spoken?” (motivation), and

others (e.g., the relationship of the participants) are auto-

matically tracked [7]. Answering these questions with an

automatic analysis system deals with multiple challenges:

spontaneous speech, gestures, multi-talk, or the audio and

video recordings themselves, which is why Morgan et al.
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Fig. 1 Investigated meeting scenario with three participants (P1, P2,
P3), all wearing a (wireless) headset. For simulation purposes, all
persons are represented by a head-and-torso simulator (HATS) with a
close-talk microphone placed in front of the mouth

[8] take the view that “nearly every problem in spoken lan-

guage recognition (and understanding) can be explored in

the context of meetings.”

Putting the focus on the automatic analysis of audio and

speech signals, a lot of research, based on audio record-

ings of meetings, has already been carried out in the last

two decades [9–13]. Thereby, there are three typical meth-

ods for data acquisition: a single table-top microphone, a

microphone array, or, as illustrated in Fig. 1, personalized

close-talk microphones (e.g., headsets or lapel micro-

phones) [13, 14]. In order to process and analyze recorded

interactions, first of all, isolated speech of all participants

is needed. For this purpose, it is obvious that recordings

with a single microphone or a microphone array require

blind source separation (BSS) approaches, which have

received great attention in a variety of applications over

many years [15, 16].

Since we deal with interactive meetings and project

work, in which the participants use the entire room

including workstations, flip charts, and a meeting desk

such as in [17], a single table-top microphone or a micro-

phone array would not be able to deliver sufficient speech

quality. Therefore, our research is based on multichan-

nel close-talk recordings, which offer, especially in this

case, the best audio quality by recording the individ-

ual speech signals robustly with a suitable signal level.

Furthermore, distorting room characteristics are mostly

negligible. However, even in this case, the target speaker

channel is disturbed by speech portions of the interfering

speakers which couple into the target microphone with

a non-negligible level. This effect is known as crosstalk

[8, 18–20] or microphone leakage [20, 21] and requires

a multichannel speaker interference reduction (MSIR) in

order to obtain the desired isolated speech of each person.

This issue is getting worse when considering the rate of

multi-talk (e.g., double-talk) situations, which occur up to

14% of the time in a professional meeting [22, 23] and can

easily exceed 20% in an informal get-together [24]. Since

these statistical values are too high to being ignored, and

moreover, multi-talk can dramatically decrease the per-

formance of later applications such as automatic speech

recognition systems [22, 23], eliminating or rather sepa-

rating multi-talk situations is one of the key challenges in

signal preprocessing for analyzing a meeting.

For the purpose of eliminating crosstalk signals in a

microphone channel of interest, we have only access to

the microphone channels of all other persons, which,

however, are disturbed by crosstalk as well. Even worse,

the unknown room impulse responses (RIRs) from the

interfering speakers to the target speaker’s microphone

affect the interfering signals, so that the crosstalk sig-

nals, recorded by the target speaker’s microphone, differ

to quite some extent from the recordings of the interfering

persons’ microphones. One possible solution for this issue

is again BSS approaches, and there are decades of research

dealing with multichannel recordings of dedicated micro-

phones [25–29], but the main focus is not on close-talk

scenarios.

Another field which is very familiar with close-talk

recordings and the effect of microphone leakage is signal

processing for (live) music performances [21, 30], where

different instruments, each recorded with at least one

microphone, are played at the same time. It is a big advan-

tage for the final mix, if the sound engineer has access to

the undisturbedmicrophone signals of each instrument in

order to apply reverberation or equalization. Furthermore,

microphone leakage can lead to unwanted artifacts such

as the comb filtering effect, which occurs when mixing a

signal and a delayed version of the same signal together

[31]. Using directional microphones can decrease the

leakage effect, but does not completely eliminate it and,

even worse, can cause other artifacts such as the proxim-

ity effect [32], which describes an energy increase at low

frequencies. They are in addition sensitive to microphone

orientation, which is why omnidirectional microphones

are still a good choice for robust and clean recordings.

In order to reduce the interfering signals in each micro-

phone channel, several approaches have been published

in the last years: adaptive filtering in time and frequency

domain [30, 33–35] are popular solutions to estimate the

room impulse response from the interferer source micro-

phone to the target microphone. These methods often use

additional information such as a speaker activity detec-

tion or a signal-to-interferer ratio (SIR) for controlling

the adaptation process. Other approaches propose non-

negative signal factorization [36], kernel additive mod-

eling [20], or a Gaussian probabilistic framework [37].
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Thereby, [20, 30, 34, 35] use iterative or cascading schemes

of individual filters for each channel to obtain crosstalk-

free interferer channels for further processing.

Kokkinis et al. [21] tackled this problem by a multi-

channel Wiener filter (MWF), thereby interpreting the

problem as a noise suppression task, thus taking a big

step forward by ignoring the explicit room characteris-

tics and focusing on the energy of the interfering signals

by a simple gain factor. This is primarily motivated by

the two facts that music productions commonly use sam-

pling rates of at least 44.1 kHz and deal with reverberation

times, especially in live sounds, that can easily exceed 1 s.

This in combination can lead to an extremely high num-

ber of filter coefficients in order to estimate the RIRs,

which is synonymous to a slow convergence behavior and

high computational costs. However, calculation power

increases steadily, and w.r.t. a meeting, we typically deal

with 16 kHz sampling rate and RIR lengths of around

250 ms in a common-sized meeting room [28, 38].

We already proposed a multichannel Kalman-based

Wiener filter (MKWF) method [39], which is an extension

of the MWF approach of Kokkinis et al. [21], taking into

account the characteristics of the RIRs between themicro-

phones of the persons in our meeting scenario. Thereby,

we improved the SIR at constant speech component qual-

ity during triple-talk. Since Buchner et al. [40] understand

acoustic echo compensation (AEC) with clean reference

signals as a special case of BSS, we applied an adaptive

filter to estimate the RIRs, similar to [30, 33]. We used

a multichannel AEC (MAEC) method from Enzner et al.

[41], which was developed for a hands-free teleconferenc-

ing system to estimate the RIRs from the loudspeakers

to the microphone on the basis of clean loudspeaker

reference signals. Surprisingly, the MAEC RIR estima-

tion performed well without any preprocessing steps to

enhance the disturbed microphone channels. Considering

the fact that the MAEC is based on the assumption that

the reference signals are clean, some questions remained

open.

In this paper, we further enhance the MKWF and pre-

cisely analyze why the MAEC RIR estimation method

of Enzner et al. [41] is performing well in the consid-

ered meeting scenario with crosstalk-disturbed reference

channels. First, we briefly recap and extend our proposed

MKWF method [39] by a control strategy for the case of

interferer speech pauses (ISPs), in which the RIR estima-

tion is lost due to a missing excitation signal. Afterwards,

we compare the improvedMKWFwith theMWF [21] and

the MAEC [41] in a more realistic and challenging meet-

ing scenario with multiple RIR changes. Subsequently, we

investigate the performance of the MAEC RIR estima-

tion compared to an oracle MAEC, which has access to

clean reference signals and points out the main perfor-

mance differences. Finally, we elaborate why the MAEC

RIR estimation can be successfully applied in a meeting

scenario with leaky microphone channels.

The outline of this work is as follows: We introduce the

considered meeting scenario with some important nota-

tions and the problem formulation in Section 2. While

Section 3 contains the algorithmic descriptions of the

MWF and MAEC baseline approaches, we define our

extended MKWF method in Section 4. A comparison of

the baselines and the MKWF is carried out in Section 5,

which is followed by amore detailed analysis of theMAEC

with focus on RIR estimation in Section 6 to answer the

question why the MAEC is able to work despite leaky

reference channels. The paper is concluded with some

remarks in Section 7.

2 Scenario model and data acquisition
First of all, we formulate the problem regarding the

considered meeting scenario with some notations and

describe the data acquisition process and preparation for

the later experiments.

