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Gene expression profiling by microarray technology has been successfully applied to
classification and diagnostic prediction of cancers. Various machine learning and data
mining methods are currently used for classifying gene expression data. However, these
methods have not been developed to address the specific requirements of gene microarray
analysis. First, microarray data is characterized by a high-dimensional feature space often
exceeding the sample space dimensionality by a factor of 100 or more. In addition,
microarray data exhibit a high degree of noise. Most of the discussed methods do not
adequately address the problem of dimensionality and noise. Furthermore, although machine
learning and data mining methods are based on statistics, most such techniques do not
address the biologist’s requirement for sound mathematical confidence measures. Finally,
most machine learning and data mining classification methods fail to incorporate
misclassification costs, i.e. they are indifferent to the costs associated with false positive and
false negative classifications. In this paper, we present a probabilistic neural network
(PNN) model that addresses all these issues. The PNN model provides sound statistical
confidences for its decisions, and it is able to model asymmetrical misclassification costs.
Furthermore, we demonstrate the performance of the PNN for multiclass gene expression
data sets. Here, we compare the performance of the PNN with two machine learning
methods, a decision tree and a neural network. To assess and evaluate the performance of
the classifiers, we use a lift-based scoring system that allows a fair comparison of different
models. The PNN clearly outperformed the other models. The results demonstrate the
successful application of the PNN model for multiclass cancer classification.

1 Introduction

The diagnosis of complex genetic diseases such as cancer has traditionally been
made on the basis of non-molecular criteria such as tumor tissue type, pathological
features, and clinical stage. In the past several years, DNA microarray technology
has attracted tremendous interest in both the scientific community and in industry.
Several studies have recently reported on the application of microarray gene
expression analysis for molecular classification of cancer [1,2,3]. Microarray
analysis of differential gene expression has been used to distinguish between
different subtypes of lung adenocarcinoma [4] and colorectal neoplasm [5], and to
predict clinical outcomes in breast cancer [6,7] and lymphoma [8]. J. Khan et al.
used an artificial neural network approach for the classification of microarray data,
including both tissue biopsy material and cell lines [9]. Various machine learning
methods have been investigated for the analysis of microarray data [10,11]. The
combination of gene microarray technology and machine learning methods promises
new insights into mechanisms of living systems. An application area where these



techniques are expected to make major contributions is the classification of cancers
according to clinical stage and biological behavior. Such classifications have an
immense impact on prognosis and therapy. In our opinion, a classifier for this task
should address the following issues: (1) The classifier should provide an easy-to-
interpret measure of confidence for its decisions. Thereby, the final diagnosis rests
with the medical expert who judges if the confidence of the classifier is high
enough. In one scenario, a classification that relies on a confidence of 75% might be
acceptable, whereas in another, the medical expert only accepts classifications of at
least 99%. (2) The classifier should take into account asymmetrical
misclassification costs for false positive and false negative classifications. For
example, suppose a tissue sample is to be classified as either benign or malign. A
false positive classification may result in further clinical examinations, whereas a
false negative result is very likely to have severe consequences for the patient.
Consequently, the classifier should ideally be very “careful” when classifying a
sample to the class “benign”. The misclassification costs depend on the problem at
hand and have to be evaluated by the medical expert. Machine learning methods
that are able to address both issues are very rare. In this paper, we present a model
of a probabilistic neural network for the classification of microarray data that
addresses both issues.

Many publications report on cancer classification problems where the number
of classes is rather small. For example, the classification problem of J. Khan et al.
comprised four cancer classes [9], and the classification problem of T. Golub et al.
comprised only two classes [1]. However, multiclass distinctions are a considerably
more difficult task. S. Ramaswamy et al. recently reported on the successful
application of support vector machines (SVM) for multiclass cancer diagnosis [2].

