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Multi-class Brain Computer Interface Classification

by Riemannian Geometry
Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten

Abstract—This paper presents a new classification framework
for Brain Computer Interface (BCI) based on motor imagery.
This framework involves the concept of Riemannian geometry
in the manifold of covariance matrices. The main idea is to use
spatial covariance matrices as EEG signal descriptors and to rely
on Riemannian geometry to directly classify these matrices using
the topology of the manifold of Symmetric and Positive Definite
(SPD) matrices. This framework allows to extract the spatial
information contained in EEG signals without using spatial fil-
tering. Two methods are proposed and compared with a reference
method (multi-class Common Spatial Pattern (CSP) and Linear
Discriminant Analysis (LDA)) on the multi-class dataset IIa from
the BCI competition IV. The first method, named Minimum
Distance to Riemanian Mean (MDRM), is an implementation of
the Minimum Distance to Mean (MDM) classification algorithm
using Riemannian distance and Riemannian mean. This simple
method shows comparable results with the reference method. The
second method, named Tangent Space LDA (TSLDA), maps the
covariance matrices onto the Riemannian tangent space where
matrices can be vectorized and treated as Euclidean objects.
Then, a variable selection procedure is applied in order to
decrease dimensionality and a classification by LDA is performed.
This latter method outperforms the reference method increasing
the mean classification accuracy from 65.1% to 70.2%.

I. INTRODUCTION

A Brain Computer Interface (BCI) aims at translating brain

signals into commands. On one hand, it will be useful for

people with severe motor impairments in order to restore com-

munication and movement. On the other hand, it could be a

new interface for healthy people, e.g., in gaming applications.

In the literature several electro-physiological sources of

BCI control have been investigated. This paper focuses on

Motor Imagery (MI), although the method we propose herein

may be applied to other types of BCIs. In MI-based EEG-

BCI, the standard operation mode consists of a cue-based (or

synchronous) calibration stage followed by an asynchronous

operation mode [1]. The first stage is often devoted to build

subject-dependent frequency and spatial filters discriminating

between EEG datasets corresponding to two different classes

of MI [2]. Such spatial filters perform linear combination of

the EEG signals in order to create new signals with maximal

variance in one condition and minimal variance in the other

condition [2]. Once these spatial filters have been designed,

the (log-)variance of the spatially-filtered signals are used
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as features by a supervised classification algorithm. Linear

Discriminant Analysis (LDA) is often used to perform this

processing [3].

In this work, we propose an entirely different approach by

exploiting directly the covariance structure of the data as the

feature of interest. Since the covariance matrices contain the

spatial information embedded in EEG signal, this approach

aims to merge the spatial filtering and the classification

procedure into one unique step. This idea has already been

proposed in [4] where the spatial filters and the classifier

are trained together in an optimization process. However,

the particular structure of covariance matrices, which belong

to the Riemannian manifold of the symmetric and positive

definite (SPD) matrices, has to be treated carefully. In this

context, the Riemannian geometry provides a rich framework

to manipulate these matrices. In addition, the properties of the

manifold of SPD matrices allow to have explicit formulas for

the main operations in the Riemannian manifold, which lead

to an easier implementation of algorithms.

A similar approach has also been recently developed in the

context of EEG for sleep states detection [5] that focused

on the exploitation of the frequential information through

the estimation of the power spectral covariance matrices.

Working with covariance matrices in their manifold has proven

useful in other fields such as radar image processing [6],

diffusion tensor imaging [7] and image processing [8]. This

methodology has also been used for pedestrian detection in

image processing [8].

The first idea of our paper is to manipulate EEG spatial

covariance matrices in their native space and to make use of

the Riemannian distance between them in this space. Spatial

filtering is no more necessary, since the spatial information

is embedded in the spatial covariance matrices. Therefore all

distance-based classification algorithms can be extended by

applying this new Riemannian distance.

The second idea we propose is to use the concept of tangent

space to apply more sophisticated classification algorithms.

The operation named tangent space mapping sends the co-

variance matrices, belonging to a manifold, into an Euclidean

space where they can be treated as vectors. This mapping

operation allows the use of state-of-the-art classifiers within

the Riemannian framework.