2.1 Considered meeting scenario and problem

formulation

We consider a meeting scenario of three persons (P1, P2,

P3) sitting at a table and talking to each other as depicted

in Fig. 1. Note that most interesting algorithmic aspects

can already be investigated with three persons.

In order to analyze or transcribe the course of a meet-

ing’s conversation, all persons are equipped with a (wire-

less) headset for two reasons: on the one hand, a micro-

phone channel with good close-talk audio quality for each

person is obtained; on the other hand, the participants are

free to stand up, go to the flip chart and workstations,

or even walk around, still allowing for high-quality sound

acquisition, which is in this case hardly possible with a

single table-top microphone or a microphone array. How-

ever, for simulations, we consider only fixed positions of

the persons at the table, which is already a challenging

scenario in terms of interfering speaker levels. Further-

more, we assume the headsets to have an omnidirectional

microphone characteristic, supporting robustness w.r.t.

the acquisition of the target speaker’s voice. However, not

only the speech of the target speaker is recorded, but also

the speech portions from all other persons. Depending on

the position and the loudness level of the other interfer-

ing speakers, low- and high-level crosstalkmay occur. This

undesired effect is well known from audio recordings or

the mixing of live sounds and is designated as microphone

leakage.

In the following, we denotem ∈ M = {1, . . . ,M} as one

specific target speaker being currently focused on, and

μ ∈ I = {1, . . . ,M | μ �= m} as an interfering speaker.

As shown in Fig. 2, each microphone channel ym(n) of the

associated target speakerm is modeled as
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Fig. 2 The acoustic channel model of the considered meeting
scenario. Each speaker’s voice couples into the close-talk microphones
of all other participants. Thereby, the source signal s′m(n),m ∈ M, is
filtered by different room impulse responses hm,μ(n) withm,μ ∈ M

ym(n) = sm(n) +
∑

μ∈I

dm,μ(n), (1)

with discrete-time sample index n. Thereby, sm(n) =

s′m(n) ∗ hm,m(n) denotes the convolution of the source

signal s′m(n) of target speaker m with the corresponding

room impulse response (RIR) hm,m(n), describing the path

from mouth to microphone. In contrast, the interfering

signals are defined by dm,μ(n) = s′μ(n) ∗ hm,μ(n), with the

interferer source signal s′μ(n), being convolved with the

corresponding RIR hm,μ(n),μ ∈ I , reflecting the acoustic

path from the mouth of interferer μ to the microphone of

target speakerm.

2.2 Data acquisition and signal processing

A detailed evaluation of applied MSIR methods requires

the use of objective measures. Therefore, it is necessary

to have access to each individual signal component in (1),

more specifically sm(n) = s′m(n) ∗ hm,m(n) and dm,μ(n) =

s′μ(n) ∗ hm,μ(n). In order to be able to generate realis-

tic microphone signals of a meeting scenario under these

conditions, in line with ITU-T P.1110 [42] and P.1130 [43],

we record real RIRs in a typical meeting room which are

then used to generate the individual signal components

of microphone channel ym(n) by means of various speech

samples.

To allow the acquisition of RIRs containing the typical

characteristics of the direct path and the early reflections

in a realistic meeting scenario, the participants of the

considered meeting are represented by head-and-torso

simulators (HATSs), which are equipped with a headset

and placed around a table. Thus, we can measure the RIRs

from the mouth reference point (MRP) [44] (cf. Fig. 2) of

each HATS to the headset microphone of all HATSs.

Due to the considered close-talk scenario, the MRP and

the headset microphone of the target speaker are almost

located at the same place. Hence, we assume hm,m(n) =

δ(n) in order to simplify the acoustic channel model w.r.t.

the investigated conversational group interaction, requir-

ing only the RIRs from the target speaker to all other

persons’ microphones to be measured. For this purpose,

one Yamaha HS80M studio monitor loudspeaker, rep-

resenting the MRP, and two HEAD acoustics HMS

II.6HATSs were employed as acoustic source and sinks,

respectively. While later on in practice the participants

shall wear a wireless headset, for data recording and the

purpose of this work, we acquired the audio signals of each

speaker (HATS) by a wired omnidirectional close-talk

Beyerdynamic MM1 measurement microphone placed

at the position of a typical headset microphone in order to

exclude transmission effects.

We recorded two sets of RIRs, later denoted as RIR set I

and RIR set II, in the already described three-person sce-

nario in a meeting room of size 6.6 m× 5.75 m× 2.5 m

(length×width× height) according to [45]. As excitation,

a 48 kHz and 32 bit linear sweep signal from 0.01 Hz to

24 kHz with a length of 10 s was used. The excitation was

played back with the studio monitor placed at the position

of each speaker and recorded at each of the other speaker’s

headset position by means of the Beyerdynamic MM1

microphone. Afterwards, the RIRs were determined with

the aid of a recorded electrical reference signal, which was

recorded once for all measurements, by a linear deconvo-

lution in the frequency domain [45] and finally downsam-

pled to 16 kHz. The T60 times of the measured RIRs are

on average 0.24 s, which is in line with [28, 38] regarding a

common meeting room. As a result, the RIR signals were

cut off after 4000 samples (0.25 s) for our experiments.

By using the measured RIRs, we are able to simulate

any desired dialog between the considered three per-

sons as defined in (1). The simulation diagram structure

of all signals for the later experiments according to the

acoustic channel model in Fig. 2 is illustrated in detail

in Fig. 3. Due to the assumption that hm,m(n) = δ(n),

the speech signal s′m(n) of the target speaker of micro-

phone channel ym(n) is not convolved with any RIR. In

order to obtain sm(n), the active speech level (ASL) is

scaled with αsm to −26 dBov in accordance with ITU-T

P.56 [46]. In addition, two interferer signals s′μ(n) are con-

volved with hm,μ(n) and also adjusted to −26 dBov ASL

by αsμ . Afterwards, the two interferer signals are superim-

posed and jointly scaled with αd to the desired crosstalk

level. Finally, sm(n) and dm(n) are superimposed and a

white Gaussian noise floor n′
m(n), adjusted to −75 dBov

(using αn), is added to the microphone channel, to sim-

ulate some sensor noise. The explicit signal mixtures of

the respective experiments follow in the corresponding

sections.
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Fig. 3 Simulation diagram of the close-talk microphone signal y1(n),
employing input speech data, measured room impulse responses
(RIRs), and assuming hm,m(n) = δ(n). For computation of microphone
signals y2(n) and y3(n), the inputs are to be changed accordingly

3 Baseline approaches
In this section, we present the multichannel Wiener filter

(MWF) approach according to [21] and the multichannel

acoustic echo cancellation (MAEC) method adopted from

[41], applied to the considered meeting scenario. Some

mathematical detail is important here to understand, since

later on we will refer to it with our proposed approach.

3.1 Multichannel Wiener filter (MWF)

Kokkinis et al. [21] consider microphone leakage effects in

music recordings with several instruments, each assigned

to a microphone being close by the instrument, result-

ing in (1). Under the assumption that each microphone

captures primarily the audio signal of the assigned audio

source and only to some lower extent the interferer

sources, a Wiener filter Wm(ℓ, k) considering all interfer-

ing signals is applied in the discrete Fourier transform

(DFT) domain to each microphone channel m in order to

reduce the interferer signals according to

Ŝm(ℓ, k) = Wm(ℓ, k) · Ym(ℓ, k). (2)

Here, Ym(ℓ, k) is the short-time Fourier transform (STFT)

of the target microphone channel ym(n) and Ŝm(ℓ, k) is

the estimated STFT of target speech signal sm(n). Fur-

thermore, k ∈ K = {0, 1, . . . ,K − 1} is the discrete

frequency bin index. Assuming statistical independence

of target speech and interferer signals, the Wiener filter is

modeled by

Wm(ℓ, k) =
�̂SS,m(ℓ, k)

�̂SS,m(ℓ, k) +
∑

μ∈I

�̂DD,m,μ(ℓ, k)
, (3)

with the estimated power spectral densities (PSDs)

�̂SS,m(ℓ, k) and �̂DD,m,μ(ℓ, k) of the speech signal of the

target speaker and the interferer’s, respectively. Since

these signals are not accessible, they have to be estimated.

