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Abstract— In the context of radar spaceborne imaging, the 

novel multichannel Staggered SAR mode represents a promising 
solution for the mapping of ultra-wide swaths with very high 
azimuth resolution. This paper extends the analysis of 
multichannel staggered SAR to planar antenna architectures and 
provides system design examples both for planar and reflector 
antenna architectures. Furthermore, a first proof of concept 
using measured data acquired by an experimental ground-based 
system is provided to demonstrate the approach’s feasibility. 
 

Index Terms— Radar, Radar imaging, Spaceborne radar, 
Synthetic aperture radar, Digital beamforming, High-resolution 
wide swath 

I. INTRODUCTION 

PACEBORNE Synthetic Aperture Radar (SAR) [1], [2] images 
enjoy an increasing acceptance in the scientific community and 

a growing pool of applications. This is due to the capability of 
continuous (weather and daylight independent) imaging, as well as 
to the additional information present in such images, in comparison 
with other sensors. Maximizing the information content of SAR 
imagery requires improving the spatial and temporal resolution of 
acquisitions. This poses the requirement of imaging with high 
resolution and short-revisit times, which in turn requires the 
simultaneous acquisition of wide swathes on the ground.  

High-resolution wide-swath (HRWS) spaceborne SAR 
imaging – though beneficial to most applications and bearing the 
potential to make new applications feasible – presents itself as a 
challenge in terms of SAR system design. Conventional single-
channel SAR systems [3],[4],[5] are subject to a well-known 
compromise between the swath width and the maximum 
achievable azimuth resolution. This prevents them from fulfilling 
the increasing requirements for continuous high-resolution Earth 
observation. Such systems are thus no longer an option for state-
of-the-art [6] and near-future spaceborne SAR systems. Fig. 1 (a) 
illustrates a simplified model of the geometry and the echo of a 
single transmitted pulse (usually a chirp [1]), whereas Fig. 1 (b) 
shows schematically the timing when a train of pulses is 
transmitted. In the case under analysis, the pulse repetition 
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frequency (PRF) is too high and thus the echo window length too 
short to fit the ground echo. This condition illustrates two 
important effects to which HRWS imaging systems are prone. 
First, range ambiguities due to the overlap of the end of the echo 
of a transmitted pulse and the beginning of the echo of the next 
pulse (cf. red and blue echoes in Fig. 1 (b)). Second, blind 
ranges, which arise due to the fact that, in a monostatic system, 
the received signal cannot be recorded during transmission (cf. 
dashed portions of echoes in the same figure). As seen in Fig. 1 
(b), this creates a gap in the receive echo.  

Fig. 1: Schematic representation of swath geometry. (a) Transmitted pulse and the 
echo of an arbitrary swath of interest. (b) Timing for the transmission of a train of 
pulses with a PRF which is too high to yield unambiguous imaging of the whole 
swath, though suitable for the support of a fine azimuth resolution. Blind ranges 
and range ambiguities are seen to arise.  

Research in this field [3],[4],[7],[8],[9],[10],[11],[12] 
identifies the usage of multiple receiver channels as a key 
technology in enhancing system performance to the required 
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levels. The resulting Single-Input Multiple-Output1 (SIMO) 
systems may have multiple output channels both in the elevation 
and azimuth dimensions. These systems require suitable digital 
beamforming (DBF) techniques for processing of the data.  

Additional output channels in elevation lead to systems capable 
of performing, e.g., SCORE (SCan-On-Receive [14]) with 
multiple simultaneous elevation beams [9],[10],[15],[16]. These 
systems achieve imaging of several sub-swaths simultaneously, 
increasing the swath width for a given PRF while distinguishing 
between range ambiguous returns by means of their different 
angles of arrival in elevation. This capability is the key to extend 
the swath beyond the limits imposed by the non-ambiguous 
receive interval (cf. Fig. 2 (a)), effectively decoupling the duration 
of the unambiguous receive window from the PRF.  

This, however, does not solve the problem of the blind ranges: 
Note that in Fig. 2 (a) the gaps are still present. A possible 
solution is a cyclical variation of the system’s pulse repetition 
interval (PRI), which is known as staggered SAR [17],[18]. 
Blockage of the receive signal by transmission events still occurs, 
but as long as the PRI variation is fast enough (cf. [11],[18],[19]), 
the position of the blocked ranges is different for each pulse and 
has no overlap in azimuth with neighboring pulses, as shown in 
Fig. 2 (b). It should be stressed that, in a constant PRF system, the 
gaps (i.e. ranges lost due to transmission events) are at the same 
position for every transmitted pulse, and thus no information 
regarding these ranges is available in the synthetic aperture, 
leading to the occurrence of the blind range. In contrast, as a 
consequence of the PRI staggering, the blocked ranges are 
distributed over range and become azimuth dependent. Recovery 
is nonetheless possible by interpolation over azimuth from 
neighboring pulses. Hence, even though the effect of Tx blockage 
is still present, blind ranges (characterized by no recorded signal 
for every pulse) do not occur. 

Such techniques allow very wide swaths to be imaged, but the 
best achievable azimuth resolution is limited if only a single 
channel in azimuth is used. For instance, Tandem-L [6] achieves 
using this technique a 7 m azimuth resolution over a 350 km 
swath. The HRWS imaging capability of this class of system can 
be further extended by the use of multiple receive channels in 
azimuth, leading to the multichannel (in azimuth) staggered SAR 
concept, which will be described in more detail in the body of the 
paper. 

The use of multiple receivers in the azimuth or along-track 
dimension with a constant PRF2 is a different approach towards 
HRWS. The main goal is to increase the sampling rate and 
generate an equivalent single-channel output which can be 
processed by existing SAR image focusing algorithms. 

 
                                                           

1Multiple-Input Multiple-Output (MIMO) systems [13] can in principle be 
realized by adaptation of SIMO hardware architectures in combination with a 
set of properly designed transmit waveforms and additional processing steps. 
In this sense, the schemes proposed for SIMO architectures are also of interest 
for MIMO applications, observing some peculiarities of the latter. 

2 Note that SAR systems are typically capable of changing their PRF from 
acquisition to acquisition or from sub-swath to sub-swath. The constant PRF 
constraint refers to the observation time within a given synthetic aperture.  

Fig. 2: Schematic representation of HRWS geometry and imaging modes. (a) System 
with constant PRI – and thus prone to blind ranges – but multiple elevation beams, 
which resolves the range ambiguities. (b) Staggered SAR system, in which the 
different PRIs cause the transmission-induced blockage to affect different ranges for 
each pulse without overlap in azimuth; a posterior interpolation and recovery allows a 
gapless acquisition over the swath. (c) Multichannel system in azimuth with a constant 
PRI. The Tx pulses are shown over the slow time axis for comparison with the 
previous figures, and the phase center position of the transmitted and received pulses 
are represented by arrows and triangles, respectively, illustrating the sampling across 
the aperture. Use of multiple channels allows forming a regular grid with a gain in the 
sampling rate corresponding to the number of channels, thus enabling adequate 
sampling in spite of a lower PRF. Blind ranges however (dark lines on ground) occur. 
(d) Use of multiple channels with PRI staggering and the consequent formation of a 
non-uniform grid for the received pulses, whereas avoiding blind ranges. 
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The rationale is closely related to the Displaced Phase Center 
Array (DPCA) technique [3],[4] and is illustrated in Fig. 2 (c). 
Multiple receivers allow gathering additional samples for each 
transmitted pulse. This achieves a decoupling of the sampling rate 
of the signal in azimuth from the PRF. Thus, a lower PRF can be 
used, while keeping a high sampling rate. The low PRF allows a 
wider unambiguous receive interval and thus a wider swath. The 
high sampling rate, in turn, allows the system to support a high 
azimuth resolution. In practice, as discussed in [3], this technique is 
very effective at improving the azimuth resolution at a given PRF. 
However, it may lead to unrealistically long antenna sizes (several 
tens of meters), if the required swath is too wide (a few hundreds of 
kilometers). In practice, very high resolution may be achieved, but 
at narrower swaths, e.g., 1 m resolution over 70 km for HRWS 
[20]. Moreover, this class of system typically employs frequency 
domain DBF techniques. This prevents a straightforward 
combination with the staggered PRI technique, which uses non-
uniform temporal sampling. 

Both of the aforementioned techniques present limitations. 
Single-channel staggered SAR has a limited azimuth resolution, 
whereas multichannel systems in azimuth show limited swath for 
realistic antenna sizes, and are constrained to operate with a 
constant PRF. The novel multichannel staggered SAR modes and 
processing algorithms – introduced in [21], [22], [23] – present the 
opportunity to overcome these limitations and combine the 
strengths of both systems. The resulting concept presents multiple 
elevation beams and PRI staggering on one hand and multiple 
channels in azimuth on the other (cf. Fig. 2 (d)). This allows HRWS 
system designs with the capability of outperforming systems using 
only one of the two techniques, achieving very demanding HRWS 
imaging requirements with a feasible antenna size. [22] provides a 
thorough description of the modeling and processing strategy for a 
quad-polarization reflector antenna system design example. This 
paper builds on it by discussing various further aspects of the 
methods. Firstly, a theoretical analysis for planar antenna systems, 
describing the required design changes, is provided. Additionally, 
an example of a reflector system design in single-pol is included for 
comparison. It also illustrates how in this less demanding scenario 
the resolution and swath width trade-off can be pushed even further, 
to reach an unprecedented 1 m azimuth resolution in a 500 km 
wide swath. Finally, a proof of concept of the method with reflector 
antennas is provided, based on measurement data acquired by an 
experimental ground-based multichannel radar system. It is 
interpolated to simulate a staggered acquisition and then 
reconstructed using the discussed techniques.  

A. Paper Structure 

The rest of this paper is organized into two parts, separating the 
material referring to reflector antennas and that related to planar 
ones. The analogy and interchangeability between these classes of 
antennas should, however, be kept in mind. Within Part I, Section II 
provides a brief summary of the azimuth resampling techniques 
discussed in [22]. Section III provides an additional example of a 
reflector system design, this time in single polarization. Section IV 
contains material on an experiment-based proof of concept, 
employing a reflector antenna with a multichannel feed in X-band. 
Part II starts with Section V, which turns focus to a theoretical 
analysis of planar antenna systems. It examines the changes in the 

sampling configuration introduced by this class of antenna, as well 
as how the design should be adapted to reflect their physical 
characteristics. Section VI provides a design example illustrating 
the discussed aspects. Last, the content of both parts is reviewed 
and summarized in Section VII, which also contains a comparison 
between the two classes of antennas in the context of multichannel 
staggered SAR systems. 

PART I: REFLECTOR ANTENNA SYSTEMS 

II. MULTICHANNEL STAGGERED SAR AZIMUTH 
BEAMFORMING: VIRTUAL BEAM SYNTHESIS TECHNIQUES 
Multichannel Staggered SAR systems acquire data which are 

sampled in azimuth in a periodically non-uniform manner (due to 
the PRI staggering). The acquisition takes place over multiple 
channels with, as a rule, different antenna patterns. A resampling 
step is therefore necessary to convert from this input (multichannel) 
grid to a uniform one. This output grid should moreover be 
equivalent to the one acquired by a single-channel system sampled 
at a higher rate, with a stable azimuth pattern, so that it can be 
further processed using conventional SAR processing algorithms. 

 The resampling problem is illustrated schematically in Fig. 3. 
The sampling instants of the periodically non-uniform staggered 
SAR signal (assumed to have ����  samples per cycle, after 
accounting for Tx-induced blockage at a specific range) is 
represented by the arrows in the first plot. The system has ��� 
azimuth channels with known antenna patterns, and the triangles 
with different colors represent the samples from each of them. 
Given the knowledge of the sampling and the antenna patterns, the 
task is to determine the weights to resample the signal to a uniform 
grid. Specifically, an optimization criterion for the weights needs to 
be defined. This is implemented so that the samples from �� pulses 
over all ��� channels should be combined to approximate each of 
the ��� ⋅ 	����  samples of a regular grid spanning the cycle 

duration. The solution is implemented as a combination of a digital 
filter3 over the pulses and a conventional complex-weight 
beamformer4 over the channels at each pulse position, combining ���� =	�� ⋅ ��� input samples for the estimation of each output 
sample. The resampled output is approximately5 regularly sampled 
at a rate of �������� = ��� ⋅ ������������, where ������������ is the 
effective average sampling rate6 of the pulses, considering 
blockage. This means that both the regularization of the sample 
instants and the increase of the sampling rate by a factor equal to 
                                                           

3 The filter structure is a convolution over a finite window without feedback 
from previous outputs. This is similar to a Finite Impulse Response (FIR) except 
for the non-uniform sampling instants. 