The proposed methods are developed based on an earlier

work in [9]. Here we address the multi-class case and the

high dimensionality of the tangent space

This article is organized as follows. First we discuss about

the use of the covariance matrices in motor imagery-based

BCI. Then, in Section III we introduce the basic concepts of



2

Riemannian geometry. Section IV presents the two proposed

classification methods and Section V is dedicated to the related

results on a BCI dataset. Finally, we conclude on the proposed

approach in Section VI.

II. ON THE USE OF COVARIANCE MATRICES IN BCI

By definition, motor imagery consists in the imagination

of a limb movement like hand or foot. The topographical

representation and band power change of such mental tasks

are well-known since different body parts are represented in

different area of the motor cortex (roughly, right hand under

C3 electrode, left hand under C4, foot under Cz , etc.). The

associated frequential phenomena are known as Event-Related

Desynchronisation (ERD) and Event-Related Synchronisation

(ERS) [10].

The EEG recording of the brain activity is usually cut

into trials, i.e., short-time windows. During the calibration

operation mode, the trials are supervised, in the sense that

the MI mental task or class is known. In the functional

operation mode, single-trial classification must be performed

to recognize the different mental tasks.

Spatial covariance matrices are used in this context. For

instance, the popular Common Spatial Pattern (CSP) algorithm

is entirely based on their estimation, from which spatial filters

are derived to enhance class separability [2].

In the following, let xt ∈ R
n denote the EEG signal vector

at a specific time point t, with n denoting the number of

recording channels. The spatial covariance matrix is formally

defined by Σ = E
{

(xt − E {xt}) (xt − E {xt})T
}

, where

superscript T denotes vector or matrix transposition and E {.}
the expected value.

In BCI we consider short-time segments of EEG signal, or

trials, in the form of a matrix Xi = [xt+Ti
. . .xt+Ti+Ts−1] ∈

R
n×Ts which corresponds to the i-th trial of imagined move-

ment started at time t = Ti. Here Ts denotes the number

of sampled time points in each trial. Here and hereafter we

suppose that each channel measurement has been previously

time-centered by a high-pass filtering operation. For the i-
th trial, the spatial covariance matrix is estimated using the

Sample Covariance Matrix (SCM) Pi ∈ R
n×n such as :

Pi =
1

Ts − 1
XiX

T
i . (1)

The SCM is known to be an unbiased estimator of the

covariance matrix Σ provided that the number of observations

Ts is much larger than the number of variables n [11].

III. RIEMANNIAN GEOMETRY

In this section we briefly define the concepts and tools

of Riemannian geometry that are needed in the proposed

approach. The main point is that spatial SCM belongs to a

particular manifold and classification can be directly achieved

in this Riemannian space, as it will be shown in Section IV.

A. Notations

Denote by S(n) = {S ∈ M(n),ST = S} the space of all

n×n symmetric matrices in the space of square real matrices

M(n) and P (n) = {P ∈ S(n), uT
Pu > 0, ∀ u ∈ R

n} the

set of all n×n symmetric positive-definite (SPD) matrices. A

SPD matrix is always diagonalizable with strictly real positive

eigenvalues. Finally, denote by Gl(n) the set of all n × n
invertible matrices in M(n).

The Frobenius norm of a matrix is given by : ‖A‖2F =
Tr

(

AA
T
)

=
∑

|Aij |2 where Tr(.) denotes the trace operator.

For a vector a, the L2 norm is denoted by ‖a‖2.

For SPD matrices in P (n), the exponential matrix of P is

obtained using the eigenvalue decomposition of P :

P = U diag (σ1, . . . , σn)U
T ,

where σ1 > σ2 > . . . σn > 0 are the eigenvalues and U the

matrix of eigenvectors of P. It reads :

exp(P) = U diag (exp(σ1), . . . , exp(σn)) U
T .

The inverse operation is the logarithm of a SPD matrix :

log(P) = U diag (log(σ1), . . . , log(σn)) U
T .