An overview of the MWFmethod is illustrated in Fig. 4.

The input signals ym(n) constitute the continuation of the

Fig. 4MWF approach for speakerm = 1. The box denotes the
buffering of the previous K−R samples. With the aid of a PSD
estimation, a Wiener filterW1(ℓ, k) is adapted to reduce the interferer
signals in microphone channel y1(n). As indicated by the three layers,
microphone channels y2(n) and y3(n) are enhanced by changing the
input signals accordingly

output signals of Fig. 2 and are transformed into the DFT

domain by using an overlap-add (OLA) structure. The

PSD estimation block delivers the update of the Wiener

filter coefficients (3) and is utilized for the calculation of

both target speaker PSD and interferer PSDs, whereby

each has its own control unit in form of the forgetting fac-

tor and the solo detection block, respectively, which will

be explained later in this section. In the following, the esti-

mations of both the target speaker PSD and the interferer

PSDs are described in accordance with [21].

3.1.1 Estimation of the target speaker PSD �̂SS,m

It is assumed that PSD bins k without an influence of

an interferer signal show almost equivalence between the

PSDs of the input microphone signal �̂YY ,m(ℓ, k) and the

enhanced output signal �̂
ŜŜ,m

(ℓ, k) [21], which are both

obtained by squaring the absolute value of Ym(ℓ, k) and

Ŝm(ℓ−1, k), respectively. We obtain these dominant fre-

quency bins k ∈ Kdom(ℓ) by comparing their active fre-

quency bins k ∈Kact(ℓ), which are calculated for channel

m by

Kact
Y ,m(ℓ) = {k ∈ K | �̂YY ,m(ℓ, k) ≥ EY ,m(ℓ)}

Kact

Ŝ,m
(ℓ) = {k ∈ K | �̂

ŜŜ,m
(ℓ−1, k) ≥ E

Ŝ,m
(ℓ−1)},

(4)

with EY ,m(ℓ) and E
Ŝ,m

(ℓ−1) being the root-mean-squared

amplitudes of �̂YY ,m(ℓ, k) and �̂
ŜŜ,m

(ℓ−1, k), respectively.

Afterwards, the desired dominant frequency binsKdom(ℓ)
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are identified as those, which are active in both PSDs

according to

Kdom
m (ℓ) = Kact

Y ,m(ℓ) ∩ Kact

Ŝ,m
(ℓ). (5)

By means of Kdom
m (ℓ), a binary mask

X dom
m (ℓ, k) =

{

1, k ∈ Kdom
m (ℓ)

0, k �∈ Kdom
m (ℓ)

(6)

can be defined, and thus, both a dominant PSD compo-

nent

�̂dom
m (ℓ, k) = X dom

m (ℓ, k) · δdom · �̂YY ,m(ℓ, k) (7)

and a residual PSD component

�̂res
m (ℓ, k) = (1 − X dom

m (ℓ, k) ·
(

δresY · �̂YY ,m(ℓ, k)

+ δres
Ŝ

· �̂
ŜŜ,m

(ℓ−1, k)
) (8)

are determined. The parameters δdom, δresY , and δres
Ŝ

take

on values between 0 and 1 with δdom + δresY + δres
Ŝ

= 1 .

Finally, the PSD of the target speaker results in

�̂SS,m(ℓ, k) = γm(ℓ) · �̂SS,m(ℓ−1, k)

+ (1 − γm(ℓ)) ·
(

�̂dom
m (ℓ, k) + �̂res

m (ℓ, k)
)

,

(9)

with γm(ℓ) being an energy-adaptive forgetting factor

considering the time-varying energy of all microphone

channels in order to ensure that the PSD estimation only

proceeds, if the target microphone channel has more

energy than the others, and hence, there is a high confi-

dence of hardly interfering signals (Fig. 4 block Forgetting

Factor).

3.1.2 Estimation of the interferer PSDs �̂DD,m

The estimation of �̂DD,m,μ(ℓ, k) is formulated on the

basis of the interferer source s′μ(n), μ ∈ I , which is

once convolved with hμ,μ(n) to provide sμ(n), and once

with all hm,μ(n) to provide the interferer signals dm,μ(n)

(cf. Fig. 2). Hence, by ignoring further interferences, it

is assumed for reasons of simplification that the corre-

sponding PSDs �̂SS,μ(ℓ, k) and �̂DD,m,μ(ℓ, k) only differ

by a time-variant but full-band factor αm,μ(ℓ), which is

obtained by

αm,μ(ℓ) =
EY ,m(ℓ)

EY ,μ(ℓ)
. (10)

Thereby, αm,μ(ℓ) is only updated in solo intervals (single-

talk) of the considered interfering speaker, yielding

ED,m(ℓ) = EY ,m(ℓ) and ES,μ(ℓ) = EY ,μ(ℓ). The solo

parts (Fig. 4 block Solo Detection), depicted by νμ(ℓ), are

detected by an energy function based on a sigmoid func-

tion as well as EY ,m(ℓ) and EY ,μ(ℓ). For further details,

please refer to [21]. With the aid of αm,μ(ℓ), the interferer

PSD is estimated as

�̂DD,m,μ(ℓ, k) = αm,μ(ℓ) · �̂SS,μ(ℓ, k). (11)

3.2 Multichannel acoustic echo cancellation (MAEC)

The frequency domain adaptive filtering-based MAEC

approach by Malik and Enzner [41] has been originally

intended for full-duplex hands-free telephony. The basic

idea of the MAEC directly applied to our speaker inter-

ference scenario is depicted in Fig. 5. Note that Fig. 5 can

be seen as a continuation of Fig. 2 with the output micro-

phone signals ym(n) of Fig. 2 being the input signals to

Fig. 5. Note further that different to a classical MAEC sce-

nario as assumed in [41], the reference signals y2(n) and

y3(n) in our scenario are themselves distorted by each

other and, even worse, by the target speech s′1(n) coupling

into y2(n) and y3(n) as depicted in Fig. 3. Furthermore,

each channel m ∈ M has to be enhanced and is indepen-

dently processed by a basic MAEC approach, depicted by

theM = 3 instances in Fig. 5.

In the following, we adapt the basic MAEC approach

to our meeting scenario in accordance with [47, 48]. The

MAEC is implemented in an overlap-save (OLS) structure

and is based on a Kalman filter consisting of an alternat-

ing prediction and correction step. After windowing of

frame length K with frame shift R, we obtain frames of

each interfering microphone channel yμ(n) (i.e., as refer-

ence signal), frame-wise packed in K × 1 vectors yμ(ℓ),

with frame index ℓ. The first frame is headed by K −

Fig. 5MAEC approach in the meeting scenario for speakerm=1.
Thereby, the box denotes again the buffering of the previous K−R

samples, while shows the elimination of K−R samples w.r.t. the
OLS constraint. Additionally, depicts the replacement of K−R

samples by zeros. The RIRs H1,2(ℓ, k) and H1,3(ℓ, k) of interferer signals
S′2(ℓ, k) and S′3(ℓ, k) are estimated (Ĥ1,2(ℓ, k), Ĥ1,3(ℓ, k)). Afterwards,

microphone signals Y2(ℓ, k) and Y3(ℓ, k) are multiplied with Ĥ1,2(ℓ, k)
and Ĥ1,3(ℓ, k), respectively, and are then subtracted from the
microphone signal Y1(ℓ, k), resulting in Ŝ1(ℓ, k). By means of the error
signal E1(ℓ, k), the estimation of the RIRs is adapted. To obtain Ŝ2(ℓ, k)
and Ŝ3(ℓ, k), the inputs are changed accordingly
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R zeros, followed by the first R samples of the respec-

tive microphone signal. Each frame is transformed into

the frequency domain and shaped into a main diagonal

matrix, to allow for a convenient notation, by

Yμ(ℓ) = diag{FK×K ·yμ(ℓ)}, (12)

with FK×K being the K-point DFT matrix and μ ∈ I . In

contrast, the R× 1 target microphone channel ym(ℓ) is

processed with the K ×R overlap-save projection matrix

Q =
(

0R×(K−R) IR×R

)T
and DFT matrix FK×K resulting in

a K×1 vector as

Ym(ℓ) = FK×KQ·ym(ℓ), (13)

whereby 0 and I denote a zero and unity matrix, respec-

tively. The subsequent steps are done for each speaker

m ∈ M, i.e.,M instances of the MAEC are in operation.