4 The general framework of DBF in complex domain is assumed. As analyzed 
in [22], an alternative is an architecture with time varying real-weighted 
beamforming coefficients applied to the intermediate frequency (IF) data streams, 
coupled with a modified quadrature demodulation. It leads to equivalent results and 
has the potential of saving resources in an actual implementation, at least for planar 
antennas.  

5 Note that the resampling is optimal in the sense of the adopted criterion. 
Residual errors do, however, remain, meaning the output is not exactly regular. 

6 ������������is range-dependent according to the timing of the PRI sequence, as the 
number of non-blocked pulses ���� changes. This means that an interpolation 
stage to a common sampling rate across the swath is necessary [22]. 

��(��) = ���[�](��) ⋅ exp(−� ⋅ 2 ⋅ � ⋅ ���[��[�]] ⋅ �� 	), (1) 
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the number of channels are done simultaneously by the proposed 
processing framework.  

Fig. 3: Required resampling operation focusing on a cycle of pulses of duration ����. (a) Input grid composed of a set of ���� staggered PRI pulses received by 
an ��� channel configuration yielding in total  ���� ⋅ ��� samples per cycle; 
these samples are to be rearranged uniformly in the output grid, which is 
equivalent to a single channel system at a higher sampling rate. (b) Formation of a 
single sample, index �, of the output grid, which is derived from the combination 
of ���� input samples with complex weights. 

The Virtual Beam Synthesis (VBS) algorithm, explained in 
[22],[23] in detail, gives a solution to this problem. The reader is 
referred to [22] for an in-depth description of the technique 
(originally motivated by the properties of a reflector antenna) 
and a discussion of its implications for system design and 
performance. The purpose of this section is to summarize the 
main aspects of the method, serving as basis to the extension for 
planar antennas considered in Section V. 

The solution involves first modeling the inputs in the Doppler 
frequency �� domain. An extended array manifold vector �(��) 
of dimension ���� is formed to account both for the azimuth 
patterns ��(��), 1 ≤ � ≤ ���, and the recorded pulse time 
instants ���[�], 1 ≤ � ≤ ��. It is denoted as 
for 1 ≤ � ≤ ����, with  ��[�] = �(� − 1)	���	���� + 1 ��[�] = (� − 1)	%	���+1, 

(2) 

where ��� and %	denote the remainder and quotients of integer 
division, respectively. Note that the choice of the number of 
pulses �� to include in the manifold allows modeling arbitrary 
resampling strategies7. 

                                                           
7 In [35], a beam steering technique for a reflector with a multichannel feed is 

proposed for staggered SAR sample regularization. It can be considered a 
particular case of this formulation for �� = 1 ⇒ ���� 	= 	���, meaning a 

The next step is to model the desired output samples as a 
regular grid described by a set of ���� = ��� ⋅ ����  output 
patterns �����(�� , �). Due to the cyclical nature of the 
sampling, it suffices to describe one pattern for each sample 1 ≤ � ≤ ���� 	. The patterns may be written as �����(�� , 	�) = ����(��) ⋅ exp(−� ⋅ 2 ⋅ � ⋅ ����[�] ⋅ �� 	), 		 (3) 

where the uniformity of the grid is imposed by setting 

����[�] = � − 1��� ⋅ ������������ + ��,		 (4) 

with �� being a degree of freedom [22]. ����(��) is the desired 
common pattern of the equivalent single-channel system which 
the multichannel staggered SAR system seeks to emulate after 
the beamforming. A meaningful (physically implementable) 
choice for	����(��) is necessary for adequate performance. The 
sum pattern  

����(��) = 1���� ⋅���(��)���
��� ,		 (5) 

is the default choice for a reflector system and the case of planar 
arrays will be discussed in Section V. 

In the VBS method, the ����-element complex weight vector � is obtained by minimizing a cost function � ���������, 	��, ��(��)�, a fairly general case of which is  

�� = (1 − �) ⋅ �������� + � ⋅ �������� 	, (6) 

where ���� and ����  are normalization factors and � is an 
SNR-sensitivity parameter in the interval [0, 1]. It is chosen as 
part of the weight design to emphasize either  ���� = � ������(��) − �� ⋅ �(��)�� ��� ,����  (7) 

or 

���� = ∫ ��� ⋅ �(��)��	����� ⋅ � .	 (8) 

The first component ���� measures the quality of the goal 
pattern (regular grid) implementation using the weights8 � 
within a given bandwidth, meaning a low � leads to improved 
regularity and better ambiguity suppression. Conversely, ���� is 
a form of normalized SNR measurement with respect to white 
noise, and a higher �	improves the SNR scaling of the 
beamformer with respect to the inputs.  

                                                                                                     
single pulse is used for each output sample. The mapping between primary 
beam steering angle and secondary pattern phase shift is an indirect form of 
solving the weight problem, tackled here by optimization of a cost function. 

8 � or �[�] is here a complex weight vector of dimension ����, used for 
the implementation of a given output sample �, 1 ≤ � ≤ ����, in a cycle of 
the output grid. The two notations are used interchangeably, and the 
dependency on � is omitted whenever possible to simplify the formulas, but 
should be kept in mind. 

(a) 

(b) 
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The solution to the minimization of (6) [22], [25] is the non-
linear equation9 1 − ����� ⋅ ��� ⋅ � − ��[�]� + � ⋅ ���� ⋅ 
			��� ⋅ �� ⋅ �� ⋅ � − ��� ⋅ �� ⋅ ��� ⋅ ����� ⋅ �� ⋅ ��� = �,	 (9) 

where  

��[�] ≜ � �����∗ (�� , �) ⋅ �(��)	���  (10) 

is the cross-covariance between the goal pattern and the 
manifold and   �� ≜ � �(��) ⋅ �(��)�	��� 	 (11) 

is the manifold’s auto-covariance matrix. (9) can be solved 
numerically exploiting the closed form solutions for the 
particular cases in which �	 = 0 (leading to a linear system of 
equations with solution � = ���� ⋅ ��[�]) and �	 = 	1 (which 
leads to an eigenvector problem � ⋅ � = �� ⋅ �, with the scalar 
eigenvalue � representing the maximum ����) as first guesses. 

The most important quality measures of a given output grid 
are the achieved Mean Squared Error (MSE) in (7) and the SNR 
scaling with respect to the common pattern 	����. The latter may 
be defined as  

Φ��� = �∫ ��[�]� ⋅ �(��)��	���∫ �����������	��� ⋅ 1�[�]� ⋅ �[�]� ,	 (12) 

in which each term in the summation is proportional to the 
sample’s antenna pattern’s gain within the processed bandwidth. 
The summation implements an average over the output grid. The 
normalization to the mean gain of the common pattern allows 
this quantity to be interpreted as the SNR scaling in comparison 
to a single-channel system possessing exactly the pattern which 
the resampling seeks to approximate. 

III. SIMULATION RESULTS FOR REFLECTOR ANTENNA 
This section provides an example of a single-polarization 

multichannel staggered SAR mode aimed at a very fine 1.0 m 
azimuth resolution over a very wide 500 km swath in L-band. The 
adopted swath width is enough to provide a global coverage in less 
than 6 days. These represent very demanding HRWS requirements 
that currently cannot be achieved by any other known single-
satellite system concept with a feasible antenna size. The main 
image quality requirement guiding the design is to provide azimuth 
ambiguity-to-signal ratio (AASR), range ambiguity-to-signal ratio 
(RASR) and noise-equivalent sigma zero (NESZ) levels better than 
                                                           

9 The azimuth interpolation technique in  
[11],[18], has weight values proportional to the cross-correlation vector 

between output and input sampling instants and the inverse of the input grid 
auto-correlation matrix. This approach is conceptually analogous to the case �	 = 0 for a single-channel system in azimuth (��� = 1). The main difference 
is that in [11],[18] an analytical correlation model is used for a uniformly 
illuminated aperture to estimate the window length ���� = �� and the 
correlations involved, instead of using the pattern information as input. 

-25 dB.  Note that the spectral allocation standards [26] at L-band 
limit the pulse bandwidth to 85 MHz, meaning the maximum 
ground range resolution is about 4.5 m, for a minimum incidence 
angle of 25°. 

The performance analysis is thus presented in terms of these 
parameters. The AASR estimation follows the strategy in [27], 
based on the difference of the integral of the impulse responses 
of the reconstructed signal and that of an alias-free reference, 
simulated with uniform sampling over azimuth. The RASR 
estimation employs the integration of the 2D antenna patterns 
and follows the staggered-SAR range ambiguity model of [27], 
taking furthermore into account the increased sampling of the 
multichannel case. The average L-band backscatter model is that 
of [28]. The effect echoes from nearly normal incidence is 
addressed by showing, for each system, the range ambiguity 
levels both with and without their power contribution. A worst-
case analysis of the coherent (specular) [29] returns near nadir 
(cf. A.IV) is also provided in terms of the Nadir Return-to-Signal 
Ratio (NRSR). The relevance of this contribution is determined 
mostly by the antenna gain at nadir. Reflector systems, owing to 
their directivity, are thus less affected (the contribution may be 
noticeable for planar antennas, as will be discussed in Part II). 
Another relevant aspect in the case of staggered PRI is that the 
power of the nadir returns is smeared over azimuth, as the range 
bins affected by them change with slow time. This effect leads to 
a further attenuation of the power of range-ambiguous returns at 
a given range. Finally, the NESZ estimation follows the 
modeling of [30] for a reference system with the pattern ����(��) in azimuth. The result is degraded by the SNR scaling Φ��� 	(cf. (12)) with respect to that pattern. As will be shown, ���� is different for reflector and planar antenna systems.  

The reflector and feed design has the one presented in [15] as 
a starting point, adapted as described below. [22] shows a first 
example of a reflector system using the technique, but at quad-
pol and with less demanding performance requirements. The 
antenna system and the mode’s operational characteristics are 
described in TABLE I. The feed architecture in azimuth has 
doublets spaced by 0.6	� combined pairwise to form channels 
with 1.2	� spacing, and the number of azimuth channels is 
increased (in comparison to [15]) to 9, to cover the higher 
Doppler bandwidth required by the azimuth resolution. 

The PRI sequence shows a linear PRI variation according to ���� = ���� − � ⋅ Δ (13) 

for 0 ≤ � ≤ ���� − 1 (and then repeated cyclically). It is designed 
following the fast PRI variation criterion of [11]. It ensures that, at 
any given range within the swath, two consecutive samples of a 
given azimuth channel are never lost. Note that, in the multichannel 
case, whenever a blockage event due to Tx occurs, the samples from 
all azimuth receive channels are lost at the same time. 

The patterns (directivity) are simulated using the GRASP 
software [31]. Patch feed antennas with radiation patterns following 
the model of [32] are assumed. The effect of blockage of the 
incident waves over the reflector’s surface due to the feed (its 
“shadow”) is taken into account.  
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TABLE I 
SINGLE-POL SIMULATION SCENARIO PARAMETERS 

Platform and Swath Parameters 

Quantity Symbol Value 
Orbit height ℎ����� 800 km 
Swath width on ground ������� 500 km 

Swath minimum/maximum                 
(off-nadir) look angle ����/���� 20.3°  / 43.1° 

Reflector and Feed Parameters 

Quantity Symbol Value 
Diameter � 15.0 m 
Focal length � 15.0 m 
Feed offset in elevation ���� 10.0 m 
Center frequency �� 1.2575 GHz 
Number of channels in 
elevation/azimuth ���/��� 55 / 9 

Channel spacing in elevation/azimuth ���/��� 0.6 � / 1.2 � 
Elevation tilt angle ����� 32.5° 
Feed losses ��	 2.0 dB 
Feed dimensions (elevation, azimuth) (���, ���) (7.88, 2.57) m 

Pulse and Tx/Rx Hardware Parameters 

Quantity Symbol Value 
Average PRF (both polarizations) ��� 2120 Hz 
Initial PRI ���� 503.5 s 
PRI sequence step (between pulses of 
same polarization) Δ -2.36 s 

PRI sequence length ���� 28 
Pulse duty cycle ��� 6% 
Pulse (chirp) bandwidth ������� 85 MHz 
Peak transmit power of a Tx/Rx 
Module ��� 87.0 W 

Average transmit power ���� 2583.90 W 
System noise temperature ������ 649 K 

Transmitted polarizations - V 

Processing Parameters 

Quantity Symbol Value 

Goal azimuth resolution ��� 1 m 
Processed Doppler bandwidth ������ 7504 Hz 
Number of simultaneous elevation 
beams ������ 	 5 

Elevation beamforming sidelobe 
constraint 20 ⋅ log��(����)   -36 dB 

Number of samples in azimuth            
beamformer window ���� 45 

SNR emphasis parameter � 0.5 

 The DBF processing of the data starts over the elevation 
channels. The goal is to form a high gain SCORE beam for each 
range. The sidelobe-constrained beamformer described in 
Appendix A is employed to combine 9 elevation elements at a 
time so that the sidelobes within the area generating range-
ambiguous returns are 36 dB below the main beam. 