We also have the following properties :

• ∀P ∈ P (n), det(P) > 0
• ∀P ∈ P (n), P−1 ∈ P (n)
• ∀ (P1,P2) ∈ P (n)2, P1P2 ∈ P (n)
• ∀P ∈ P (n), log(P) ∈ S(n)
• ∀ S ∈ S(n), exp(S) ∈ P (n)

Finally, notation P
1/2 defines a symmetric matrix A that

fulfils the relation AA = P.

B. Riemannian natural metric

The space of SPD matrices P (n) is a differentiable Rie-

mannian manifold M [12]. The derivatives at a matrix P on

the manifold lies in a vector space TP, which is the tangent

space at that point. The tangent space is lying in the space

S(n). The manifold and the tangent space are m = n(n+1)/2
dimensional.

Each tangent space has an inner product 〈, 〉
P

that varies

smoothly from point to point over the manifold. The natural

metric on the manifold of SPD matrices is defined by the local

inner product :

〈S1,S2〉P = Tr
(

S1P
−1

S2P
−1

)

. (2)

The inner product induces a norm for the tangent vec-

tors on the tangent space, such that, ‖S‖2
P

= 〈S,S〉
P

=
Tr

(

SP
−1

SP
−1

)

. We note that, at Identity matrix, such norm

simplifies into the Frobenius norm, i.e. 〈S,S〉
I
= ‖S‖2F .

Working in the manifold M of the SPD matrices has several

advantages. Due to the properties of SPD matrices, there

exists explicit formulae for the major concepts of Riemannian

geometry. Therefore they can be applied easily in the context

of signal processing.
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C. Riemannian Geodesic distance

Let Γ(t) : [0, 1] → P (n) be any (differentiable) path from

Γ(0) = P1 to Γ(1) = P2. The length of Γ(t) is given by

L(Γ(t)) =

∫ 1

0

‖Γ̇(t)‖Γ(t)dt, (3)

with the norm defined previously. The minimum length curve

connecting two points on the manifold is called the geodesic,

and the Riemannian distance between the two points is given

by the length of this curve. The natural metric (2) induces the

geodesic distance [13]

δR(P1,P2) = ‖log
(

P
−1
1 P2

)

‖F =

[

n
∑

i=1

log2 λi

]1/2

, (4)

where λi, i = 1 . . . n are the real eigenvalues of P−1
1 P2. The

main properties of the Riemannian geodesic distance are as

follows :

• δR(P2,P1) = δR(P1,P2)
• δR(P

−1
1 ,P−1

2 ) = δR(P1,P2)
• δR(W

T
P1W,WT

P2W)=δR(P1,P2) ∀ W∈Gl(n).

The third property is very important, since it implies that the

space of SPD matrices is invariant by projection. It allows us to

manipulate such space with tools like PCA without incidence

on the distance.

D. Exponential map

For each point P ∈ P (n), we can thus define a tangent

space composed by the set of tangent vectors at P. Each

tangent vector Si can be seen as the derivative at t = 0 of

the geodesic Γi(t) between P and the exponential mapping

Pi = Exp
P
(Si), defined as

Exp
P
(Si) = Pi = P

1

2 exp
(

P
− 1

2SiP
− 1

2

)

P
1

2 . (5)

The inverse mapping is given by the logarithmic mapping

defined as

Log
P
(Pi) = Si = P

1

2 log
(

P
− 1

2PiP
− 1

2

)

P
1

2 . (6)

This procedure is described geometrically in Fig. 1.

Figure 1. Tangent space at point P, Si a tangent vector at P and Γi(t) the
geodesic between P and Pi.

Equivalent definitions of the Riemannian distance are :

δR(P,Pi) = ‖Log
P
(Pi) ‖P = ‖Si‖P

= ‖upper
(

P
− 1

2Log
P
(Pi)P

− 1

2

)

‖2 = ‖si‖2.
(7)

where the upper(.) operator consists in keeping the upper

triangular part of a symmetric matrix and vectorizing it by

applying unity weight for diagonal elements and
√
2 weight

for out-of-diagonal elements [8]. Here si is the m-dimensional

vector upper
(

P
− 1

2Log
P
(Pi)P

− 1

2

)

of the normalized tan-

gent space.