3.2.1 Prediction step

The prediction of the currentK×1MAEC filter coefficient

state vector Ĥ+
m,μ(ℓ) of interferer channel μ ∈ I w.r.t. the

target microphone channelm ∈ M is obtained by

Ĥ+
m,μ(ℓ) = Am,μĤm,μ(ℓ−1), (14)

whereby (·)+ indicates a prediction and Am,μ is a first-

order Markov model prediction coefficient (also denoted

as forgetting factor) of interferer μ in instance m, initial-

ized with Am,μ = 0.998. Furthermore, by means of an

overestimation factor λ, the K ×K covariance matrices

of the state error for both intra-channels (μ = ν) and

cross-channels (μ �=ν) are predicted with μ, ν ∈ I by

P+
m,μ,ν(ℓ) = Am,μAm,νPm,μ,ν(ℓ−1)

+ λ	

m,μ,ν(ℓ−1).

(15)

The same-size covariance submatrices 	

m,μ,ν denote the

process noise and are determined by

	

m,μ,ν(ℓ−1) = (1 − A2

m,μ)
(

Ĥm,μ(ℓ−1)ĤH
m,ν(ℓ−1)

+ Pm,μ,ν(ℓ−1)
)

,

(16)

initialized with Pm,μ,ν(ℓ = 0) = IK×K , 	

m,μ,ν(ℓ = 0) =

0K×K for μ �= ν, and 	

m,μ,ν(ℓ = 0) = IK×K for μ = ν.

Note that in accordance with [47], only the intra-channels

(μ=ν) are computed in (16), whereby (·)H designates the

Hermitian transpose.

3.2.2 Correction step

With the aid of the K×K overlap-save constraint matrix

G = FK×KQ · QTF−1
K×K , the preliminary error vector [48]

(DFT coefficient vector of length K) is obtained as

Ẽm(ℓ) = Ym(ℓ)−
∑

μ∈I

G·Yμ(ℓ)Ĥ+
m,μ(ℓ). (17)

Subsequently, the preliminary error signal, weighted with

the Kalman gain diagonal K ×K matrix Km,μ(ℓ), is used

to correct (update) the predicted MAEC filter coefficient

states to obtain

Ĥm,μ(ℓ) = Ĥ+
m,μ(ℓ) + Km,μ(ℓ)Ẽm(ℓ), (18)

with the initialization of Ĥm,μ(ℓ=0) = 0K×1. Besides, the

state error covariance prediction matrix is updated as well

by using the Kalman gain as

Pm,μ,ν(ℓ) = P+
m,μ,ν(ℓ) −

R

K
Km,μ(ℓ)

∑

κ∈I

Yκ(ℓ)P+
m,κ ,ν(ℓ).

(19)

Thereby, the Kalman gain diagonal matrix is defined by

Km,μ(ℓ) =
∑

ν∈I

μ
m,μ,ν

(ℓ)YH
ν (ℓ), (20)

with the K×K diagonal matrix

μ
m,μ,ν

(ℓ) =
R

K
P+
m,μ,ν(ℓ)B

−1
m (ℓ), (21)

being the step-size for the Kalman gain. Furthermore, the

diagonal matrix Bm(ℓ) of the target microphone channel

m results in

Bm(ℓ) =
R

K

∑

μ∈I

∑

ν∈I

Yμ(ℓ)P+
m,μ,ν(ℓ)Y

H
ν (ℓ) + 	S

m(ℓ) (22)

and includes the covariance diagonal matrix 	S
m(ℓ) of the

measurement noise, which indicates the presence of near-

end speech and is determined by a temporal smoothing as

	S
m(ℓ) = β ·	S

m(ℓ−1) + (1 − β)·
(

Ẽm(ℓ)ẼH
m(ℓ)

+
R

K

∑

μ∈I

∑

ν∈I

Yμ(ℓ)P+
m,μ,ν(ℓ)Y

H
ν (ℓ)

)

,
(23)

initialized with 	S
m(ℓ = 0) = 0K×K . Finally, using (18), the

error signal, namely the estimated target speaker’s signal,

can be computed and the time-domain signal ŝm(n) is

recovered by overlap-save synthesis based on

Ŝm(ℓ) = Em(ℓ) = Ym(ℓ) −
∑

μ∈I

G·Yμ(ℓ)Ĥm,μ(ℓ). (24)

4 Multichannel Kalman-basedWiener filter
(MKWF)

Investigations on the MWF and MAEC (as presented in

Section 5.3) result in two observations: first, theMWF has

a bigger potential for a high interferer reduction compared

to the MAEC, and second, the MAEC achieves a better

and more homogeneous quality of the remaining target

speech signal over a wide range of different SIRs. Based

on these observations, we start in this section with the

MKWF approach according to [39], which is an extension



Meyer et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2020) 2020:14 Page 8 of 17

of the MWF. Thereby, the MKWF considers the influ-

ence of the real RIRs on the interferer signals to obtain a

better interferer PSD estimation. Thus, the quality of the

remaining target speech is improved, since this allows a

more precise filtering (over all frequencies) of the leaky

microphone channels, instead of just using a single full-

band gain factor (c.f. (10)). For this purpose, we replace

the MWF-interferer PSD estimation (c.f. Section 3.1.2) by

applying the Kalman filter of the MAEC to estimate the

interferer (noise) PSD �̂DD,m(ℓ, k). We further improve

the estimation of the target PSD �̂SS,m(ℓ, k) by using the

output signals of the MAEC and integrate a new extended

control strategy for the RIR update of theMAEC to be able

to deal with interferer speech pauses. In the following, we

describe the proposed MKWF, which is depicted in Fig. 6.

In line with the MWF, the Wiener filter is modeled by

Wm(ℓ, k) =
�̂SS,m(ℓ, k)

�̂SS,m(ℓ, k) +
∑

μ∈I

�̂DD,m,μ(ℓ, k)
. (25)

To obtain �̂DD,m,μ(ℓ, k), the determination of the inter-

ferer signals in channel m by means of the MAEC is

already defined in (24) as

D̂m,μ(ℓ) = G·Yμ(ℓ)Ĥm,μ(ℓ). (26)

Since the MAEC uses in contrast to the MWF an OLS

structure, we first have to adapt theMAEC output. There-

fore, we calculate

d̂m(ℓ) = F−1
K×K ·

∑

μ∈I

D̂m,μ(ℓ) (27)

and retain only the last R samples of d̂m(ℓ) due to the

OLS constraint, yielding d̂m(n) (cf. Fig. 6). Afterwards,

d̂m(n) is transformed into the frequency domain, deliver-

ing D̂WF
m (ℓ, k), by applying an OLA structure with a Hann

window, frame shift R, and frame length KWF = 2R. Sub-

sequently, the interferer signal PSD determination is done

by

�̂D̂D̂,m(ℓ, k) =
∣

∣

∣
D̂WF
m (ℓ, k)