Following the elevation beamforming, azimuth beamforming 
according to the strategy of Section II is applied, with � = 0.5. In 
light of the large number of azimuth channels, the pulse vicinity 
of the extended manifold was limited to 5 pulses, so that     ���� = 5 ⋅ 9 = 45 input samples are used to form each output 
sample. 

The performance in terms of the AASR, RASR and NESZ is 
depicted over the swath in Fig. 4, alongside the azimuth resolution.  

Fig. 4: Key performance parameters over swath for single-pol high-resolution 
mode of reflector system: (a) AASR, (b) RASR with (red) and without  (blue) the 
contribution of nadir returns, (c) NESZ, (d) azimuth resolution and (e) NRSR both 
with respect to NESZ (noise floor) and average ��, below -30 dB in this case. 

In this example, the azimuth resolution is better than 0.8 
m over the swath. The goal of 1.0 m is achieved, with 
margin for spectral weighting. The AASR is better than -
25.0 dB and the RASR better than -31.0 dB. The RASR 
levels with and without the contribution of nadir returns are 
seen to be virtually the same. This is due to the reflector 
pattern’s directivity (very low gain at nadir) combined with 
the attenuation induced by the staggering. The NESZ is 
better than -25.0 dB. The NRSR (cf. A.IV) describes the 
power of worst-case coherent nadir returns with respect to 
the signal, both at the NESZ (noise floor) and the average 
backscatter level. Since both levels are under -30 dB, no 
artifacts in the image are expected.  

IV. EXPERIMENTAL PROOF OF CONCEPT WITH REFLECTOR 
ANTENNA SYSTEM 

In the interest of allowing experimental demonstrations of novel 
DBF techniques, an experimental multichannel radar system was 
developed and built at the Microwaves and Radar Institute of DLR 
[33],[34]. The system shows great flexibility and also allows the 

(a)            (b) 

(c)           (d) 

           (e) 
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usage of reflector antennas for DBF [35]. In this section, a proof of 
concept of the beamforming technique of Section II using this 
system is presented. Section IV.A describes the system parameters 
and the experimental setup. Section IV.B explains the data 
processing chain and the adopted calibration procedures. Finally, 
Section IV.C presents and discusses the results. 

A. The Ground-Based Demonstrator and the Experimental Setup 
The experimental data take was performed with a reflector 

antenna configuration. The system employs an X-band reflector 
antenna with 8 azimuth feed elements on receive, whereas a 
separate horn antenna is used for transmit. The most important 
system parameters are summarized in TABLE II.  

TABLE II 
DEMONSTRATOR SYSTEM AND EXPERIMENT PARAMETERS 

Antenna, Pulse and Tx/Rx Hardware Parameters 

Quantity Symbol Value 
Center frequency �� 9.58 GHz 
Chirp bandwidth ������� 300 MHz 
Intermediate center frequency ��� 205 MHz 
Peak output power ��� 18 dBm 
ADC sampling rate (real data) �� 1 GS/s 
ADC resolution ���� 10 bit 
Elliptical reflector major axis ����  1.0 m 
Elliptical reflector minor axis ���� 0.7 m 
Reflector focal length ���� 0.5 m 
Reflector offset in elevation ���� 0.35 m 
Feed element (horn antenna) spacing ��� 4.4 cm 
Pulse length �� 10.0 s 
System PRF ��� 10.0 Hz 
Transmitted/Received polarization − VV 
No. of channels in elevation/azimuth ���/��� 1 / 8 

Target/Platform Parameters 

Quantity Symbol Value 

Antenna height above ground ℎ��� 6.34 m 
Platform (rail car) velocity ����� 8.5 cm/s 
Calibration corner’s                         
ground / slant range ��, �� 9.0 m / 11.0 m 

As seen in Fig. 5 (a), the imaged scene consists of a 
calibration corner reflector, plus additional targets (a formation 
of four other corner reflectors and a metal wire fence). As visible 
in more detail in Fig. 5 (b), the antennas were mounted atop a 
6.34 m mast and carried by a rail car, propelled by a step motor 
at the constant velocity of 8.5 cm/s. Fig. 5 (c) shows the 
calibration corner reflector placed at the end of the sandbox. In 
the image, the position of the corner is marked to improve 
visibility.  

Fig. 5 (d) shows a close-up of the Rx reflector with its 
multichannel feed (the tripod is however not part of the 
experimental configuration). The feed system itself with the 8 
horn antennas is visible in Fig. 5 (e). Its outputs are individually 
digitized, constituting 8 channels over azimuth. Finally, Fig. 5 (f) 
shows the configuration used for the additional target area, with 
four corner reflectors in formation and a metal wire fence. 

Fig. 5: Illustration of experimental setup. (a) Schematic representation of the 
experiment. The radar system is mounted atop a mast of 6.34 m height on a rail car, 
which also carries the radar’s electronics. The system has 8 channels in azimuth that 
illuminate different Doppler regions. The scene consists basically of a calibration 
corner on the sandbox – a target which is present for antenna pattern determination – 
and an additional target area. (b) Close-up of the rail car and the radar system. (c) The 
calibration corner mounted at the edge of the sandbox. (d) Rx reflector antenna and its 
feed. (e) Close-up of the feed, which consists of 8 horn antennas of 4.4 cm. (f) 
Additional target area with a formation of 4 corner reflectors and a metal wire fence. 

As seen in TABLE III, the data were acquired at the relatively high 
sampling rate of 10.0 Hz (the Doppler bandwidth for each feed 
channel is around 1.0 Hz – cf. Fig. 7 (c)) and at uniform sampling. 
This is intended to allow, in a first step, performing a characterization 
of the antenna patterns from the calibration corner’s response, as 
detailed in Section IV.B. The pattern information derived from this 
step is used to compensate phase imbalances between the channels. It 
is also employed to define the system’s array manifold (��(��) in 
(1)), necessary for the second step, the simulation of a multichannel 
staggered SAR acquisition and reconstruction of the resulting data, 
described in the next section. 

 

         (b)                                                             (c) 

             (e)                                                         (f) 

(d) 

(a) 
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TABLE III 
PROOF OF CONCEPT PARAMETERS 

Staggered PRI Sequence Parameters  
(used for interpolation/reconstruction) 

Quantity Symbol Value 

Average PRF ��� 1.25 Hz 
Initial PRI ���� 0.891 s 
PRI sequence step Δ -5.31 ms 
Sequence length ���� 33 

Grid, Reconstruction and Processing Parameters 

Quantity Symbol Value 

Output sampling rate ��� 10.0 Hz 
Number of samples in azimuth           
beamformer window ���� 56 

SNR emphasis parameter � 0.1 / 0.5 
Maximum phase center shift from 
input to output grid ����� 3.63 cm 

Processed Doppler bandwidth ������ 3.4 Hz 

B. Signal Processing and Calibration 

The signal processing of the data can be summarized into four 
basic steps: 

 Pre-processing: conversion of the data of each of the 
channels to complex format and range compression. The pre-
processed data are still not azimuth compressed and are used 
as input to the antenna pattern analysis. 

 Azimuth Antenna Pattern Analysis: the phase and amplitude 
of the calibration corner’s range compressed response is used 
to estimate the antenna pattern of each of the feed elements. 

 Azimuth Calibration: phase-correction of the data, using the 
output of the antenna pattern analysis. The data after 
calibration are ready to be azimuth-compressed or 
interpolated to simulate the staggered acquisition.  

 Simulation of a Staggered SAR Acquisition: the calibrated 
data (uniformly sampled at a high rate) are interpolated and 
sampled to match a non-uniform grid that corresponds to the 
staggered PRI sequence in TABLE III (mean sampling rate 
of 1.25 Hz). Afterwards, all 8 channels are used as input to 
the beamforming, so that the original 10.0 Hz sampling is 
restored. The recovered data are then compared to the sum 
over the azimuth channels (which has the pattern ����(��) 
of (5)) of the original data, sampled at 10.0 Hz. 

The processing chain, starting from the raw data, is detailed in 
Fig. 6. The pre-processing of the channels (real data sampled at 1 
GS/s) starts with down-conversion from the intermediate 
frequency ��� = 205	MHz to baseband and conversion to 
complex I/Q format. Next, the data are range compressed and a 
correction of the range delays induced by different paths (e.g. 
different cable lengths and microwave junctions) is performed 
(cf. [34] for more details on system calibration). A basic 

radiometric correction is then performed by compensating the 
range to the second power curve at each range bin. 

Next, the azimuth antenna pattern analysis by means of the 
calibration corner’s response is performed. The range 
compressed data of the corner reflector are used to determine the 
complex antenna patterns. The amplitude information is used to 
calculate the manifold for beamforming, whereas the phase 
information is used to form a correction that compensates the 
phase differences between the channels, which is the goal of the 
azimuth calibration step. This follows the assumption that 
ideally no phase differences are expected between the feed 
elements (cf. [22]). This stage yields the calibrated data, still not 
azimuth compressed and in the original uniform grid.  

Fig. 6: Block diagram detailing the raw data processing chain. The processing 
done on each azimuth channel independently is represented inside the dashed line 
box, and afterwards the various channels are combined for beamforming.  

The calibration corner response analysis and the resulting data-
based calibration procedure are detailed in Fig. 7. The plot in Fig. 
7 (a) shows the azimuth profiles (maximum over range, for each 
position of the platform) for the feed channels. These are color 
coded consistently with Fig. 5 (a) (e.g. the fore channel in brown 
and the aft in blue), as throughout the other plots in this paper. The 
first half of the image contains the corner formation, whereas the 
second half has the calibration corner as main feature. 

Fig. 7 (b) shows the range cell migration of the calibration 
corner in each of the channels (color-coded plots), compared to 
the ideal trajectory (dashed black line), i.e. �(���) = ������� ⋅ ��� − ������ + ���	, (14) 

where ���� is the target’s position in along-track. The platform 
velocity ����� and the corner’s slant range position10 �� are listed 
in TABLE II. A good match is observed, and moreover the effect 
of the different azimuth antenna patterns is clearly visible. Note 
that each feed element views the target at a given Doppler region 
with limited overlap between neighboring feed elements.   
                                                           

10 The value is estimated from the data, as the actual position of the phase 
center is expected to be over the reflector’s surface [39]. 

For each channel in azimuth (1 ≤ ��� ≤ 8)

Raw data Downconvertion/
Hilbert Transform

Range 
Compression

Range Delay/ 
Rad. Correction

Calibration
Corner 

Response 
Analysis

Estimated
Complex
Antenna
Patterns

Weight
Calculation� �

Azimuth Phase 
Correction

(Time+Doppler)

RCMC

Interpolation 
and decimationReconstruction

Summation 
over azimuth

channels

Amplitude

Phase

Calibrated data
(uniform grid)

@ 10.0 Hz

Non-uniform grid
@ ���=1.25 Hz

Reconstructed
image

@ 10.0 Hz

PRI 
Sequence

Sum reference
@ 10.0 Hz

Azimuth
Compression

(range-Doppler)

Reconstructed data
(uniform grid) @ 10.0 Hz



TAES-201700436 9

Fig. 7: Data-based calibration plots, color-coded as in Fig. 5 (a). (a) Profiles over 
azimuth position – at the maxima over range – of the feed channels. (b) Range 
cell migration (RCM) of the calibration corner’s maxima over range, showing the 
feed elements individually and a reference RCM in the nominal position of the 
target (black dashed line). (c) Magnitude of the patterns derived from the 
calibration corner’s response, with resampling to an azimuth Doppler frequency 
grid (cf. (15))), after low-pass filtering. The black line corresponds to the sum of 
all feed elements ����(��). (d) Azimuth phase correction derived from the phase 
expected from the geometry. (e) Low pass component of the phase correction 
(effect of the antenna patterns). (f) Remaining high-pass component, attributed to 
platform motion, namely the vibration of the mast holding the reflector antenna. 

Fig. 7 (c) shows the gain of the antenna patterns derived from 
the profiles. Interpolation of the response and low-pass filtering 
were applied to remove artifacts. The curve is resampled to an 
instantaneous Doppler frequency grid, which relates to the slow 
(along track) time ��� according to [1] 

��(���) = 2 ⋅ ������ ⋅ ����� ⋅ ��� − �����(���) , (15) 

where � is the wavelength. 