2 Probabilistic neural networks

Probabilistic neural networks (PNNs) belong to the family of radial basis function
neural networks. PNN are based on Bayes’ decision strategy and Parzen’s method of
density estimation. In 1990, D. Specht proposed an artificial neural network that is
based on these two principles [12]. This model can compute nonlinear decision
boundaries that asymptotically approach the Bayes’ optimal. Bayesian strategies are
decision strategies that minimize the expected risk of a classification. The Bayesian
decision theory is the basis of many important learning schemes such as the naïve
Bayes classifier, Bayesian belief networks, and the EM algorithm. The optimum
decision rule that minimizes the average costs of misclassification is called Bayes’
optimal decision rule. It can be proven that no other classification method using the
same hypothesis space and the same prior knowledge can outperform the Bayes’
optimal classifier on average [13]. The following definition is adapted from
T. Masters [14]:

Definition 1: Bayes’ optimal classifier



Given a collection of random samples from n populations. The prior probability
that a sample 

xr
 belongs to population k is denoted as hk. The costs associated with

a misclassification of a sample belonging to population k is denoted as ck. The
conditional probability that a specific sample belongs to population k, p(k | 

xr
), is

given by the probability density function fk(
xr

). An unknown sample 
xr

 is
classified into population i if()()iiijjjhcfxhcfx⋅⋅>⋅⋅rr

for all populations 
ji≠

.
We refer to this decision criterion as Bayes’ decision criterion. This criterion

favors a class if the costs associated with its misclassification are high (ci).
Furthermore, the rule favors a class if it has a high prior probability (hi). Finally,
the rule favors a class if it has high density in the vicinity of the unknown sample
(fi(
xr

)). The prior probabilities h are generally known or can be estimated. The
misclassifications costs c rely on a subjective evaluation. The probability density
functions, however, are unknown in real-world applications and have to be
estimated. D. Specht proposed to use Parzen’s method for non-parametric
estimation of the density using the set of training samples. D. Parzen proved that
the estimated univariate probability density converges asymptotically to the true
density as the sample size of the training data increases [15]. The estimator for the
density function contains a weighting function that is also known as kernel function
or Parzen window. The kernel is centered at each training sample. The estimated
density is the scaled sum of the kernel function for all training samples. Various
kernel functions are possible [16], but the most common kernel is the Gaussian
function [14]. The scaling parameter σ defines the width of the bell curves and is
also referred to as window width, bandwidth, or smoothing factor (the latter one is
most commonly used in the context of PNNs). Equation 1 shows the estimated
density for the multivariate case and the Gaussian as kernel function:()21122jTmijijjdimdimij(xx)(xx)ˆ f(x)expmσπσ=−⋅−=−∑rrrrr

(1)

where
ˆ jf

 : estimated density for the j-th class
xr

: test caseijxr
: i-th training sample of the j-th population / class

dim : dimensionality of 
ijxr

σ: smoothing factor
T: transpose
mj : number of training cases in the j-th class

D. Specht proposed a four-layered feed-forward network topology that implements
Bayes’ decision criterion and Parzen’s method for density estimation. The operation
of the basic PNN is best illustrated on a simple architecture as depicted in Figure 1:
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Figure 1:   Architecture of a four-layered PNN for n training cases of 2 classes.

The input layer of the PNN in Figure 1 contains two input neurons, NI1 and
NI2, for the two test cases, 

xr
 and 

yr
. The pattern layer contains one pattern

neuron for each training case, with an exponential activation function. A pattern
neuron Ni computes the squared Euclidean distance 