∣

∣

∣

2
. (28)

The estimation of the target speaker PSD �̂SS,m(ℓ, k)

follows the MWF approach. In order to make the esti-

mation of �̂SS,m(ℓ, k) more robust to low-SIR input sig-

nals, we subtract the estimated interferer signals from the

target microphone signal, before calculating the PSD of

YWF
m (ℓ, k) according to

�̂YY ,m(ℓ, k) =
∣

∣

∣
YWF
m (ℓ, k) − D̂WF

m (ℓ, k)
∣

∣

∣

2
. (29)

Following Section 3.1, (4) to (8) and neglecting the forget-

ting factor results in

�̂SS,m(ℓ, k) = �̂dom
m (ℓ, k) + �̂res

m (ℓ, k). (30)

4.1 New extended RIR update control strategy

The MAEC algorithm contains an intelligent RIR update

function, which is mainly based on 	S
m(ℓ) (23) and

P+
m,μ,ν(ℓ) (15), both indirectly controlling the step-size

μ
m,μ,ν

(ℓ) (21). Thus, the adaptation of the RIR filter coef-

ficients depends on the presence of target speech and

the state error. Nevertheless, in case of interferer speech

pauses, there is no excitation for the MAEC to estimate

Fig. 6 Proposed multichannel Kalman-based Wiener filter (MKWF) for interferer reduction in channelm = 1. The box denotes the previous K−R

and KWF−R samples in the buffer of the MAEC and WF, respectively; the elimination of K−R samples w.r.t. the OLS constraint, and the
replacement of K−R samples by zeros. The inputs are changed accordingly to obtain ŝ2(n) and ŝ3(n)
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the RIRs. In such a case, the current RIR estimate is

lost and converges to zero due to the integrated update

function aiming to protect the target speech signal. This

in consequence leads to a permanent reconvergence of

the estimation process in a meeting if a person does not

speak continuously, and thus, only a suboptimal result is

obtained during the beginning of a new utterance.

In order to prevent this behavior, we detect the speech

activity of the interferer signals and store the correspond-

ing latest filter coefficients of Ĥm,μ(ℓ) (18) as well as

Pm,μ,ν(ℓ) (19) during active speech of interferer μ. After a

speech pause of at least 0.5 s of interferer μ, the stored fil-

ter coefficients are restored if the interferer starts to speak

again. Thereby, the internal RIR update function of the

MAEC is not interrupted during interferer speech pauses

to prevent the target speech signal. Since RIRs can change

rapidly over time, the restored RIRs may be incorrect to

some extent, but as we will show in the experimental eval-

uation, it still reduces the required time for the MAEC to

reconverge in a common meeting scenario.

To detect the speech activity in a channel, we apply a

multichannel speaker activity detection (MSAD), which

is inspired by [49] and briefly described in the following.

The MSAD is based on a comparison of the PSDs of all

considered microphone channels m ∈ M. Frames are

obtained with a Hann window, a frame shift R, and a frame

length KMSAD = 2R. We determine the PSD comparison

for channelm by

SPRm(ℓ, k) = 10 log10

⎛

⎜

⎝

�̂

,m(ℓ, k)

max
μ∈I

{

�̂

,μ(ℓ, k)
}

⎞

⎟

⎠
, (31)

with �̂

,m(ℓ, k) = �̂YY ,m(ℓ, k) − �̂NN ,m(ℓ, k), whereby

�̂NN ,m(ℓ, k) being the noise signal PSD of channel m. For

more details, please refer to [49]. We further calculate a

signal-to-noise ratio (SNR) as

ξ̂m(ℓ, k) =

max
{

min
{

�̂YY ,m(ℓ, k), |Ym(ℓ, k)|2
}

−�̂′
NN ,m(ℓ, k), 0

}

�̂′
NN ,m(ℓ, k)

,

(32)

with �̂′
NN ,m(ℓ, k) = λSNR�̂NN ,m(ℓ, k) and λSNR = 4 being

an overestimation factor to be more robust during speech

pauses. By means of SPRm(ℓ, k) and ξ̂m(ℓ, k), we deter-

mine all relevant frequency bins in channelm by

K+
m(ℓ) = {k ∈ K | SPRm(ℓ, k) > 0, ξ̂m(ℓ, k) ≥ ϑSNR},

(33)

with ϑSNR =0.25. Thus, we obtain a soft full-band MSAD

by

0 ≤ χMSAD′

m (ℓ) = G
(B)
min,m(ℓ) · κ+

m(ℓ) ≤ 1, (34)

with κ+
m(ℓ) = |K+

m(ℓ)|/KMSAD and

G
(B)
min,m(ℓ) = min

{

α · ξ̂ (B)
m (ℓ), 1

}

, (35)

being an SNR-dependent weighting function with α=0.1.

Thereby,

ξ̂ (B)
m (ℓ) = max

b∈B

⎧

⎨

⎩

1

|Kb|
·

∑

k∈Kb

ξ̂m(ℓ, k)

⎫

⎬

⎭

, (36)

which depicts the maximum SNR value of B = 10 aver-

aged frequency bands with index b ∈ B = {1, 2, ...,B}

and Kb being the set of frequency bin indices k in band b.

Finally, we obtain a MSAD decision for channelm by

χMSAD
m (ℓ) =

{

1, if χMSAD′

m (ℓ) > θMSAD

0, otherwise,
(37)

with θMSAD=0.2. The values of λSNR, ϑSNR, α and θMSAD

were determined empirically.

5 Experiments and discussion
We first introduce the applied evaluation metrics for all

upcoming experiments and define the experimental setup,

before we discuss the performance comparison between

the MWF, MAEC, and MKWF methods.

5.1 Quality measures

With the aid of the PEASS toolbox1 according to [50],

each estimated target signal ŝm(n) is decomposed into a

target distortion e
target
m (n), an interference einterfm (n), and an

artifact eartifm (n) component, defined by

ŝm(n) − sm(n) = e
target
m (n) + einterfm (n) + eartifm (n). (38)

Based on these signals, four source separation evalua-

tion metrics are calculated by the PEASS toolbox, which

are briefly introduced in the following. The measures

are defined w.r.t. target channel m. First, the signal-to-

interferer ratio (SIR) is determined by

oSIRm = 10 log10

∑

n∈N

|sm(n)+e
target
m (n)|2

∑

n∈N

|einterfm (n)|2
, (39)

with oSIRm being the output SIR after applying PEASS for

channel m and sample index n∈N ={1, . . . ,N}. We then

define the improvement of the SIR as


SIRm = oSIRm − iSIRm, (40)

whereby iSIRm is the input SIR of channel m, measured

according to ITU-T P.56 [46]. The further measures of the

1http://bass-db.gforge.inria.fr/peass/

http://bass-db.gforge.inria.fr/peass/
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PEASS toolbox are the signal-to-distortion ratio (SDR),

the source image to spatial distortion ratio (ISR), and the

signal-to-artifact ratio (SAR) [50], which are defined as

SDRm = 10 log10

∑

n∈N

|sm(n)|2

∑

n∈N

|ŝm(n)−sm(n)|2
, (41)

ISRm = 10 log10

∑

n∈N

|sm(n)|2

∑

n∈N

|e
target
m (n)|2

, (42)

SARm = 10 log10

∑

n∈N

|sm(n)+e
target
m (n)+einterfm (n)|2

∑

n∈N

|eartifm (n)|2
,

(43)

respectively. Please note, since a subjective perception of

the enhanced target signals is not the primary evaluation

criterion for the purpose of an automaticmeeting analysis,

we do not consider further perceptual measures from the

PEASS toolbox for the evaluation.

5.2 Experimental setup

During a group interaction with three persons, at any

time, one out of four different states may occur: silence

(nobody speaks), single-talk (only one person speaks),

double-talk (two persons speak), and triple-talk. Thereby,

the elimination of crosstalk during multi-talk situations is

obviously the most challenging task, since both the inter-

fering and the target speaker are talking at the same time.