Under some conditions over P and the Pi [8], (7) leads

to an approximation in terms of distance between the tangent

space and the Riemannian manifold, such as

∀i, j δR(Pi,Pj) ≈ ‖si − sj‖2. (8)

In order to verify these conditions the Pi must be locally

distributed into the manifold, i.e., located into a small part of

the manifold and P must be the mean of the Pi.

E. Mean of SPD Matrices

1) Euclidean mean: Using the Euclidean distance on

M(n), δE (P1,P2) = ‖P1 − P2‖F , it is possible to define

the Euclidean mean of I ≥ 1 SPD matrices by

A (P1, . . . ,PI) = argmin
P∈P (n)

I
∑

i=1

δ2E (P,Pi) =
1

I

I
∑

i=1

Pi. (9)

Such mean is also referred to as the arithmetic mean in the

literature [13] and it has been used ubiquitously so far.

2) Riemannian mean: Using Riemannian geodesic distance

(4) the Riemannian mean of I ≥ 1 SPD matrices is given by

G (P1, . . . ,PI) = argmin
P∈P (n)

I
∑

i=1

δ2R (P,Pi) , (10)

This mean is also referred to as the geometric mean. Indeed,

if we consider 1×1 SPD matrices {xi > 0}1≤i≤I , this defini-

tion gives G (x1, . . . , xI) = argminx>0

∑I
i=1 log

2(xi/x) =
I
√
x1 . . . xI .

For a manifold of non-positive sectional curvature like

P (n), such local minimum exists and is unique [14]. However,

there is no closed-form expression to compute the mean

and optimisation algorithms must be employed. An efficient

iterative algorithm to compute the Riemannian mean of I SPD

matrices is given in [7].

IV. MI-BASED BCI CLASSIFICATION USING RIEMANNIAN

FRAMEWORK

During the calibration operation mode, a set of annotated

trials is obtained for each class of motor imagery. Suppose

we have a set of trials obtained for the k-th condition
{

Xi, i ∈ I
(k)

}

with I
(k) the set of indices of the trials

corresponding to the k-th condition. The SCM of each trial can

be computed using (1). Since SCMs are SPD matrices, they

do belong to the manifold M. Let P denote the SCM of the

unlabel trial X. It is possible, using the results in Section III,

to derive several efficient classification algorithms to estimate

the unknown label of trial X.
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A. Classification in the Riemannian manifold

1) Minimum Distance to Riemannian Mean (MDRM): The

intra-class covariance matrices for each condition P
(k)
G

, where

k = [1 : K] denotes the class indices, can be computed

using the results in Section III-E. A very simple supervised

classification algorithm consists in computing the Riemannian

distance between the unknown SCM and every intra-class

covariance matrix P
(k)
G

. The condition with minimum-distance

is affected to the unknown trial X. For each new trial X,

this procedure amounts to estimating K intra-class covariance

matrices and then compute K eigenvalue-decompositions of

(4).

Algorithm 1 Minimum Distance to Riemannian Mean

Input: a set of trials Xi of K different known classes.
Input: X an EEG trial of unknown class.
Input : I(k) the set of indices of the trials corresponding to the k-th condition.

Output: k̂ the estimated class of test trial X.

1: Compute SCMs of Xi to obtain Pi, (1).
2: Compute SCM of X to obtain P, (1).
3: for k = 1 to K do

4: P
(k)
G

= G
(

Pi, i ∈ I(k)
)

, (10).
5: end for

6: k̂ = argmink δR(P,P
(k)
G

), (4).

7: return k̂

B. Classification in the Riemannian tangent space

Many popular and efficient classification algorithms [15]

(LDA, SVM, Neural Network) are based on projections into

hyperplanes. As such, they cannot be implemented directly in

Riemannian manifold. The implementation of more sophisti-

cated classification algorithms can be readily obtained with

the use of the tangent space located at the geometric mean of

the whole set of trials : PG = G (Pi, i = 1 . . . I). Each SCM

Pi is then mapped into this tangent space, to yields the set of

m = n(n+ 1)/2 dimensional vectors :

si = upper
(

P
− 1

2

G
Log

PG
(Pi)P

− 1

2

G

)

. (11)

Algorithm 2 Tangent Space Mapping

Input: a set of I SPD matrices Pi ∈ P (n)
Output: a set of I vectors si.