The black line shows the sum ����(��) of the patterns, 
assuming no phase difference between them. It has a combined 
bandwidth of circa 3 Hz. Each feed channel is independently 
normalized to its maximum after range compression. This causes 
the peaks of all patterns to be similar, even though the outermost 
elements are expected to show lower gains w.r.t. the central ones, 
due to defocusing. 

Fig. 7 (d) shows the unwrapped phase difference between the 
maximum of the corner’s response (over range) at each azimuth 
position and a reference phase. The latter is obtained from an 
ideal point-target response calculated from the geometry (the 
range corresponding to (14)), mapped to an azimuth angle grid. 
This phase has two noteworthy components. First, the phase 
imposed by the uncompensated azimuth antenna pattern of the ��� feed element ��������(�, ���), where ��� is the azimuth 
angle. Second, a phase arising from non-compensated cross-
track motion of the platform Δ�����(���). One may write for the ��� feed element 

��(���) = ����������, ���(���)� + 4 ⋅ �� ⋅ Δ�(���). (16) 

These contributions are separated using the following approach. 
The low-pass component11 seen in Fig. 7 (d) is attributed to the 
antenna patterns12, whereas the remaining high-pass component in 
Fig. 7 (e) is attributed to platform motion. In fact, closer analysis 
reveals that the phase oscillation in Fig. 7 (e) occurs in phase 
between feed channels and is hence feed element independent, as 
expected. Moreover, the peak amplitude corresponds to circa 2.0 
mm. Spectral analysis of the oscillations by means of a power 
spectral density estimation shows a main component at a 
frequency of around 1.0 Hz. As a reference, the fundamental 
frequency of a simple pendulum of length � is given by 

�� =� 12 ⋅ � ⋅ ���, (17) 

where � is the acceleration due to Earth gravity. For a pendulum 
with � = ℎ��� = 6.34 m (corresponding to the nominal mast 
length), �� = 1.2 Hz. The results are thus considered to be 
consistent with small periodical oscillations of the mast holding 
the reflector during the motion of the rail car. These are due to, 
e.g., step motor vibration. The small amplitude is moreover 
consistent with the nearly wind-free meteorological conditions 
during the data take. 

As depicted in Fig. 6, after range cell migration (RCMC), the 
phase calibration of the feed channel’s data is performed. It 
comprises two steps in different domains, to reflect the nature of 
the two main error sources mentioned above. The correction of 
the time-dependent motion contribution (high pass component in 
Fig. 7 (e), an estimate of the term proportional to Δ�(���) in 
(16)) is done in time domain. The azimuth-angle dependent 
antenna contribution (low pass component in Fig. 7 (d), which 
estimates ����������, ���(���)�, is done in frequency domain. 
This explores the relation between Doppler-frequency and 
squint, and allows performing the correction for all targets 
simultaneously. In the end of the process, the calibrated data 
                                                           

11 A rectangular low-pass filter was applied with an empirically determined 
cut-off frequency of 0.6 Hz to separate the two components in this case. 

12In [31], an anechoic chamber measurement of the individual feed 
element’s antenna patterns in amplitude and phase is documented. The 
patterns measured at that time do not directly apply to the current setup, since 
the system hardware was dismounted and rearranged. Nonetheless, the results 
shown there bear great resemblance to Fig. 6. In the latter, the maxima of each 
channel are however equalized by a normalization step after range 
compression of the individual channels. 

(a)        (b) 

(c)        (d) 

(e)        (f) 
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show the amplitude patterns in Fig. 7 (c) and nearly no phase 
distortions between the feed elements. This corresponds to the 
nominal behavior of a reflector system.  

These data are used as input to the simulation of a staggered 
SAR acquisition. The calibrated data, sampled at 10.0 Hz, is zero-
padded in frequency domain to an even higher sampling rate 
(factor 128) and then linear interpolation in time domain is 
applied to simulate a staggered PRI acquisition at the sampling 
instants of the PRI sequence described in TABLE III (a 
periodically non-uniform grid). In this geometry, staggering of the 
PRI to avoid blind ranges is not necessary; therefore, a scaled 
version of a sequence derived for a spaceborne geometry is 
used13. The 33 PRI sequence is scaled here to a mean PRF of 1.25 
Hz. After reconstruction (using the beamforming algorithm in 
Section II) with the 8 channels, the initial sampling of 10.0 Hz is 
restored and directly compared to the original data. As indicated 
in Fig. 6, this step is done individually for each channel. 

The calibrated data are also used to create a reference dataset 
by summing up over the channels. These data are regularly 
sampled at 10.0 Hz with an azimuth antenna pattern described by ����(��) and are referred to as the sum reference (cf. Fig. 6). 
This is a meaningful reference since it represents the ideal output 
of the reconstruction. The reconstruction process is the 
beamforming from Section II. The results are addressed in detail 
in Section IV.C. As seen in Fig. 6, comparison takes place after 
azimuth compression with a classic range-Doppler processor [1]. 

C. Results 

The reconstruction of the regular grid data sampled at ��� ⋅ ��� = 10.0	Hz requires the combination of all channels 
over a window of several pulses (cf. Fig. 3). Parameters of the 
input and output grids, as well as the reconstruction algorithm’s 
parameters (cf. Section II) are summarized in TABLE III.  

The weights are calculated using the pattern information seen in 
Fig. 7 (c) as ��(��), 1 ≤ � ≤ ���. The phase center positions, 
are obtained from the PRI sequence parameters. The black curve 
in the same figure is ����(��), adopted as �������(��). We 
choose ���� = 56, but consider two scenarios for the choice of 
the sensitivity parameter �, namely 0.1 and 0.5. The goal is to 
compare the results with a relatively low and a relatively high 
SNR emphasis, to better illustrate the trade-offs involved. The 
results are summarized in Fig. 8. Fig. 8 (a) shows the impulse 
responses for the two reconstructed images (� = 0.1	and � = 0.5) and the sum reference. The impulse responses are 
stable around the main target position but show differences in the 
sidelobe region, both with respect to the reference and to each 
other. It should be pointed out that the effect of resampling errors 
due to the imperfect goal pattern implementation (cf. [22] for a 
more detailed discussion) is twofold: On the one hand, the 
residual “non-regularity” due to phase center position errors 
(meaning the output grid is not exactly uniform) leads to residual 
ambiguities. Their levels (which can be estimated from the 
                                                           

13 The example is chosen from a HRWS system design in [21], [22]. There, 
the design procedure of  

[11] is applied to cover a 350 km swath with 3 m resolution at a mean PRF 
of 2700 Hz. 

difference to the reference) are, however, seen to be small. On 
the other hand, the deviations of each output sample’s pattern 
from ����(��) mean that also the average antenna pattern is not 
exactly that of the reference. This is not a cause of aliasing per 
se, but it means that the reconstructed data have a different 
spectral weighting then the reference. This results in a change of 
the shape of the impulse response as a whole. Fig. 8 (b) is a 
zoom of the main beam showing that this effect is small. All 
profiles achieve a 3 dB resolution of 2.5 cm.  

Fig. 8: Images after reconstruction and azimuth compression. (a) Calibration 
corner’s azimuth profile after compression, comparing the result of the two sets of 
reconstruction weights with the sum reference. (b) Zoom of the same impulse 
responses to highlight the fine 2.5 cm resolution achieved. (c) Result of simply 
azimuth compressing the non-uniformly sampled data (low quality reference). (d) 
Image of the sum reference channel at the uniform grid with 10.0 Hz sampling 
(upper quality bound). (e) Reconstructed image obtained with the low SNR 
emphasis set of weights (�	 = 	0.1) (f) Zoom around the calibration corner 
reflector for the high SNR emphasis set of weights (�	 = 	0.5). (g) Magnitude 
squared difference between the reconstructed image with � = 0.1 and the sum 
reference. (h) Magnitude squared difference to the reference for the case � = 0.5. 

        (c)                                         (d) 

        (g)                                           (h) 

        (e)                                           (f) 

        (a)                                         (b) 
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Fig. 8 (c) shows the result of azimuth compressing the sum 
over the feed channels of the non-uniformly sampled data. The 
result is highly ambiguous. The approach is equivalent to 
ignoring the non-uniformity and is not a meaningful processing 
strategy. It is, nonetheless, intended as a lower quality bound, to 
highlight the importance of the resampling. Fig. 8 (d) in turn 
shows the upper quality bound, i.e. the sum reference of Fig. 
6(corresponding to perfect reconstruction). The azimuth position 
axis has its origin at the position of the calibration corner. 

The corner constellation is visible in the azimuth region                  
[-15, -10] m. The narrow elevation pattern is also clearly 
observable. It is a consequence of the usage of a single element 
of the feed array in elevation, and causes the attenuation of the 
response of the corner in near range. Fig. 8 (e) is the 
reconstructed image with � = 0.1, showing in general great 
similarity to the reference. The effect of the sidelobe distortions 
is visible as “clutter”, in the region with magnitude below                
-30 dB. Fig. 8 (f) shows a zoom around the calibration corner’s 
response for the image reconstructed with � = 0.5. As was the 
case in Fig. 8 (a), no major image artifacts are observed.  

To better illustrate the residual reconstruction errors, Fig. 8 (g) 
and Fig. 8 (h) show the squared magnitude of the difference 
between the reconstructed and reference images, respectively for � = 0.1	and � = 0.5. The shown area is again a zoom around 
the calibration corner. The sidelobe distortions are visible at 
peaks below -20 dB and in most regions the error level lies 
below -25 dB, a level expected due to the limited accuracy of the 
radar system setup and calibration. All images were normalized 
to their respective maximum magnitude. 

Reconstruction with both � = 0.1	and � = 0.5 showed 
similar results, which is interesting as an indication that the 
increased SNR emphasis does not severely degrade the 
ambiguity suppression. The main difference between the two 
sets of weights and motivation for the mixed form of the cost-
function (6) is however the achieved SNR scaling Φ���               
(cf. (12)). In the case of � = 0.1, Φ��� =	−3.9 dB; whereas for � = 0.5, Φ��� =	−0.9 dB. In the latter case, the very high SNR 
of the data did not allow this considerable difference of the 
achieved SNR scaling to be observed. Therefore, to better 
illustrate the noise behavior of the processing strategies, a final 
case study is explained, employing the addition of synthetic 
white noise.  

As indicated in Fig. 9 (a), noise was added to the interpolated 
irregularly sampled data before the azimuth beamforming and 
compression (compare to block diagram in Fig. 6). The level is 
intended to establish a noise floor of around -30 dB. The noisy 
data are reconstructed with the two sets of weights, leading to 
two different reconstructed images and the achieved noise levels 
are analyzed in the further plots of Fig. 9. All the analysis is done 
before performing the azimuth compression, in order to 
emphasize the impact on the output patterns, without masking 
due to posterior filtering steps. Fig. 9 (b) shows the profile of the 
calibration corner of the  first reconstructed image, i.e., with the 
low SNR emphasis set of weights (� = 0.1), against 
instantaneous Doppler.  

 Fig. 9: Analysis of noise scaling properties of reconstruction. (a) Block diagram 
for the performed analysis, indicating the addition of synthetic white noise 
before the reconstruction to compare the scaling of the two set of weights, 
leading to two reconstructed images. The reference formed by summing the 
channels in the irregular grid is provided as a visual aid for the profiles to be 
shown. (b) Profile of the calibration corner after reconstruction for the low SNR 
emphasis set of weights (� = 0.1, corresponding to the first reconstructed image) 
plotted against instantaneous Doppler, resembling the sum pattern. (c) Profile of 
the calibration corner after reconstruction for the higher SNR emphasis set of 
weights (� = 0.5, corresponding to the second reconstructed image).  (d) First 
reconstructed image, before azimuth compression, including an indication of the 
“noise-only” area used for variance estimation to access noise levels (black 
dashed line box). (e) Second reconstructed image, also before azimuth 
compression. 

The reference shown is derived from the non-uniformly 
sampled data by summing over the channels and intended as a 
visual aid. Both profiles are normalized to their respective mean 
levels within the processed bandwidth (highlighted by the 
vertical dashed lines) and resemble the sum pattern ����(��), as 
expected. Fig. 9 (c) shows the same profile for the high SNR 
emphasis set of weights (� = 0.5), and the reference is repeated. 
The second profile is visibly less contaminated by noise. Fig. 9 
(d) shows the first reconstructed image, and the responses of the 
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four corner formation (left of plot), as well as the calibration 
corner (around the origin of the axis) are visible. 

The box (dashed black line) indicates a region which contains 
mostly noise. It is used for a variance estimation to validate the 
noise scaling prediction. Fig. 9 (e) shows the second 
reconstructed image. It is seen to show a lower noise floor, due 
to the higher SNR emphasis of the weights. To quantify the 
improvement, the variance of the images in the region 
highlighted in Fig. 9 (d),(e) was estimated and compared. The 
ratio of the variances between Fig. 9 (d) and Fig. 9 (e) was found 
to be 3.2 dB, which validates the predicted difference in Φ���. 