This requires precise filtering of the recorded microphone

signals and is quite similar to the case of common (live)

music performances, in which most instruments are play-

ing at the same time. Especially, short interruptions occur

very often in a meeting and depict a challenging double-

talk task for MSIR methods due to the short adaptation

time. For these reasons, our main focus is on multi-talk

scenarios.

In order to generate a challenging meeting scenario that

is as real as possible and has a focus on multi-talk situa-

tions, we created a conversation for target speaker m= 1

with explicit single-, double-, and triple-talk parts as well

as short speech pauses and multiple RIR changes. We

used the speech signals from the ITU-T Recommenda-

tion P.501 [51] for the implementation, which are designed

for challenging double-talk scenarios in the field of echo

compensation in telephonometry.

The composition of the m = 3 source signals is as fol-

lows: the target signal consists of the 10 s long female

short conditioning sequence, a speech pause of around 6 s,

and the single-talk sequence with a length of 35 s. Inter-

ferer signal μ = 2 begins with the male short conditioning

sequence of 10 s, followed by the female short condition-

ing sequence, which was cut off after 6 s, and ends with

the 35 s long double-talk sequence. The second interferer

signal μ = 3 is generated with 10 s of speech pause, the

female short conditioning sequence, where the first 4 s were

cut off, again speech pause of 12 s, and the female long

conditioning sequence with a duration of around 23 s (c.f.

Fig. 8).

The microphone signals are obtained in accordance

with Section 2.2 (c.f. Fig. 3) bymeans of the recorded RIRs.

We insert multiple RIR changes at different points in time

for each speaker by changing between RIR set I and RIR set

II of the corresponding crosstalk signals of the respective

speaker (for a visualization of the crosstalk dependencies

w.r.t. the microphone channels, please refer to Fig. 2). The

RIRs from target speaker m = 1 to channel μ = 2 and

μ = 3 are changed after 7, 18, 40, and 47 s; RIRs from

speaker μ = 2 to channel m = 1 and μ = 3 are changed

after 3, 12, 26, and 47 s; and the RIRs from speaker μ = 3

to channel m = 1 and μ = 2 are changed after 28, 30,

and 47 s. For a better overview, all changing points are

marked in Fig. 8 with the corresponding speech source

color. The last changing point after 47 s is colored in black,

because at this point all applied RIRs are changed simul-

taneously. Microphone channels are mixed as described

in Section 2.2 with the recorded RIR sets; we level the

target speaker signals to −26 dBov and the sensor noise

to −75 dBov. Furthermore, we investigate crosstalk levels

between −26 and −46 dBov with a step-size of 2 dB. All

applied signals are sampled at 16 kHz.

The parameter configuration of the MAEC and the

MWF is in line with [48] and [21], respectively. Due to

the reduced sampling frequency, we only adapt the frame

length of the MWF to 512 samples and the frame shift

to 256 samples. Moreover, the applied MSAD obtains an

accuracy between 76.3% for iSIR = 0 dB and 85.0% for

iSIR = 20 dB, with a maximum value of 86.2% for iSIR =

12 dB w.r.t the interferer channels μ ∈ {2, 3}. We also

integrated the MSAD-based extended RIR update con-

trol mechanism to the MAEC for better comparability.

In contrast, replacing the energy-based solo detection of

the MWF (c.f. Fig. 4) by the MSAD leads to a significant

drop of the 
SIR performance, so that we did not apply

the MSAD to the MWF approach. To ensure fair compar-

ison, we further apply the same parameter values for all

common parameters of our MKWF method and the two

other approaches. An overview of all parameters for each

method is given in Table 1.

5.3 Results and discussion

Figure 7 illustrates the performance comparison of the

MWF (red dash-dotted line), MAEC (blue dashed line),

and MKWF (green solid line) for target channel m = 1

in the considered scenario regarding the four evaluation
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Table 1 Parameter configuration of the MWF, MAEC, and MKWF
methods

Method K (KWF) R λ β δdom δresY δres
Ŝ

MWF 512 256 – – 0.6 0.25 0.15

MAEC 1024 256 1.5 0.5 – – –

MKWF 1024 (512) 256 1.5 0.5 0.6 0.25 0.15

metrics from the PEASS toolbox as a function of a wide

range of crosstalk levels (iSIR) from 0 to 20 dB. Please

note, the discussion of the oracle MAEC (skyblue dot-

ted line) will be the topic of Section 6.1 in the context of

a deeper analysis of the RIR estimation by means of the

MAEC.

Comparing the MAEC and the MWF, it is evident that

the MAEC reaches better results of the 
SIR for the iSIR

range of 0 to 8 dB as well as 17 dB and higher, while the

MWF outperforms the interferer reduction of the MAEC

by up to 1.2 dB for 8 dB < iSIR < 17 dB and obtains

a higher maximum interferer reduction than the MAEC.

Furthermore, the MAEC outperforms the MWF signifi-

cantly regarding SDR, ISR, and SAR for iSIR > 12 dB by

up to 6.7 dB, 13.7 dB, and 4.9 dB, respectively. This is

due to the fact that the MWF operates very aggressively

in high iSIR conditions, whereby it also affects the tar-

get speech component negatively. Interestingly, the MWF

reaches better ISR and SAR results for low iSIR condi-

tions (iSIR < 12 dB) compared to the MAEC, which is,

however, mainly due to the significantly stronger drop of

the 
SIR performance for this iSIR range. To conclude,

the MAEC achieves better speech quality of the remain-

ing target speech, while the MWF has more potential for

a higher interferer reduction.

TheMKWF outperforms both theMAEC and theMWF

in almost all concerns. It achieves better results over the

whole considered iSIR range regarding the
SIR and SDR,

whereby it improves the baselines by up to 2.7 dB and

2.3 dB for 
SIR and SDR, respectively. An exception is

the performance of the MWF regarding the ISR and the

SAR for iSIR<8 dB, in which the MKWF obtains a some-

what poorer performance than the MWF, while achieving

an improved 
SIR performance of up to 4 dB at the same

time. However, the MKWF outperforms the MWF sig-

nificantly as well as the MAEC regarding all considered

measures for iSIR>8 dB, which depicts the most relevant

range for a common meeting scenario. In addition, shift-

ing the optimal operating point towards a lower iSIR is,

besides the significant 
SIR increase while maintaining

approximately equal or even better speech quality (SDR,

ISR), the main advantage of the proposed MKWFmethod

compared to the MAEC and the MWF.

The effect of the extended RIR update control strategy

(c.f. Section 4.1) w.r.t. the (oracle) MAEC and the pro-

posed MKWF approach is depicted in Table 2. All results

are averaged over the iSIR conditions from 0 to 20 dB of

the considered scenario, and the results are additionally

compared with theMWFmethod. It is evident that the use

of the extended RIR update control significantly improves

the performance of theMAEC,MKWF, and oracle MAEC

regarding both the 
SIR and the SDR measure. Thereby,

the MKWF achieves the biggest improvement of around

Fig. 7 Performance evaluation of the MWF, MAEC, new MKWF, and oracle MAEC in the considered meeting scenario. The abscissa denotes the iSIR
[ dB], while the ordinates show from left to right 
SIR [ dB], SDR [ dB], ISR [ dB], and SAR [ dB], respectively. Figure best seen on the screen
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Table 2 Performance evaluation of the extended RIR update
control strategy w.r.t. the MAEC, MKWF, and oracle MAEC
approach. MWF results are provided for better comparison. All
results are averaged over all iSIR conditions in the considered
meeting scenario. First and second ranked results are bold face
and italicized, respectively (oracle results excluded)

Approach Extended RIR �SIR SDR ISR SAR

update control [ dB] [ dB] [ dB] [ dB]

MWF – 8.3 15.3 21.1 26.7

MAEC � 8.8 15.9 21.5 25.6

– 6.2 15.1 24.9 26.8

MKWF � 10.3 18.0 25.2 27.2

– 7.2 16.3 28.9 28.3

Oracle MAEC � 11.3 19.5 34.4 26.0

– 10.3 18.7 34.1 25.7

3.1 dB and 1.7 dB w.r.t. the 
SIR and SDR, respectively.