1: PG = G (Pi, i = 1 . . . I) {Compute Riemannian mean of the whole
set, (10). }

2: for i = 1 to I do

3: si = upper

(

P
−

1

2

G
LogPG

(Pi)P
−

1

2

G

)

4: end for

5: return si

1) Variable selection: Since the tangent space is a m =
n(n+1)/2 dimensional space, the number of dimensions may

now exceed the number of trials of each class. Regularised

classification algorithms are usually needed in this case to

tackle this problem [3], [16].

An alternative solution that we have explored is to con-

sider a variable selection procedure to decrease the space

dimensionality. We use a one-way ANOVA to select the

most discriminant variables. To account for any correlation

between variables, the vectors si are first orthogonalized using

a Singular Value Decomposition (SVD) :

S = UΛV
T ,

where S = [s1 . . . sI ] ∈ R
m×I , U ∈ R

m×m and V ∈ R
I×I

two orthogonal matrices and Λ ∈ R
m×I a diagonal matrix

composed by the singular values of S. The tangent space S is

projected using the orthogonal basis U :

So = U
T
S,

to obtain the orthogonalized tangent space So where all vari-

ables are uncorrelated. This operation is known as Principal

Component Analysis (PCA).

Then, for each variable of So, a one-way ANOVA is applied.

All variables are ranked according to their p-values and a

weighted False Discovery Rate (FDR) [17] is applied to select

automatically the minimal number of variables. The singular

values are used as weight for the FDR procedure in order to

give priority to variables that best represent the structure of

the data.

2) Tangent Space Linear Discriminant Analysis (TSLDA):

After the variable selection, we can apply any kind of classical

classification algorithms since the tangent space is Euclidean.

In this article, the classify function of Matlab (The MathWorks,

inc, Natick MA) will be used. This function performs the

linear discriminant analysis of Fisher between each pair of

class. Then, the
K(K−1)

2 classifiers are combined to obtain

the classification results.

V. RESULTS

A. Description of data

We analyse the dataset IIa from the BCI competition

IV [18]. It contains EEG data from 9 subjects who perform

four kinds of motor imagery (right hand, left hand, foot and

tongue imagined movements). EEG signals are recorded using

22 electrodes. For each subject, a training set and a test set

are available. In this paper both sets are concatenated and

performances are assessed by means of a cross-validation

procedure. A total of 576 trials per subject are available (144

trials per class). The same pre-processing step is applied on

the whole dataset. The EEG signals are bandpass filtered by a

5-th order Butterworth filter in the 8− 30 Hz frequency band.

The time interval is restricted to the time segment comprised

between 0.5 and 2.5s after the cue instructing the user to

perform the mental task.

B. Results

1) Minimum Distance to Riemannian Mean: Let us ob-

serve the results of the MDRM (Algorithm 1) algorithm. For

illustration purpose we consider the case of the subject S1,

who achieves fair performances. In order to show interpretable

figures, we reduce the dataset to a two-class case, considering

the data from the right hand and left hand MI realisations.

Fig. 2 shows the distance of each trial from the two class-

related mean covariance matrices P
(1)
G

and P
(2)
G

. On the ab-

scissa, we have the distance from the the right hand mean, i.e.,
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δR(P
(1)
G

,Pi). On the ordinate, we have the distance from the

left hand mean, i.e., δR(P
(2)
G

,Pi). The dashed line represent

the decision border whereupon δR(P
(1)
G

,Pi) = δR(P
(2)
G

,Pi).
In this instance, only a small percentage of trials are misclas-

sified and the use of Riemannian distance to mean is effective.
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Figure 2. Riemannian distance to Riemannian mean for 2 class-related mean
covariance matrices - case of right hand vs. left hand

To understand the benefit of the Riemannian framework,

the same process is applied using both Euclidean distance

and Euclidean mean, as expressed in (9). Fig. 3 illustrates the

obtained results. The trials are distributed around the dashed

line regardless of their class membership. This fact implies

that the relevant information about class membership is not

accessible using the Euclidean distance and the associated

mean.
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Figure 3. Euclidean distance to Euclidean mean for 2 class-related mean
covariance matrices - case of right hand vs. left hand

2) Tangent space: We need to check the approximation, in

terms of distance between the Riemannian manifold and the

tangent space, as stated by (8). It can be empirically verified

looking at the normalized pairwise errors given by

ǫij =
|δR(Pi,Pj)− ‖si − sj‖2|

δR(Pi,Pj)
. (12)

The average and standard deviation of ǫij across the 9

subjects are 2% and 0.6%, respectively. We conclude that

approximation (8) is verified in these data.