PART II: PLANAR ANTENNA SYSTEMS 

V. MULTICHANNEL STAGGERED SAR WITH                              
PLANAR DIRECT-RADIATING ARRAYS 

The primary beam steering technique in [36] clearly requires 
the usage of a reflector antenna. Interestingly, even though 
motivated by the former one, the azimuth resampling strategy of 
Section II does not. Knowledge of the array manifold vector is 
assumed, but no special structure is imposed on it, meaning the 
application can be readily extended to non-reflector antennas. In 
particular, planar direct-radiating antenna systems, so far the 
default in radar satellite technology, represent a natural candidate. 
Successful application of the technique, however, requires proper 
choice of the goal patterns. In fact, the optimum approximation is 
not necessarily a good one, if the desired patterns are poorly 
chosen, in the sense of not being realizable. In this context, an 
analysis of the phase center resampling capabilities of planar 
systems is desirable to provide a better understanding of how 
realizable a set of patterns of the form in (3) is. The system is 
assumed to be a phased array (common antenna for Tx and Rx) 
with multiple independently digitized channels on receive in both 
elevation and azimuth. The multiple elevation elements allow the 
implementation of SCORE with multiple elevation beams 
[15],[16]. Multiple azimuth elements are required to allow the 
application of the resampling strategy of Section II.   

A fundamental difference which affects the manifold extension 
discussed in Section II is the increased influence of the geometry 
for planar arrays. In the case of reflectors, all physical channels 
(described by the patterns ��(��) in (1) have the same phase 
center, whereas for planar arrays each channel shows a distinct 
phase center position. This means that in (1) the phase ramp 
defining the input sample position is also influenced by the 
array’s geometry. Temporal and spatial sampling are thus 
combined. In contrast, for reflector systems, the relative position 
between samples is determined exclusively by ���[�]. This is in 
fact exploited as part of the VBS method formulation (cf. Section 
II) by using different pulses as input to the beamformer (�� > 1) 
in order to provide a phase center diversity that the receive 
channels alone do not possess in the reflector case. In contrast, the 
planar antenna system’s channels already show a variety of phase 
center positions, corresponding to the position of each element. 
Therefore, adding additional pulses to the extended manifold has 
a smaller impact with respect to the resampling, even though the 
extension remains possible and to some extent desirable. 

As shown in Appendix B, a given phase center position ��� 	within the array is only achievable if the weights given to the 
elements are Hermitian-symmetric with respect to that point. 
Since the array is finite and sampled at the element positions, this 
narrows down the possible phase centers considerably. Namely, if 
an odd number of elements is taken (including the trivial case of 
one element), the possible phase centers coincide with the 
element positions. If an even number of elements is taken instead, 
they coincide with the positions in-between adjacent elements. In 
any case, the achievable phase centers are the geometrical centers 
of the array and of any sub-arrays contained therein. Any other 
positions cannot be exactly obtained over the whole set of angles.  

Moreover, the regularization of the samples requires not only 
that several phase centers – forming the regular grid – be obtained 
(����[�] phase ramp component in (3)). The patterns are 
furthermore required to remain stable enough across the grid, for 
the output to be equivalent to a single channel (����(��) 
component in (3)). In other words, it is not enough to obtain the 
different phase centers if these are subject to different amplitude 
modulations (denoted �(���) in Appendix B) for each position in 
the output grid.  

Note that, in the reflector case, the resampling algorithm is able 
to modify the phase centers continuously within certain bounds, 
while maintaining stable amplitude. This is achieved by steering 
of the primary beams. In contrast, in the planar case, the choice of 
the output phase centers is achieved by directly activating 
portions of the azimuth aperture. Therefore, planar systems show 
an inherent discretization of the achievable phase centers, and the 
same can be said of the available amplitude modulations, which 
are not stable over combinations with a different number of 
elements. This means that this class of systems is subject to 
limitations with respect to the capability of positioning the phase 
centers under the stable amplitude constraint.  

To achieve the desired pattern stability, a fixed number of 
elements should be activated. This can be achieved by designing 
the azimuth antenna so that the combination of an integer number 
of neighboring elements yields the aperture size required by the 
resolution and then setting ����(��) = ��������(��), the pattern 
of this sub-set of the antenna array elements. This will lead the 
algorithm to always combine this fixed number of elements, but 
to choose the combination with a geometric center (determined in 
this case by both array geometry and pulse sampling) closest to 
the desired phase center (����[�] in (3)). The length of the active 
aperture is thus set, but the maximum extent of the phase center 
shift remains a function of the total antenna size. The granularity 
or “resolution” of the phase center shift is in turn determined by 
the inter-element spacing (alongside the PRF, when �� > 1 and 
several pulses are used). As before, the mean PRF still defines the 
maximum gap size and thus the maximum required phase center 
shift.  

Clearly, a better performance is expected for higher PRFs and a 
finer division of the aperture through a larger number of elements, 
but the more complex interdependency between geometry and 
PRI sequence should be considered in the design. A joint design 
of the antenna (in particular the element positions) and the PRI 
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sequence14 is key to limit the required shifts and ensure good 
resampling performance. A possible approach is to fix the antenna 
size and choose the lowest possible mean PRI and number of 
elements which lead the shifts to be small enough to achieve the 
required performance level.  

Regarding the choice of beamforming parameters, the 
approach of combining a smaller number of pulses than in the 
reflector case is favored. The reason is that the manifold extension 
bears the possible disadvantage of reducing the signal’s SNR (cf. 
[22]). Moreover, even though some level of SNR emphasis 
(� > 0	in (6),(9)) can still be applied, the solution that maximizes 
the SNR becomes namely the addition of all array elements ����(��) [25]. It shows a very distinct amplitude modulation (cf. 
(31)) in comparison to e.g. the single-element pattern, and cannot 
be realized in phase center positions deviating strongly from the 
geometrical center of the array. In conclusion, a limited success of 
the SNR-MSE compromise is expected in this case. Some SNR 
gain is nevertheless possible with moderately low levels of �, 
leaving the control of the baseline decorrelation effect in the 
extended manifold to the aforementioned restriction in the 
number of pulses �� used as input.  

The main differences in the design guidelines with respect to 
the reflector case can be summarized as: 
 The common pattern ����(��) should be the pattern ��������(��)	of the combination of a sub-set of the antenna 

array elements. A single element is the simplest case, but in 
general a combination of several neighboring elements is 
necessary. ��������(��) must achieve the Doppler bandwidth 
required by the resolution and defines the length of the active 
aperture. 

 The phase center deviations required by the resampling 
should be minimized by means of the joint design of the 
azimuth antenna and the PRI sequence. The total antenna 
size and the number of azimuth channels should be chosen 
under the constraint that the combination of an integer 
number of neighboring elements yields the active aperture 
length. For instance, the total antenna length can be fixed and 
then ��� set to the smallest number of channels which yields 
appropriate performance, using for each geometrical 
configuration a favorable mean PRI.  

 The number of pulses �� in the input sample window should 
be reduced (thus limiting ���� =	�� ⋅ 	��� and improving 
SNR performance) and a small emphasis � =� 0 set, to 
improve ambiguity suppression. 

This design approach will be illustrated next in Section VI.  

VI. SIMULATION RESULTS FOR PLANAR ANTENNA  

This section illustrates the design approach described in Section V 
with an example of a single-pol multichannel staggered SAR mode. 
The aim is a 1.5 m azimuth resolution over a 400 km swath, still 
enough to provide a global coverage in 7 days. As in Section III, 
AASR, RASR and NESZ levels are required to be better than -25 dB. 
                                                           

14 The fast PRI variation criterion is still applied in this case. The joint 
design means in this context changing the sequence design input parameters in 
conjunction with the antenna characteristics.  

The parameters for the planar system are summarized in 
TABLE IV. As pointed out in Section V, to assure an adequate 
performance, the design of the azimuth antenna and the PRI 
sequence must be done simultaneously. In this case, to achieve the 
resolution of 1.5 m, an antenna of length 3.0 m in azimuth is 
considered as the sub-set which needs to be activated for each 
channel, thus determining ����(��). The total antenna length was 
chosen to be 15.0 m, due to gain considerations.  

TABLE IV 
PLANAR SINGLE-POL SIMULATION SCENARIO PARAMETERS 

Platform and Swath Parameters 

Quantity Symbol Value 

Orbit height ℎ����� 700 km 
Swath width on ground ������� 400 km 

Swath minimum/maximum                 
(off-nadir) look angle ����/���� 22.0°  / 42.8° 

Antenna Parameters 

Quantity Symbol Value 

Antenna height in elevation ℎ�� 6.0 m 
Antenna length in azimuth ��� 15.0 m 
Center frequency �� 1.2575 GHz 
Number of channels in 
elevation/azimuth ���/��� 36 / 15 

Channel spacing in elevation/azimuth ���/��� 0.7 � / 1.0 m 
Elevation tilt angle ����� 32.6° 
Antenna system losses ��	 2.0 dB 

Pulse and Tx/Rx Hardware Parameters 

Quantity Symbol Value 

Average PRF (both polarizations) ��� 2050 Hz 
Initial PRI ���� 520 s 
PRI sequence step (between pulses of 
same polarization) Δ -2.7 s 

PRI sequence length ���� 25 
Pulse duty cycle ��� 6% 
Pulse (chirp) bandwidth ������� 85 MHz 
Peak transmit power of a Transmit-
Receive Module ��� 32.0 W 

Average transmit power ���� 1040.0 W 
System noise temperature ������ 649 K 
Transmitted polarizations - V 

Processing Parameters 

Quantity Symbol Value 

Goal azimuth resolution ��� 1.5 m 
Processed bandwidth ������ 5343 Hz 
Number of simultaneous elevation 
beams ������	 4 

Elevation 
beamforming 
sidelobe 
constraints (look 
angle dependent,                 
cf. Fig. 15) 

Within swath � ∈ [����, ����] 20 ⋅ log��(����)   -33 dB 

Near-normal 
incidence (� ≤ 6°) -45 dB 

Number of samples in azimuth            
beamformer window ���� 45 

SNR emphasis parameter � 0.0 
Hamming window coefficient  (over 
azimuth) ����� 0.9 
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(a)            (b) 

The simplest case would then be the juxtaposition of five 3 m 
long panels, each of which corresponding to a channel. A 
channel spacing of 3.0 m leads however to relatively high phase 
center shifts, as illustrated in Fig. 10 (a), in which the minimum, 
mean and maximum (over the swath positions, which have 
different gaps due to pulse blockage) is portrayed as a function 
of the mean PRF. 

Fig. 10: Statistics over the swath’s ranges for the required phase center shifts 
as function of the mean PRF. The total antenna length is ��� =15.0 m. In (a) 
the antenna consists of 5 elements of 3.0 meter length, whereas in (b) 15 
elements of 1.0 m length are considered. (In this case the same effective 
aperture can be achieved by activating 3 elements). The mean PRF of 2050 Hz 
(vertical dashed line) is chosen to minimize the required phase center shifts 
with respect to the original sampling. 

In order to reduce these shifts while keeping a reasonably low 
mean PRF, the desired active aperture was split into 3 elements 
of 1.0 m. Given the antenna length of 15 m, this results in a 15 
channel system. Its maximum shifts are seen in Fig. 10 (b). Note 
that the active aperture is kept the same (3.0 m long), by keeping 
the same common pattern as design goal and, as a consequence, 
the algorithm will tend to activate 3 elements at a time, taken 
from the 15 available channels at each pulse position. An overlap 
between the activated apertures is made possible by the 
subdivision into 1.0 m elements. The effect is a finer sampling in 
terms of the original channel’s phase centers. It thus allows a 
reduction of the maximum shift for comparable mean PRFs, in 
comparison to the previous case. The adopted mean PRF of 2050 
Hz is indicated as a vertical black dashed line and is seen to lead 
to small shifts while being reasonably low. 

The beamforming in elevation consists of the use of a phase-
only pattern [37] on transmit and SCORE on receive. The 
elevation beamforming technique of Appendix A is used to 
simultaneously control the position of the maximum (following 
the echo on ground) and the sidelobes (limited to 33 dB below 
the main signal, within the swath) and thus improve the range 
ambiguity rejection. Especially low sidelobe levels are imposed 
at near-normal incidence (-45 dB w.r.t. main signal), to 
compensate for the increased reflectivity at nadir (cf. A.IV).  