This improvement is obtained, since the implemented

control strategy prevents the reconvergence process after

an interferer speech pause by restoring the filter coeffi-

cients of the last active interferer speech frame, as already

mentioned in Section 4.1. An in-depth analysis of this

issue can be found in Section 6.1. As expected, due to the

stronger interference reduction by means of the extended

RIR update control strategy, the performance decreases

w.r.t. the ISR and SAR measure for both the MAEC and

theMKWF. Interestingly, the ISR and SAR performance of

the oracle MAEC is improved by the extended RIR update

control. However, the averaged MKWF results with ISR=

25.2 dB and SAR= 27.2 dB are still the best compared to

the results of the MWF and the MAEC (with and without

using the extended RIR update control).

6 Analysis of theMAEC RIR estimation with leaky
reference channels

Section 5.3 has shown that using the MAEC RIR esti-

mation improves the MWF approach and, also, that the

overall performance of the MAEC is quite good in the

considered meeting scenario, which is somehow surpris-

ing, since the MAEC was not developed to deal with

leaky reference channels. In order to understand these

results and verify the usability of the MAEC RIR esti-

mation for the proposed MKWF, we analyze the MAEC

in this section in more detail and answer two main

questions—first: How does the MAEC actually operate

with leaky instead of clean reference channels? (addressed

in Section 6.1); second:Why does the target speech remain

undistorted even though it is present in the reference chan-

nels? (addressed in Section 6.2).

6.1 Influence of leaky reference channels on the MAEC

To answer the first question, we compare the applied

MAEC with an oracle MAEC, which processes the same

target microphone channel, but has access to crosstalk-

free reference channels. Thus, we obtain performance

results of our target channel for an echo cancellation sce-

nario, which, considering the fact that the MAEC was

developed for echo cancellation, depicts a kind of upper

quality limit for the MAEC in the depicted meeting sce-

nario.

Comparing the MAEC to the oracle MAEC (c.f. Fig. 7),

two main observations are evident: First, the performance

of the MAEC for iSIR > 16 dB is approximately equal

to the oracle MAEC, which is conclusive, since the input

signals of the MAEC are converging towards the oracle

signals due to the decreasing distortion. Only the ISRmea-

sure shows quite a gap due to the target speech occurring

as crosstalk in the reference channels, which has a very

slight effect on the target speech in the target microphone

channel, especially when the system is still in the ini-

tial convergence process. Second, the 
SIR of the oracle

MAEC for iSIR<14 dB is significantly higher than that of

the MAEC, where the performance achieves a maximum

of about 11.9 dB for iSIR = 0 dB. An iSIR of 0 dB means

that the source signal and the crosstalk signals share the

same active speech level. Thus, the algorithm must not

estimate the compensation of level mismatches with the

RIR but can focus on the room characteristics without

paying attention to a global attenuation or gain factor.

Even though the MAEC is theoretically able to determine

the gain factor, these types of calibration are common in

practice to achieve the best possible result. In contrast,

the MAEC cannot benefit from this balanced signal levels

in the considered meeting scenario, since the accompa-

nying distortion level is too high for a good performance.

However, an iSIR<5 dB is already a very challenging task
and depicts a lower limit for a meeting scenario in prac-
tice. Nevertheless, even if the 
SIR result of the MAEC
decreases with an increasing crosstalk level (distortion of

reference channels), it still achieves adequate results in

this range compared to the MWF.

In order to get a deeper insight into the MAEC RIR

estimation, we consider two MAEC metrics. The system

distance in [dB], which is defined by

d
sys
m,μ(ℓ) = 10 log10

||hm,μ(ℓ) − ĥm,μ(ℓ)||2

||hm,μ(ℓ)||2
, (44)

as well as the averaged absolute value of the measurement

noise, which is averaged over all frequency bins (main

diagonal of (23)) and determined by

|	|Sm(ℓ) =
1

K
· tr

(

∣

∣	S
m(ℓ)

∣

∣

)

, (45)

with tr(·) being the trace of the matrix. Figure 8 depicts

the time course of d
sys
m=1,μ(ℓ) and |	|Sm=1(ℓ) for both the

MAEC (solid line) and the oracle MAEC (dotted line)
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for target channel m = 1 of the considered meeting sce-

nario at iSIR = 10 dB. Thereby, |	|Sm=1(ℓ) is smoothed

over time for better illustration. Furthermore, to ver-

ify that the MAEC RIR estimation is able to deal with

time-variant RIRs, we consider multiple RIR changes of

different crosstalk signals in Fig. 8 (c.f. Section 5.2 and

Fig. 2), each carried out in a specific meeting situation.

The RIR changes are illustrated in the lower plot of Fig. 8

by abbreviations in colored circles. Thereby, circle colors

mark the changed RIRs w.r.t. the corresponding speech

source color and the abbreviations for single-talk (ST),

double-talk (DT), triple-talk (TT), and interferer speech

pause (ISP) specify the respective meeting situation (e.g.,

depicts single-talk and a change of the RIRs h1,2(n)

and h3,2(n)). The black colored circle at 47 s defines a

simultaneous change of all RIRs.

It can be seen that the plots of |	|Sm=1(ℓ), which indi-

cate the presence of target speech, are very similar for the

MAEC and the oracle MAEC. The system distances of

the MAEC are also pretty good compared to the oracle

MAEC, the latter of course obtaining still better results,

which is in line with Fig. 7. By looking at the system dis-

tance, we can get a picture of some general characteristic

behaviors of the (oracle) MAEC.

First, RIR changes emanating from the target signalm=

1 (h3,1(n) and h2,1(n)) seem to have no influence on the

RIR estimation of hm=1,μ(n). This is indicated by the three

RIR changes at 7, 18, and 40 s, since there is no effect on

the system distance d
sys
m=1,μ(ℓ), μ ∈ {2, 3} for the (oracle)

MAEC.

Second, the best results w.r.t. d
sys
m=1,μ(ℓ) are obtained

during (single) interferer-only talk (e.g., in the intervals

0 s . . . 5 s or 10 s . . . 16 s). This is shown for the MAEC

by the fast reconvergence process from −4 dB back to

−11 dB in less than 2 s w.r.t d
sys
1,2(ℓ) for RIR change

at 3 s. Similar results are obtained for RIR change at

12 s, where d
sys
1,2(ℓ) of the MAEC decreases again fast and

is close to the performance of the oracle MAEC. In con-

trast, estimating h1,3(n) after takes a little longer for

the MAEC, which is mainly due to the fact that this is the

initial convergence process that takes place during DT.

Third, the system distance for both the MAEC and

the oracle MAEC decreases slower or remains approxi-

mately equal during large periods of target speech (e.g., in

the intervals 30 s . . . 32 s, 42 s . . . 44.5 s, and 47 s . . . 51 s).

Thus, the reconvergence process is significantly slower

after the RIR changes and at 30 and 47 s, respec-

tively, compared to and . This is due to the fact

that target speech represents already a distortion to the

RIR estimation process of the (oracle) MAEC. These

sections are typically marked by huge values of the mea-

surement noise (indicating the presence of target speech),

which leads to a small value of the step-size for the

Kalman gains (c.f. (21)). Nevertheless, the system distance

of the (oracle) MAEC still decreases in all considered

cases, so that the functionality of the RIR estimation is

ensured.