Then we apply Algorithm 2 to map the data in the Tangent

space. It is interesting to observe the distribution of each

class across trials. Fig. 4 illustrates these distributions for the

most discriminant variable, selected using an ANOVA over

the m variables of the tangent space. Clearly, all classes are

not separated equally well. We can distinguish two groups.

On one side, the trials corresponding to both hands and

on the other side the trials corresponding to the foot and

tongue. This phenomenon is due to physiological reasons, as

it was discussed in [19]. Also, for this variable, the trials

corresponding to the left hand are almost fully separated

from those corresponding to the tongue movement. Obviously,

increasing the number of variables will bring supplementary

information useful to treat the other cases.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
Trial values on the most discriminant variable

 

 

Right hand
Left hand
Foot
Tongue

Figure 4. Class distribution across trials for the most discriminant variable
in Tangent space

The CSP algorithm is widely used in BCI. If we observe

the distributions of features corresponding to the best CSP

spatial filter (Fig. 5) and selected using the methods described

in [20], we found the same pattern of distributions as observed

in Fig. 4. This is not surprising, according to our work in [21];

we have shown that the CSP feature space can be viewed as a

filtered and approximated representation of the Riemannian

manifold. In a similar way, the tangent space is also an

approximated representation of the Riemannian manifold as

explained in III-D.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
Trial values on the best CSP filter

 

 
Right hand
Left hand
Foot
Tongue

Figure 5. Class distribution across trials for the best CSP spatial filter

In this example the feature corresponding to the best CSP

filter is able to better discriminate the different classes as

compared to the best variable in tangent space. However, we

need to keep in mind that CSP is a supervised technique

and the spatial filters are build using the knowledge of class

label in order to maximize the discrimination of the different

classes. On the other hand, the tangent space mapping is a fully

unsupervised operation. In this sense, the variables obtained
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with the tangent space mapping are not subject to over-fitting.

In this article, we use a supervised variable selection in order

to reveal the variables of interest. However, this step is not

mandatory and depends on the used classification algorithms.

The number of electrodes is n = 22, thus the tangent space

is of dimension m = 253, which is not much lower than the

number of trials (576). Albeit possible it is not efficient to use

standard classification algorithms like LDA. This is due to the

difficulty to compute an unbiased estimation of the features

covariance matrix. For this reason we perform a selection of

discriminant variables according to the procedure described in

Section IV-B1.

After the orthogonalization of the tangent space, the

ANOVA sorts the variables in terms of discriminability be-

tween the classes. Fig. 6 shows the p-value evolution along the

sorted variables. One can observe a quick increase of the p-

value, suggesting that only a small subset of variables is useful.

The minimal number of variables is set using the weighted

FDR algorithm with q = 0.05 (in the FDR procedure q is

the expected proportion of false rejections with respect to all

rejections). For this user, the number of selected variables is

10.
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Figure 6. Evolution of the p-value (straight line) and number of selected
variables (dashed line)

3) Classification: Fig. 7 shows the evolution of the clas-

sification error rate against the number of selected variables.

The classifier is a multi-class implementation of LDA, thus it

is very sensitive to over-fitting: the error on the training set

decreases to zero while the test set error rate increases after

10 variables.
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Classification error rate in 30−Fold Cross Validation

 

 
Training set
Test set

Figure 7. Classification error vs. number of selected variables

The minimum classification error rate is given for 10

variables. The weighted FDR procedure allows to select the

optimal number of variables. Retaining the best 10 variables

the error rate amounts to 19.5% for this user. A graphical

representation of the confusion matrix is given in Fig. 8. As

expected, most ambiguities are found between the two pairs

of hands and foot vs. tongue.