The beamforming in azimuth also consists of phase-only patterns 
on transmit – in order to increase the beamwidth without 
sacrificing the transmitted power – whereas relying on the 
method of Section II on receive. Following the remarks on 
Section V, no SNR emphasis was used (�	 = 	0.0), but the 
extended manifold was restricted to a relatively narrow vicinity 
of 3 pulses, meaning the total of samples is                            

���� 	= 	3 ⋅ 15	 = 	45. The narrow window indirectly enhances 
the SNR, compensating the lack of SNR emphasis. The key 
performance results are provided in Fig. 11. The azimuth 
resolution goal of 1.5 m is achieved. The AASR is better than       
-27.1 dB in the swath extending from 285 to 685 km ground 
range. In this case, the effect of the nadir returns over the RASR 
is seen to be appreciable, as shown by the peaks in the red curve, 
including the power of nadir returns, in comparison to the blue 
one, in which they are not included. This is due to the higher 
level of the planar array’s pattern at nadir in comparison to the 
(more directive) reflector antenna. The additional suppression 
achieved by elevation beamforming (cf. A.IV) is important to 
achieve the RASR peak level of -25.5 dB, satisfying the 
requirement. In this scenario, the smearing of the nadir returns 
due to the PRI staggering leads to an attenuation of circa 15 dB. 
This effect could, if necessary, be increased by the use of longer, 
compound sequences (cf. more elaborated sequences in [11]). 
The NESZ is better than -25.0 dB. An important effect of the 
nadir return suppression achieved by elevation beamforming  is 
seen in the worst-case NRSR plot. It is kept in this case close to 
0dB, meaning that the nadir returns are close to the noise floor. 
Should no suppression be applied, these returns would be 
visible in the SAR image. 

Fig. 11: Key performance parameters over swath for single-pol mode of planar 
system: (a) AASR, (b) RASR with (red) and without  (blue) the contribution of 
nadir returns, (c) NESZ, (d) azimuth resolution and (e) NRSR both with respect to 
the NESZ (noise floor) and  the average ��, significant in this case. 

(a)             (b) 

(c)             (d) 

         (e) 
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The implementation of an antenna of 15.0 m length in L-band 
is recognized to be challenging. A similar design in e.g. C-band, 
however, could prove a more readily implementable option, after 
certain adaptations. The antenna length is indeed comparable to 
that already in use in ESA’s Sentinel-1 [38] and the Canadian 
Space Agency’s Radarsat [39] C-band radar missions. 

VII. REVIEW AND FINAL REMARKS 
This paper reviewed and experimentally demonstrated the 

multichannel staggered SAR resampling technique described in [22]. 
Moreover, additional aspects of the method when applied to system 
with planar direct radiating array antenna were discussed. This 
architecture is currently the default technology for spaceborne SAR. 

A reflector antenna based design in single polarization was 
analyzed. It is meant as a complement to [22], in which a quad-
pol system is considered. The system images a 500 km swath 
with 1.0 m azimuth resolution, exceeding the performance of all 
state-of-the-art SAR systems by more than one order of 
magnitude. The predicted performance of an example of system 
design with a planar antenna architecture was also provided. It  
illustrates the approach’s potential with a swath of 400 km at                
1.5 m azimuth resolution. In general, the analysis suggests that 
the new multichannel staggered SAR mode and the proposed 
Virtual Beam Synthesis (VBS) technique enable a new class of 
high-resolution ultra-wide-swath SAR systems with 
unprecedented imaging performance. The new concepts and 
techniques proposed in this paper can be applied to both reflector 
and planar antenna architectures operating in single, dual or quad 
polarization mode.  

Comparing the reflector and the planar antenna systems [40] 
in multichannel staggered SAR operation, it was shown that the 
latter present some limitations with respect to the phase center 
resampling capabilities of the former. For reflectors the output 
phase center can be varied continuously by beamforming of the 
primary feed elements. The major limitation is imposed by the 
reflector size, which sets the maximum possible shift. This 
translates into a lower bound on the mean PRF, with clear 
implications for the maximum swath width. In contrast, for 
planar arrays the phase center positions are discrete and the inter-
channel spacing is decisive to minimize the shifts. The 
minimization should be done in conjunction with a proper design 
of the PRI sequence. Even though the antenna length remains a 
relevant parameter, the performance is in practice mostly limited 
by the maximum number of azimuth channels. This important 
parameter scales the cost and complexity of the system design.  

Both systems can, however, yield similar performance levels. 
This requires the design of the planar array to be adapted to take 
the different physical properties in consideration and enough 
azimuth channels. More channels than in the reflector case tend 
to be required. Planar systems have the advantage of 
representing a more mature technology in the context of SAR 
satellites. Reflector systems (particularly unfurlable mesh 
reflector antennas) are on the other hand an important trend for 
new spaceborne SAR missions [41]. They possess many 
desirable features positively influencing overall SAR 

performance, not specifically linked to multichannel modes. 
These include better sidelobe levels (leading to e.g. better range 
ambiguity suppression) and the potential to deploy larger 
apertures in space and thus improve the antenna gain.  

The paper also included a first proof of concept of the 
processing strategy, employing data acquired with a reflector and 
a multichannel feed in X-band. The comparison between the 
reconstructed images and the reference sampled at a regular grid 
shows successful recovery by the newly developed Virtual Beam 
Synthesis technique. Furthermore, the noise scaling behavior of 
the beamforming was validated using synthetic white noise, due 
to the high SNR of the original data. 

APPENDIX A: ELEVATION BEAMFORMING 

The main novelty and difficulty of the multichannel staggered 
SAR modes involves the sampling configuration in the azimuth 
dimension. Correspondently, azimuth beamforming is the 
solution of the resampling problem. Nonetheless, elevation 
beamforming remains a topic of interest for such systems. It 
represents an important ancillary technique to improve the overall 
performance in terms of range ambiguities and signal-to-noise 
ratio, taking into account particularities of the imaging mode’s 
operation. This appendix thus shifts focus from the azimuth to the 
elevation dimension. Section A.I introduces a new elevation 
beamforming concept which is especially suited for staggered 
PRI systems. Its application is however not necessarily restricted 
to them. In Section A.II, the concept is illustrated and the 
resulting beams are compared to the outputs of other currently in 
use beamforming alternatives (cf. [8]). An example reflector 
antenna with a multichannel feed array is analyzed. Section A.III 
discusses the implications of the elevation beamforming for SAR 
performance in terms of RASR. 

A.I – The Sidelobe-constrained Beamformer 
As discussed in [8] in the context of reflector systems, 

beamforming techniques relying on knowledge of the patterns are 
essential to implement the SCan On REceive (SCORE) [14] 
beamforming concept. The rationale of this technique is to follow 
the echoes of interest over elevation. The objective is to suppress 
range ambiguities and to improve the overall gain. The Rx gain 
compensates the low gain of the broad Tx pattern that illuminates a 
wide swath in elevation. As discussed in Section I, several 
simultaneous SCORE elevation beams are assumed, mapping sub-
swaths. The operation is inherently time-dependent, as a change of 
the position of the maximum of the beam over elevation with time 
is required. 

To define the notation, assume the channel’s elevation beams to 
be described by ��(�), 1 ≤ � ≤ ��� , where � is the off-nadir 
look angle15 described in Fig. 12. The antenna system is thus 
described by an array manifold vector [25]  

                                                           
15 One may equivalently write ��(� − �����), but the more concise notation 

with respect to � is preferred to emphasize the SCORE operation principle. 

���(�) = [��(�) … ����(�)]�,	 (18) 
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which collects the ���  complex antenna patterns. Let the ���-
dimensional complex elevation beamforming weight vector be 
denoted by � and the resulting pattern of the array at a particular 
elevation angle by ������(�) = �� ⋅ ���(�). Moreover, allow 
the statistics of the noise affecting the system’s channels to be 
described by the ���  by ���  noise covariance16 matrix ������. 

 

Fig. 12: Swath geometry for elevation beamforming. The off-nadir look 
angle is denoted �. The antenna main axis is pointed at �����, so that the 
elevation angle in the antenna’s coordinate system is � − �����. 

A beamformer of particular interest in the implementation 
of SCORE beams is the Minimum Variance Distortionless 
Response (MVDR) [8],[25],[44]. The MVDR is the solution 
to the constrained optimization problem:  

����� = argmin��� ⋅ ������ ⋅ ��subject	to:	�� ⋅ �(��) = 1	.	 (19) 

The name MVDR is because the cost function being 
minimized ������� = �� ⋅ ������ ⋅ � represents the variance 
or power of the noise in the output after the weighting. The 
constraint �� ⋅ ���0� = 1 means the signal is not distorted 
at the look angle of interest ��. This is typically the intended 
maximum of the SCORE beam in this context. The solution 
to (19) can be derived using Lagrange multipliers and yields 
[8],[25], [44] 

����� = �������� ⋅ �(��)�(��)� ⋅ �������� ⋅ �(��).	 (20) 

In the particular case of white noise, ������ = �, the identity 
matrix. The elements are hence weighted by                         �(��)�/��(��)��		and the beamformer has a “matched-
filter” behavior, gathering all the available power at ��. 
MVDR thus steers the beam towards the echo signal 
direction of arrival and aims at maximizing the SNR. It does 
not, however, consider that the pulse has a non-vanishing 
extension on the ground. 

Even though the MVDR is very effective at maximizing 
the output SNR while focusing the maximum beam’s gain 
around a �� of choice, it allows no control over the 
sidelobes of the achieved beam. Motivated by this, [44] 
analyses an extension of the optimization problem with 
addition of a sidelobe constraint. This is done by 
introducing a maximum level ���� for the formed beam at a 

                                                           
16In practice it is often unknown, and thus estimated from the data. 

grid of ����  elevation angles Θ��� = ⋃ ��� , 1 ≤ � ≤ ���� . 
The resulting problem is:  

���� = argmin��� ⋅ ������ ⋅ ��
subject	to:	 � �� ⋅ �(��) = 1;��� ⋅ �(��)�� < ���� ,for	1 ≤ � ≤ ���� . 			 (21) 

This means that the distortionless constraint is kept, but a 
maximum level of the sidelobes within Θ��� = ⋃ ���  is 
specified. The problem (21) does not have a closed form 
solution in every case and is not necessarily feasible for every 
choice of pattern or sidelobe level ���� . Nonetheless, as 
demonstrated in[44], it can be re-written as a Second-Order 
Cone (SOC) Optimization problem which can be efficiently 
solved by existing optimization packages [45]. Moreover, high-
level interfaces such as [46] allow the problem to be specified 
directly in the form (21). An additional interesting feature of the 
SOC solvers is the capability of testing for feasibility before 
attempting to solve the problem, which allows adaptive 
strategies for the threshold ����, as e.g. relaxing the constraint 
until a solution is possible. 

The technique is applicable both for reflector antennas and 
for planar direct radiating arrays, as only knowledge of the 
manifold is assumed. It should be recalled that a global sidelobe 
level smaller than a given ���� in the planar case can be readily 
achieved by conventional Dolph-Chebyshev weighting [21], 
with the advantage of a closed-form solution, but the 
optimization technique allows additional flexibility, since Θ���  
can be chosen freely. An interesting possibility is setting 
extended minima at specific angular intervals. Another readily 
available extension are angle-dependent sidelobe levels ����(��), which can also be handled seamlessly by the numeric 
solvers and may be of interest for certain scenarios. 

The sidelobe control strategy described above is of special 
interest in the context of SCORE pattern design, and can be 
used in order to improve the range ambiguity-to-signal ratio 
(RASR). This is done by specifying the direction of arrival of 
the signal as �� and including the angles of arrival of the 
ambiguities (and their vicinity) within Θ��� .  

The rationale is similar to the use of another beamforming 
technique described in [8] (employed for the same purpose of 
improving the RASR), namely the Linear Constraint Minimum 
Variance (LCMV) [25]. The latter beamformer solves the 
problem 

����� = argmin��� ⋅ ������ ⋅ ��subject	to:	�� ⋅ � = �	 ,	 (22) 

where the ���  x ���  array matrix � = ��(��) �(��) … ����������	 (23) 
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contains the manifold for the angle of interest �� and ��� − 1 
other angles for which the pattern level can be specified. 
Typically, in the case of SCORE beamforming,  � = [1 ���� … ����]  	 (24) 

and ���� is chosen to be zero or a very low value. This creates a 
grid of nulls or minima Θ��� = ⋃ ��� , 1 ≤ � ≤ ��� − 1. The 
analogy between (22)-(24) and (21) is thus clear, replacing the 
“hard” equality constraints by “soft” inequality constraints over 
the sidelobe grid Θ���  and adjusting the size of this grid.  