Finally, the system distance increases during speech

pauses of the interferer (e.g., in the intervals 5 s . . . 10 s,

15 s . . . 19 s, or 31.5 s . . . 42 s). This is consistent, since in

this case the algorithm has no excitation to estimate the

RIRs, which is the main reason why we integrated the

extended RIR update control strategy (c.f. Section 4.1)

into both the MKWF and the (oracle) MAEC. The pos-

itive effect is illustrated in the lowest plot of Fig. 8. It

can be seen that the restored RIR leads to a very fast

reconvergence rate after ISPs w.r.t. d
sys
1,2(ℓ) for the esti-

mate of h1,2(n) at 10 s and in the interval 19 s . . . 25 s. Even

though the RIR change at 26 s makes the stored RIR

ĥ1,2(n) obsolete, restoring ĥ1,2(n) at 26.5 s (when inter-

ferer μ = 2 starts talking again) still decreases d
sys
1,2(ℓ) by

around 0.6 dB and has no disadvantages compared to the

basic MAEC method that does not use the extended RIR

update control. On the contrary, it is quite obvious that

restoring the RIR ĥ1,3(n) at 30 s, which is obsolete after

RIR change at 29 s, leads clearly to a better RIR estima-

tion by 1.7 dB w.r.t. d
sys
1,3(ℓ) compared to the basic MAEC

without using the extended RIR update control. This indi-

cates a certain dependency between different RIRs inside

the same environment (meeting room), so that it is a ben-

efit to store the latest RIR during active speech instead of
starting the complete initialization process of the MAEC
again.

We can conclude from Fig. 8 that theMAECRIR estima-
tion is still completely operational during a crosstalk level

of an iSIR = 10 dB, even if the distortion by the crosstalk

leads to some minor performance limitations compared

to the oracle MAEC (c.f. Fig. 7). In summary, since in a

meeting scenario we typically deal with iSIR ≥ 5 dB, by

considering the results of Figs. 7 and 8, we can assume

that theMAECRIR estimation is suitable for the proposed

MKWF and for this kind of application.

6.2 Preservation of the target speech by the MAEC

So far, we know how the microphone leakage of the refer-

ence channels influences the adaptation process and thus

also the performance of the MAEC RIR estimation. The

remaining question “how does the MAEC in general dis-

tinguish between the target and the interferer signals?” is

being answered in the following.

In order to understand this behavior, we have to inves-

tigate the influence of a RIR on our source signals.
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Fig. 8 Comparison of the averaged and time-smoothed measurement noise |	|Sm=1(ℓ) and the system distance d
sys
m=1,μ(ℓ) of the MAEC and the

oracle MAEC, respectively, for one specific dialog at iSIR=10 dB. From top to bottom the target speech signal s1(n), both interferer speech signals

d1,μ=2(n) and d1,μ=3(n) are visualized with the corresponding MSAD output χMSAD
m (ℓ) ∈ {0, 1}. The measurement noise component |	|Sm=1(ℓ) of

the MAEC and oracle MAEC are denoted with a blue solid line and a dotted skyblue line, respectively. Finally, the associated system distance
d
sys
m=1,μ(ℓ) of both interferer signals μ ∈ {2, 3} are colored according to the interfering signals, whereby dotted lines represent the results of the

oracle MAEC, dashed lines the results of the basic MAEC without using the extended RIR update control strategy, and solid lines the results of the
MAEC using the extended RIR update control strategy. Figure best seen on the screen

Therefore, we create a single-talk scenario based on

speech samples of the NTTmulti-lingual speech database

[52] and use a very much simplified RIR, which is repre-

sented by an impulse α · δ(n − n0):

• Attenuation: α < 1, n0 = 0
• Amplification: α > 1, n0 = 0
• Delay: α = 1, n0 > 0

By superposition and concatenation of such impulses,

we can model any discrete RIR. This includes also some

reverberation, which corresponds to a sequence h(n),

with n ∈ N0 and h(n) ∈ R. Table 3 depicts the per-

formance of the MAEC for this single-talk experiment,

in which all speaker signals s′m(n) are convolved with

the described simplified RIRs (ASL of all speakers is

adjusted to −26 dBov before the convolution) by coupling
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Table 3 MAEC performance results in case of a single-talk
scenario with |M| = 3 speakers with various RIRs

Room impulse response �SIR SDR ISR SAR

[ dB] [ dB] [ dB] [ dB]

None α = 1, n0 = 0 −4.96 0.22 0.30 9.78

Amplification α > 1, n0 = 0 −20.39 −0.61 0.07 13.20

Attenuation α < 1, n0 = 0 11.27 1.72 1.77 14.08

Delay α = 1, n0 > 0 6.72 5.33 10.85 20.99

Reverberation 5.20 2.37 5.36 20.53

as interferer signals into the non-dedicated microphone

channels yμ(n) (c.f. Section 2.2). Thereby, we either atten-

uate or amplify the interfering signals by −5 and +5 dB,

respectively, or choose a delay of n0 = 100 samples

(which is below the frame shift R = 256). Addition-

ally, we use a random sequence to simulate reverberation,

which is shaped by an exponentially decreasing func-

tion to impose an energy decay with a reverberation

time of T60 = 5ms, and truncate it after 6.25 ms (i.e.,

after 100 samples). The RIRs from the target speakers to

their dedicated microphone channels ym(n) remain with

hm,m(n) = δ(n).

Even though we already know that the crosstalk level

has an effect on the performance of the MAEC during

multi-talk (cf. Fig. 7), it is clear to see in Table 3 that this

is not the reason why the MAEC is able to work with

leaky reference signals. To be more specific, in the case of

single-talk, no RIR or an RIR only attenuating or ampli-

fying the crosstalk signals leads to almost an elimination

of the target speech signal, which is evident for these

three types of RIRs in Table 3 from the poor performances

regarding the SDR and the ISR measures. Nevertheless,

the attenuating RIR obtains the best results of these

three RIRs.

However, the key factor for the MAEC with leaky refer-

ence signals seems to be the delay of the interfering signals,

as is evident from the best-performing result w.r.t. both

SDR and ISR measures in Table 3. This can be explained

as follows: All interfering signals (especially the crosstalk

of the target speech in the reference channels) are delayed

w.r.t. their source signals. In consequence, the MAEC

would have to estimate an RIR with negative delay in order

to affect the target speech component in the desired chan-

nel m. But this is physically not possible and causes the

MAEC to treat the target speech component as near-end

speech (as mentioned in Section 3.2), which might be the

reason why the MAEC (RIR estimation) works fine with-

out degrading the target speech. Since the reverberation

can be seen as a combination of delay and level adjust-

ment, it is obvious that this has also a positive effect on

the MAEC (RIR estimation) in our scenario.

We can conclude that the MAEC (RIR estimation)

can be applied to close-talk multichannel recordings

with crosstalk-disturbed reference channels, if the

microphones are closest to their dedicated person.

7 Conclusions
In this work, we investigated the applicability of a mul-

tichannel acoustic echo cancellation (MAEC) approach

for speaker interference reduction in a close-talk (wire-

less) headset meeting scenario, which deals with crosstalk

and thus reference channels disturbed by both target and

interferer speech. We further show that the characteris-

tics of the room impulse response (RIR), especially the

delay, and during multi-talk to some extent also the atten-

uation affecting the energy level of the crosstalk, are the

reasons why theMAEC is able to operate successfully with

crosstalk-disturbed reference signals in this specific sce-

nario. Moreover, by means of the MAEC RIR estimation,

we propose a multichannel Kalman-based Wiener filter

(MKWF) method, which is an extension of a multichannel

Wiener filter (MWF) approach by considering the RIRs

between the microphones of the interferer and the target

speakers. Thus, the MKWF estimates the interfering sig-

nals more precisely, leading to an increase of up to 2.7 dB

signal-to-interferer ratio, while the obtained speech qual-

ity remains equal or is even better compared to the MWF

and the MAEC.
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