R Hand L Hand Foot Tongue
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Figure 8. Confusion matrix in 30-fold cross validation for the subject S1

C. Classification results

We have evaluated the performance of the proposed methods

by means of classification accuracy. For all methods, we

applied a 30-fold cross-validation procedure [22]. Performance

is measured in terms of classification accuracy, thus the higher

the score the better the performance. Since there are four

classes, the chance level is 25%.

The two proposed Riemannian methods are compared with

the classical approach consisting in a spatial filtering by multi-

class CSP [1], [20] followed by a LDA classification [2]

on the feature space composed by the log variance of the

spatially filtered signals. The multi-class CSP used in this

paper is an implementation of [1] that performed approximate

joint diagonalization of all the class-related mean covariance

matrices. This algorithm is more efficient than the standard

CSP used in a one-versus-rest manner for the multi-class case.

The number of CSP spatial filter is set to 8 as proposed in

the reference papers [1], [20]. For a more fair comparison,

we also presented the results for the CSP method (denoted

CSP*+LDA) whereby the optimal number of filters was se-

lected for each subject according to a weighted FDR criterion

that is similar to our method.

No parameters need to be set for both Riemannian methods.

For the TSLDA, the procedure is fully automatic since the

weighted FDR choose the optimal number of variables.

The results are shown in Table I. First of all, the subject spe-

cific selection of the number of spatial filters did not improve

significantly the results of the reference method. However, this

selection makes the procedure fully automatic. The MDRM

method offers a slightly worse result as compared to the

reference methods. This is not surprising since this method

does not perform any kind of de-noising. More interesting

results are given by the TSLDA method. For all subjects

except subject S1, this method outperforms the reference
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Table I
CLASSIFICATION ACCURACY IN 30-FOLD CROSS-VALIDATION

CSP+LDA CSP*+LDA (nb. of filters) MDRM TSLDA (nb. of var).

S1 78.3 81.8 (14.3) 77.8 80.5 (10.6)

S2 44.7 45.1 (6.6) 44.1 51.3 (13.7)

S3 82.2 83.5 (13.5) 76.8 87.5 (12.6)

S4 59.1 59 (9.2) 54.9 59.3 (13.4)

S5 39.7 42.2 (4) 43.8 45 (15)

S6 50.1 43.3 (3) 47.1 55.3 (23.3)

S7 81 81.5 (9.1) 72 82.1 (11.7)

S8 68.5 69.6 (10) 75.2 84.8 (8.9)

S9 77.4 80 (15.1) 76.6 86.1 (12.2)

mean 64.6 ± 16.6 65.1 ± 17.9 (9.4 ± 4.3) 63.2 ± 15.2 70.2 ± 17.1 (13.5 ± 4.1)

Table II
MEAN CONFUSION MATRIX FOR CSP+LDA

R hand L hand foot tongue

R hand 66.8 14.4 11.2 9.2

L hand 17 63.3 9.7 7.1

foot 9.9 12.3 61.5 16.6

tongue 6.2 10 17.7 67.2

Table III
MEAN CONFUSION MATRIX FOR CSP*+LDA

R hand L hand foot tongue

R hand 68.6 14.9 10.5 8.3

L hand 16.5 64.5 11.1 8.5

foot 9.1 11.1 59.8 15.6

tongue 5.9 9.5 18.5 67.7

Table IV
MEAN CONFUSION MATRIX FOR MDRM

R hand L hand foot tongue

R hand 68 21.9 13 10.3

L hand 15.2 56.1 6.1 4.8

foot 9.1 11 61.5 17.1

tongue 7.7 10.9 19.5 67.8

Table V
MEAN CONFUSION MATRIX FOR TSLDA

R hand L hand foot tongue

R hand 70.7 15.5 8.5 7.3

L hand 15.5 68.5 7 7.1

foot 7.3 8.5 69.9 14

tongue 6.4 7.6 14.5 71.7

methods. It is also interesting to see that the improvement

is more important for the difficult cases. The average number

of selected variables is small (∼ 13.5) in comparison to the

total number of variables.