The LCMV beamformer has indeed the advantage of a closed 
form solution [8] 

����� = �������� ⋅ � ⋅ ��� ⋅ 	�������� ⋅ ���� ⋅ ��,	 (25) 

but the number of constraints is limited by the number of 
available elevation channels ��� .  

In the context of staggered SAR, the position of the range 
ambiguities changes from pulse to pulse [27]. This means that 
typically several tenths or even hundreds of different angles of 
arrival need to be considered for each order of ambiguity. The 
LCMV is thus of limited usefulness in this situation, though 
very effective for a conventional constant-PRI SAR. In contrast, 
the sidelobe-constrained beamformer of (21) can be used to 
force a minimum (though not a zero) over a broad region (not 
necessarily contiguous), as no a-priori restriction on ���� exists. 
In fact, ����  should ideally be high, since a properly fine grid is 
necessary to ensure that the pattern behavior follows the 
constraints in the vicinity of the grid points. This allows the 
creation of “broad minima”, again making an LCMV-like 
approach feasible for mitigation of range ambiguities in 
staggered SAR.  

A.II - Elevation Beamforming Method Comparison 

This section presents example SCORE elevation beams to 
illustrate the application of the discussed methods and compare 
their properties. Patterns from the reflector-antenna system 
described in TABLE I are employed. To simplify the discussion, 
a single azimuth channel is considered (namely the central one 
out of the nine), and the elevation patterns are taken at an 
azimuth angle of 0.0°. The combination of the channels over 
azimuth and the implications for the range ambiguity 
performance are considered at a later stage, in Section A.III. 

The goal is to implement the SCORE beams at far range. In 
this region, the range ambiguities are closer to the main beam 
(in terms of the corresponding elevation angles) and pattern 
defocusing effects contribute to higher sidelobes. These effects 
tend to degrade range ambiguity performance. As will be shown 
in the following example, this effect may be mitigated by the 
elevation beamforming. A look angle �� = 	43.2°, at the edge 
of the swath of interest, is considered the desired maximum of 
the beam (note that the antenna is tilted 32.5° with respect to 
nadir). Besides, a total of ��� = 9 elevation channels are chosen 
as part of the input manifold for beamforming, as seen in Fig. 13 

(a). The plot refers to the individual feed element’s directivity, 
as output of GRASP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Far-range SCORE elevation beams illustrating the discussed methods of 
elevation beamforming. (a) Manifold over elevation consisting of the 9 active 
elements used to form the beams. The beam maximum – by design set at the 
direction of arrival of the signal – is indicated by the central vertical dashed line 
and the beginning of the sidelobe region (derived from the geometry and the PRI 
sequence parameters in TABLE I) by the side vertical dashed lines. (b) SCORE 
beams formed by the different methods (MVDR, LCMV and Sidelobe-
constrained beamformers respectively in blue, green and red). The markings for 
signal direction and sidelobe region are repeated, and the location of the range 
ambiguities is superimposed on the different patterns (circles, diamonds and 
triangles, respectively); (c) SCORE patterns of (b) over a broader range of angles 
to better illustrate the behavior of the outermost range ambiguities.  

In the plot, the desired position of the maximum is highlighted 
by the vertical black dashed line in the center. The limits of the 
sidelobe region – where the range ambiguous contributions 
begin – is marked by purple vertical dashed lines to its sides. 

(a) 

(c) 

(b) 
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The position of the ambiguities is determined by the geometry 
and the PRI sequence parameters. The noise affecting the 
channels is assumed white, so ������ = �, the identity matrix. 

Fig. 13 (b) and (c) show the patterns (the gain as defined by 
[25]) obtained by the algorithms described in the previous section. 
The first shows a zoom around the main beam. The second depicts 
a broader angular region. 

The MVDR beam (cf. (20)) is seen in blue, and the levels in the 
positions of the range ambiguities are highlighted by light blue 
circles. Note that several positions exist (���� = 28 per order) due 
to the staggered PRI operation. This solution effectively maximizes 
the gain at the goal elevation angle ��, but provides no control over 
the sidelobes. The first ambiguity to the right of the main beam is 
seen to be at a relatively high level, circa -20 dB below the pattern’s 
maximum. The LCMV beam (cf. (25)) is calculated by setting a 
linear constraint (cf. (24)) of 1.0 at �� and ���� = 0 for eight 
range-ambiguous positions. The pattern is seen in green, and 
ambiguous positions are highlighted by adjacent green diamonds.  

Whereas only the aforementioned eight ambiguities can be 
nulled, the neighboring ones are also seen to be suppressed by 
the proximity of the deep minima formed (especially visible in 
Fig. 13 (b)). However, no control is possible over more distant 
ones. The same is true regarding the position of the main beam, 
which is seen to be distorted, showing a maximum at a look 
angle circa 0.5° smaller than ��. Finally, the sidelobe-
constrained pattern (cf. (21)) is seen in red. It is obtained with 10 ⋅ log�� ����� = −36.0 dB and Θ���  corresponding to all 
angles of the sidelobe grid (i.e. the expected range ambiguity 
positions) within [15.3°, 40.3°] and [45.7°, 48.2°]. The grid 
spacing is 0.03°. This time, ambiguities are highlighted by 
triangles and their maximum is at circa 4 dB. As the maximum 
gain is at 40 dB, this indicates a successful implementation of the 
threshold. 

The robustness of the beamformers against errors in the 
coefficients is also a crucial point for their applicability in real-
world systems, where effects such as limited phase accuracy play 
a role. A first assessment and comparison of the methods with this 
regard is performed by means of a Monte Carlo simulation. This 
consists of the following steps. First, the nominal weights are 
calculated from the error-free manifolds according to the specific 
algorithm in Section A.I. Then, each element of the complex 
weight vectors is disturbed with a uniform phase draw from a 
uniform distribution in the interval [−��/2, ��/2]. For a varying �� in the interval [0, 45.0]°, a total of 100 draws of the phases are 
done. For each of them, the disturbed patterns are calculated. For 
consistency, the same disturbance (drawn phase errors) is used for 
the three beamforming methods at each trial. For each drawn 
phase, pattern parameters are assessed. The mean over the trials is 
finally considered as the expected value. 

In Fig. 14 (a) the expected sidelobe-to-peak ratios of the 
patterns are analyzed for the three beamforming algorithms, 
shown in different colors. Solid lines indicate the maximum over 
the sidelobe regions (i.e. range ambiguities), whereas the dashed 
lines indicate the mean over these range-ambiguous positions. 
For the LCMV, the maximum over the desired nulls is also 

provided as a dotted line. It is clear that the MVDR shows very 
stable levels, nearly invariant to the phase errors, even though the 
sidelobe-to-peak levels (which translate into RASR levels) are 
the highest. Both the LCMV and the sidelobe-constrained 
beamformer show some sensitivity to errors. The nulling of the 
patterns does not hold in the presence of errors and the 
maximum of the controlled ambiguities quickly rises (as 
indicated by the dotted line). However, the maximum level of the 
sidelobe region is dominated by the non-controlled ambiguities 
until �� =� 15°. This means that the performance is not severely 
degraded for small phase errors. Though the sensitivity 
(inclination of the curve in dB/°) increases for larger errors, the 
peak level remains the lowest of all methods. The sidelobe-
constrained beamformer in turn shows a higher starting point (at 
the set threshold of -36.0 dB) and a smaller sensitivity (which is 
influenced by the starting point as well as by the weights 
themselves). The mean curve indicates that for larger phase 
errors, the sidelobes are on average lower for the latter method in 
comparison to LCMV, even though the peak values of both 
methods converge in the extreme case of �� =� 45°. Both 
methods are seen to outperform the MVDR beamformer in terms 
of sidelobe levels, even in the presence of errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Analysis of the impact of weight errors for the different beamforming 
algorithms. (a) Monte Carlo simulation of sidelobe-to-peak ratio (sidelobes are 
defined by the sidelobe grid) of the implemented patterns as a function of a 
uniform phase error in the interval [−��/2, ��/2]. The MVDR, LCMV and 
Sidelobe-constrained beamformers are represented by blue, green and red lines, 
respectively, and for each beamformer the maximum and mean over the sidelobe 
grid are represented by solid and dashed lines, respectively; (b) Monte Carlo 
simulation of the gain loss (with respect to the maximum gain of the error-free 
MVDR), as before as a function of the uniform phase error parameter ��. 

(a) 

(b) 
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The influence of the errors over the pattern gain is analyzed in 
Fig. 14 (b). The metric is the gain with respect to the best case, 
namely that of the error-free MVDR. The plot shows the gain loss 
– negative values indicate attenuation – of the global maximum of 
the patterns (not necessarily at ��) in solid lines. The gain loss at �� is shown in dashed lines. The beamformer algorithms are 
represented by different colors. All methods show relatively small 
gain sensitivity to the phase errors, with the LCMV method 
showing the maximum error-induced variation of -0.2 dB. The 
error-free levels thus dictate the performance. The MVDR shows 
the highest gains and a very small discrepancy between the 
maximum and the gain at position ��, in this case due to 
discretization of the elevation grid of the patterns (�� is not 
necessarily a sample in the grid). In contrast, the LCMV shows 
considerable main beam distortion (as visible in Fig. 13 (b) and 
(c)), with an attenuation of 2 dB at ��. It mainly characterizes 
mispointing, as the absolute maximum is only 0.4 dB below the 
MVDR reference. The sidelobe-constrained beamformer shows 
an intermediate behavior. The attenuation at �� is 0.4 dB and 
mispointing is mild, with a global maximum showing 0.16 dB 
attenuation. 

The comparison shows that, as expected, the sidelobe-
constrained beamformer provides a compromise between the 
pattern’s gain and sidelobe levels. Its characteristics are in-
between those of the MVDR and the LCMV methods. The gain 
reduction is a consequence of the additional constraint in (21) in 
comparison to (19). The achieved minimum noise variance 
indeed cannot be smaller than in the MVDR case. It should be 
stressed that the choice of ���� and Θ���  is very important for 
meaningful results. A sidelobe region too close to the main beam 
or a too low ���� may severely degrade the achieved gain. With 
proper design of the parameters, however, the method offers the 
possibility of avoiding severe main beam distortion (which 
reduces gain at the signal’s direction of arrival) while retaining 
improved sidelobe suppression. 

A.III – Range Performance of Elevation Pattern Comparison 
Example 

The last section provided a discussion of the elevation 
beamforming algorithms’ properties by means of an example. 
The implementation of far range SCORE beams of the reflector 
antenna system described in TABLE I was considered. For 
simplicity, only the central azimuth channel was analyzed. This 
section extends that example by considering additional effects 
arising from the combination of the channels and compares the 
beamformers in terms of the final SAR system performance. The 
parameters �� = 	43.2° and ��� = 9 are kept. 

Fig. 15 (a) shows, plotted in different colors, the SCORE 
elevation patterns as function of the look angle, for each of the 9 
azimuth elements. Each pattern is taken at the azimuth angle 
which represents the maximum of the particular channel (recall 
that for reflector systems the antenna patterns are not separable in 
azimuth and elevation, and show different maxima positions due 
to the feed element’s displacement). The patterns cannot be 
clearly distinguished, indicating great similarity between them 

(apart from the different azimuth angles of the maxima from 
which the elevation cuts originate). 

The signal and ambiguity positions region are highlighted by the 
green and red crosses. The imposed constraint for the sidelobe is 
marked by the dashed horizontal line. Θ��� in this case includes 
the look angles in the intervals [15.3°, 40. 3°] and [45.7°, 48.2°]. 
These are chosen to include all orders of range ambiguities, 
assuming the maximum PRI in the sequence, 439.8 �s. As in 
Sections II and VI, the patterns are interpolated to a grid of 
spacing 0.03°, and the constraint parameter is                                     10 ⋅ log�� ����� = −36.0 dB. Due to the similarity of the patterns 
from different azimuth elements, the constraint levels are also 
very similar. The pattern levels below the constraint indicate that 
the elevation beamforming was successful for all channels. 

Fig. 15: Far-range SCORE elevation beams illustrating some special aspects of the 
elevation beamformers. (a) SCORE elevation patterns (sidelobe-constrained) for 
each of the azimuth elements at their maximum position. The beam maximum is 
indicated by a green cross, the contribution from the several ambiguities by red 
crosses and the imposed constraint for the sidelobe levels – at least 36 dB below the 
main peak – by a black horizontal dashed line. (b) Sum over the azimuth elements 
of the sidelobe-constrained patterns. The cut is taken at an azimuth angle of 0.0° 
and the signal and ambiguity position markings are repeated. (c) Comparison of the 
SCORE patterns of the sum over the azimuth channels (cut around an azimuth 
angle of 0.0°) for the sidelobe-constrained beamformer (blue) and the conventional 
MVDR (green). The signal direction is highlighted by a vertical dashed line and the 
range ambiguity positions by ‘+’ and ‘X’ symbols superimposed on the respective 
patterns. The blue patterns are the same as in (b), repeated to facilitate the 
comparison; (d) Comparison of the SCORE patterns for the sidelobe-constrained 
beamformer (blue) and LCMV (red) with respective ambiguities. 