A more sophisticated analysis can be done using the con-

fusion matrices given in Tables II-III-IV-V. It appears that

the reference methods have more difficulties to treat the left

hand and foot classes. We observe the same behaviour with

the MDRM method. On the other hand, the TSLDA approach

seems not affected by this problem, displaying around 70%

correct classification rate for all classes. In summary, the

improvements brought upon by TSLDA are mainly due to a

better handling of critical cases, resulting in a 7% improvement

classification for both left hand and foot classes.

Finally, Table VI gives the results in terms of kappa values,

as it was done for the BCI competition IV. The described

methods are applied in the conditions of the Competition in

order to compare performances. The MDRM method achieved

a mean performance of 0.52 which ranks this method to

the second place of the competition. The TSLDA method

achieved a mean performance of 0.567 which is close to the

score of the winner. Moreover, the scores are obtained without

exploiting the frequential information, contrary to the winner.

Higher performances can be reached using an optimisation of

frequency filters.

VI. CONCLUSION

This article presents a new framework to classify single

trials in BCI applications based on motor imagery. It relies on

the covariances matrices as descriptors of EEG signal. Two

methods based on Riemannian geometry have been proposed

to classify directly the covariance matrices. The first method,

named MDRM, is an implementation of the Minimum Dis-

tance to Mean (MDM) algorithm using Riemannian Distance

and Riemannian Mean instead of the classical Euclidean equiv-

alent. This algorithm is simple, effective and offers results

close to those obtained with the reference method (consisting

in a multi-class CSP followed by a LDA). The second method,

named TSLDA, is based on a powerful Riemannian concept:

the tangent space. The covariance matrices are mapped onto

a higher dimensional space where they can be vectorized

and treated as Euclidean objects. In this tangent space a

variable selection procedure is applied in order to decrease

dimensionality and a classification by LDA is performed.

Significant better results have been achieved with the TSLDA

method compared to the reference one. This improvement is

mainly due to a better handling of difficult (noisy) cases where

there is a strong ambiguity between the class memberships.

Both methods do not need spatial filtering anymore. In the

case of the MDRM classification method, the only necessary

signal processing steps are a temporal filtering, an estima-

tion of the mean covariance matrices and a comparison of

Riemannian distances. No parameters need to be set and the

obtained results appear satisfactory. In addition, the tangent

space mapping is an unsupervised operation that extracts

spatial information with a quality comparable to the state-

of-the-art CSP. This result may lead to the development of

efficient unsupervised training algorithms in BCI applications.

Yet, there are several issues that need to be investigated in

details. On one hand, spatial filtering by CSP can be viewed as

a way to reduce the dimensionality of the problem and to give

a criterion based on eigenvalues in order to select the best



8

Table VI
RESULTS OF THE BCI COMPETITION IN KAPPA VALUES

mean kappa S1 S2 S3 S4 S5 S6 S7 S8 S9

1st 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

TSLDA 0.567 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76

MDRM 0.52 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68

2nd 0.52 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69

3rd 0.31 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

components. On the other hand, the tangent space mapping

allows gathering more spatial information by making a higher

dimensional space. This high dimensionality of the tangent

space could bring difficulties for some algorithms, causing

overfitting or bias in statistical estimations. For this reason, the

unconditional replacement of spatial filtering by the tangent

space mapping is not recommended in all cases. However,

several solutions are available to address this problem. In this

article we have chosen to use a variable selection procedure

but a regularization strategy may be efficient as well.

Future works should try to reduce the computational cost of

these methods. Since a computation of a Riemannian distance

involves a matrix inversion and a matrix diagonalization, the

computational time dramatically increases with the number of

electrodes. This effect could be reduced using an optimized

implementation of eigenvalue decomposition or by using other

metrics approximating the Riemannian metric [23].

Finally, it is difficult to interpret the results physiologically,

unlike the observation of the spatial patterns in CSP, which

gives information about the brain areas involved in the MI.

Even if selected variables in the tangent space correspond

to geodesics in the Riemann manifold, these geodesics can

not be trivially used to visualize physiological principles, i.e.,

electrode positions or weights. We will investigate this point

in a future work.

Beyond these few limitations the proposed framework ap-

pears very promising. This work opens the door to a new

family of BCI algorithms wherein investigations have just

started.
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