Fig. 15 (b) shows a pattern which is the result of the 
summation over the azimuth elements taken at an azimuth angle 
of 0.0°. It is  relevant as the reference common pattern. The signal 
and ambiguity positions are marked as before. Note that the 
constraint is no longer fulfilled, since the azimuth angle is no 
longer that of the maximum for each channel. A considerable 

(c)                                                (d) 

(a)                         (b) 
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reduction in sidelobe levels is nevertheless observed, resulting in 
improved range ambiguity suppression. To better illustrate this 
point, Fig. 15 (c) shows the SCORE pattern of the central azimuth 
element in far range (look angle of 43.2°) for the sidelobe 
constrained beamformer (blue) and the conventional MVDR 
(green). The main beam (centered around the vertical dashed line) 
is not considerably changed. The sidelobe suppression at the 
range ambiguity positions (compare the ‘+’s and ‘X’s) is however 
notable, especially for the first-order far range ambiguities. In Fig. 
15 (d) the sidelobe-constrained (blue) elevation beam at 0.0° in 
azimuth is compared to the LCMV one (red). The latter technique 
was also applied for each azimuth channel at the location of its 
maximum. Therefore, due to the non-separable characteristic of 
the patterns, the deep minima (cf. Fig. 13 (b)) are not visible for 
the sum of all patterns. Reduced levels are nonetheless obtained.  

The impact of the choice of beamformer on system 
performance in this particular range is summarized in TABLE V. 
The sidelobe-gain compromise mentioned in Section A.II is seen 
to be translated into a RASR-NESZ compromise. The sidelobe-
constrained beamformer retains the behavior of an intermediate 
solution between the MVDR and the LCMV with regard to both 
parameters. As expected, the MVDR technique yields the 
optimal NESZ of -26.4 dB and the LCMV the best ambiguity 
suppression, with an RASR of -30.5 dB. The MVDR shows 
however the worst RASR, with -23.6 dB, and the LCMV’s 
mispointing with respect to the signal direction leads to a 
worsened NESZ of -24.6 dB. The sidelobe-constrained 
beamformer leads to an NESZ of -26.0 dB and an RASR of        
-29.6 dB. This indicates that a considerable gain in range 
ambiguity suppression could be achieved for the price of a slight 
SNR degradation if compared to the MVDR beamformer. 

TABLE V 
FAR-RANGE PERFORMANCE OF DIFFERENT ELEVATION BEAMFORMERS 

Beamforming Method RASR [dB] NESZ [dB] 

MVDR -23.6 -26.4 
LCMV -30.5 -24.6 
Sidelobe-constrained -29.6 -26.0 

A.IV - DBF for Nadir Return Suppression 
As discussed in [29], the �� (radar cross section per unit area) 

can be expressed as the sum of two components,                                  �� = ����� + ����� .	The coherent (specular) component ����� has 
a Dirac-delta behavior, dominating for nearly normal incidence 
but quickly vanishing for larger angles. In contrast, the incoherent 
component ����� has lower values but is more stable. In Fig. 16 
(a), the two components of the �� are plotted as a function of the 
incidence angle. Here, the ����� curve (from [28]) represents 
average values, and is used for the RASR estimation. In contrast, �����  represents a worst-case scenario, following parameters 
derived from backscatter measurements in L-band [29]. The 
Dirac-delta behavior of ����� is approximated by an exponential, 
which reaches -20 dB for 0.5° and has a peak value of 15 dB 
(corresponding to a very smooth surface). The backscatter values 
of the coherent component depend on the topography, soil 
roughness and moisture, so that a meaningful average curve is 
difficult to achieve. Since the modelled backscatter is a worst-

case rather than the average, the coherent contribution is not 
included as part of the RASR but rather of a new quantity, the 
Nadir Return-to-Signal Ratio (NRSR). In order to assess the 
potential impact on low backscatter areas of the image, this is 
calculated assuming the signal is at the noise level (�� 	= 	NESZ). 
The levels with respect to the average backscatter are also 
included in the plots as a reference. 

The implication of the Dirac-delta behavior of �����  is that 
localized spikes in the nadir return power are expected (cf. Fig. 11 
(e)). These are seen over the ranges whose range ambiguities (for 
any PRI, in the staggered SAR case) arise from nadir. The DBF 
strategy discussed in this appendix can however be used to 
suppress these returns as well. Fig. 16 (b) shows an example 
SCORE beam for the system of TABLE IV. The sidelobe level 
within the swath (� ∊ [22.0°, 42.8°]) is -33 dB, but it is reduced 
to -45 dB for near-normal incidence (� ≤ 6°). The low levels 
cause suppression of nadir returns, ensuring adequate return 
levels in spite of the increased reflectivity close to nadir. The 
technique is especially relevant for the less directive planar 
systems. A further investigation of nadir returns and corresponding 
compensation strategies, including the influence of calibration 
errors upon the achievable suppression levels is part of further work 
on the topic. Data-based relative pattern calibration techniques such 
as [42] could play an important role in improving system 
performance with this regard. 

Fig. 16: Nadir returns and corresponding DBF strategy. (a) �� curve with an 
incoherent (non-specular) component following [28] and a coherent (specular) delta-
like component [29]. The latter is only relevant for nearly normal incidence, and 
shows a peak value circa 15 dB above the maximum of the incoherent component. (b) 
Example Rx elevation pattern for the planar system of TABLE IV at a look angle � =	24.5°. The sidelobe constraint (cf. black horizontal lines) within the swath                      
(� ∊ [22.0°, 42.8°]) is -33 dB, but 12 dB lower for the nearly normal incidence region 
(� < 6°). The ambiguities outside this region are marked by red ‘+’ signs, whereas 
the ambiguities within the region are marked by ‘x’ signs. The main signal and the 
nadir return are highlighted by vertical dashed lines. 

APPENDIX B: PROOF OF HERMITIAN SYMMETRY CONDITION 
FOR ARRAY WEIGHTING 

The purpose of this appendix is to analyze which are the 
possible phase centers of the combination of the patterns in a 
uniform linear array. We start by considering the phase center 
shift of a uniform linear array of N isotropic elements spaced by ���, in the region [0, �], � = (� − 1) ⋅ 	���	 as illustrated in 
Fig. 17. The desired phase center lies at the position                   ��� 	= � ⋅ �, with 0 ≤ � ≤ 1. In particular, ��� 	= � ⋅ ���, 

(a)                         (b) 
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with integer n, are trivial cases corresponding to the usage of 
single elements. 

 

 
 
 
 
 
 
Fig. 17: Geometry of a general �-element uniform linear array of inter-element 
spacing ��� and total distance between outermost elements � = (� − 1) ⋅ ���. The 
goal is to obtain a phase center in the intermediate position ��� = � ⋅ �, 0 ≤ � ≤ 	1 
within the array. 

The linear combination of the received signals of the antenna 
array, applying the complex weight �� for the 	��� element, yields 
a resulting far-field pattern. At off-boresight angle �, for small �, it 
can be approximated by the well-known array factor [25],[43] ��(�) = � �� ⋅ exp �� ⋅ � ⋅ 2 ⋅ � ⋅ ���� ⋅ sin(�)� ,���

��� 	 (26) 

where � is the wavelength. 
Let the auxiliary spatial frequency be ���(�) = sin(�) /�.	 This 

quantity is closely related to the Doppler frequency in the case of 
azimuth. Using it, one may write the conjugate complex of (26)  as 

��∗(���) = � ��∗ ⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ (� ⋅ ���)����
��� 	

��∗(���) = � � �∗ (�) ⋅ �(� − � ⋅ ���)�
��

���
��� 																									⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ ����.	

(27) 

In the last equation, the summation is changed to an integral by 
defining the continuous weight function �(�). Taking the complex 
conjugate and changing the integration variable to –x yields 

�� (���) = � � �(−�) ⋅ �(−� − � ⋅ ���)�
��

���
��� 																									⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ ����,	 (28) 

which is the Fourier Transform of the (theoretical) space-
reversed continuous weight distribution �(−�). This 
distribution is considered to be non-zero only over the interval −� ∈ [0,−(� − 1) ⋅ 	�], and sampled at �	 = 	� ⋅ ���, i.e. the 
position of the elements (and thus of their respective phase 
centers). Clearly (28) may also be written in terms of the 
Discrete-Time Fourier Transform of the sequence �[�] = �� 
[25]. This shows that the properties of the array factor rely on 
those of the Fourier Transform [44].  

The desired phase center position is ��� 	= � ⋅ �, for 0 ≤ � ≤ 1. The array factor is thus expected to take the form  

������� ≜ exp�� ⋅ 2 ⋅ � ⋅ (� ⋅ �) ⋅ ���� ⋅ ������,	 (29) 

where the exponential term is related to the position of the phase 
center ��� 	= � ⋅ 	�. Using the analogy to time Fourier analysis, ��� 	represents a “spatial-delay” with respect to the spatial 
frequency ���. ������ is a complex modulation of the phase ramp. 
(29) can also be understood as factorization of �������. 
A particular case of interest is the well-known uniform 
weighting with �� 	= 	1/� in (27), equivalent to �(�) = 1�,	 (30) 

which yields [43]  ���������� = exp�� ⋅ 2 ⋅ � ⋅ (� − 1) ⋅ ���2 ⋅ ���� ⋅ 
																																	sin�� ⋅ � ⋅ ��� ⋅ ����sin�� ⋅ ��� ⋅ ���� ⋅ 1�. (31) 

Comparison to (29) shows that the phase center is located in the 
position of the geometric  center of the array (cf. phase ramp term 
in (31)). The amplitude is modulated by a factor ������	which is 
approximately sinc-like in this case (second term in (31)). 

In general, the cases of interest are namely the ones in which �(���) is real for all ���. This avoids phase distortions with 
respect to the position-induced phase ramp. Comparing (28) and 
(29) gives 

������ = � � �(−�) ⋅ �(−� − � ⋅ ���)	�
��

���
��� 																										⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ (� + � ⋅ �)���	

������ = � � �(−�� + � ⋅ �)�
��

���
��� 																										⋅ �(−�� + � ⋅ � − � ⋅ ���)																											⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ ������.	

(32) 

By using conjugation and time reversal one may also write 

�∗����� = � � �∗(�� + � ⋅ �)�
��

���
��� 																										⋅ �(�� + � ⋅ � − � ⋅ ���)																											⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ ������.	

(33) 

A real ������	requires  ���������� = ������ − �∗�����2 = 0.	 (34) 

Thus, from (32) and (33), this requires that 

� �[�(−�� + � ⋅ �) 	 ⋅ 	�(−�� + � ⋅ � − � ⋅ ���)�
��

���
���  												−�∗(�� + � ⋅ �) ⋅ 	�(�� + � ⋅ � − � ⋅ ���)] 																								 																									⋅ exp�−� ⋅ 2 ⋅ � ⋅ ��� ⋅ �′���′ = 0.	

(35) 

To make the integral identically null for all ���,  
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�(−�� + � ⋅ �) 	 ⋅ 	�(−�� + � ⋅ � − � ⋅ ���) = �∗(�� + � ⋅ �) 	 ⋅ 	�(�� + � ⋅ � − � ⋅ ���) 
for �	 ∈ [0, � − 1]. (36) 

This is a Hermitian symmetry relation [44], applied to the 
continuous weight distribution with respect to the desired phase 
center position ��� 	 = � ⋅ �. Note that the only relevant 
positions are the “samples” of this distribution at �� = � ⋅ ���. 
These correspond to the positions of the array elements, every 
other point being merely a mathematical construct. (36) is 
satisfied, in particular, when �(−�� + � ⋅ �) = �∗(�� + � ⋅ �),	 (37) 

for all ��. This condition is sufficient but not necessary, since the 
points outside �� = � ⋅ ��� can take arbitrary values without 
changing the integrals in (32) and (33). It is however preferred, 
to simplify the notation. 

The relationship between Hermitian symmetry and a real 
valued transform is indeed a well-known property in Fourier 
analysis. The implication in this case is that a given phase center 
position ��� 	can only be achieved if the weights are Hermitian-
symmetric with respect to that point. This also shows that the 
phase center is always located in the geometrical center of the 
(sub-)array. The problem of locating the possible phase centers 
of a planar antenna array (under the “ideal” phase and stable 
amplitude pattern conditions (29) and (34)) is thus a 
combinatorial one, since it only depends on the location of the 
active elements. 
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