2()()Tijijdxxxx=−⋅−rrrr

between a new input vector 
xr

 and the i-th training vector of the j-th class. This
distance is then transformed by the neuron’s activation function (the exponential).
In the PNN of Figure 1, the training set comprises cases belonging to two classes,
A and B. In total, m training cases belong to class A. The associated pattern neurons
are N1…Nm. For example, the neuron N3 contains the third training case of class A.
Class B contains n – m training cases; the associated pattern neurons are Nm+1…Nn.
For example, the neuron Nm+2 contains the second training case of class B. For each
class, the summation layer contains a summation neuron. Since we have two
classes in this example, the PNN has two summation neurons. The summation
neuron for class A sums the output of the pattern neurons that contain the training
cases of class A. The summation neuron for class B sums the output of the pattern
neurons that contain the training cases of class B. The activation of the summation
neuron for a class is equivalent to the estimated density function value of this class.
The summation neurons feed their result to the output neurons in the output layer.
These neurons are threshold discriminators that implement Bayes’ decision
criterion. The output neuron NO1 generates two outputs: the estimated conditional
probability that the test case 

xr
 belongs to class A, and the estimated conditional

probability that this case belongs to class B. The output neuron NO2 generates the
respective estimated probabilities for the test case 

yr
. Unlike other feed-forward

neural networks, e.g., multi-layer perceptrons (MLPs), all hidden-to-output weights
are equal to 1 and do not vary during processing. For the present study, we use the
same smoothing factor σ for all classes. Whereas the choice of the kernel function



has no major effect on the performance of the PNN, the choice of σ has a significant
influence. The smaller the smoothing factor, the more influence have individual
training samples. The larger the smoothing factor, the more blurring is induced. It
has been shown that neither limiting case provides optimal separation of class
distributions [12]. Clearly, averaging multiple nearest neighbors results in a better
generalization than basing the decision on the first nearest neighbor only. On the
other hand, if too many neighbors are taken into account, then the PNN generalizes
weakly as well. The optimal smoothing factor can be determined through cross-
validation procedures. However, the choice of the smoothing factor always implies
a trade-off between the variance and the bias of a kernel-based classifier. Further
techniques for adapting σ and for improving the basic model of the PNN can be
found in [17,18].

3 Analysis of the leukemia data set

The leukemia data set includes expression profiles of 7,129 human DNA probes
spotted on Affymetrix Hu6800 microarrays of 72 patients with either acute myeloid
leukemia (AML) or acute lymphocytic leukemia (ALL) [1]. Tissue samples were
collected at time of diagnosis before treatment, taken either from bone marrow (62
cases), or peripheral blood (10 cases) and reflect both childhood and adult
leukemias. Furthermore, a description of cancer subtypes, treatment response,
gender, and source (laboratory) was given. RNA preparation, however, was
performed using different protocols. The gene expression profiles of the original
data set are represented as log10 normalized expression values. This data set was
used as a benchmark for various machine learning techniques at the First Critical
Assessment of Microarray Data Analysis at the Duke University in October 2000
(CAMDA 2000). The data set was divided into a training and a validation set.
Table 1 shows the number of cases in the data sets:

Table 1.   Distribution of cancer primary classes (AML and ALL) and subclasses in the training and the
test set (N/a: no cancer subclass specified).

Primary class ALL AML
Subclass B-cell T-cell M1 M2 M4 M5 N/a Σ

# of cases in training set 19 8 3 5 1 2 0 38
# of cases in validation set 19 1 1 5 3 0 5 34

The original data set of 7,129 genes contains some control genes that we
excluded from further analysis. After this preprocessing, each sample consists of a
row vector of 7,070 expression values. The classification of the leukemia subclasses
is an even more challenging task than the classification of the primary classes (ALL
and AML) in the CAMDA 2000, because the subclass distributions are very skewed
in the training and the validation set. In a leave-one-out cross-validation procedure,
we tested different values for the smoothing factor. We initialized σ with 0.01. The
first case of the training set, 

xr
, was used as the hold-out case, and the remaining



37 cases were forwarded to the pattern layer. We assume equal misclassification
costs for all cancer classes and classify 

xr
 using Bayes’ decision criterion

(cf. Definition 1). Then, the second case was retained as the hold-out case, and the
remaining cases were moved to the pattern layer. This procedure was repeated for
100 different values for the smoothing factor, ranging from 0.01 to 1.00. After all
cases had been classified in turn, we performed a sensitivity analysis. Ideally, the
sensitivity for each class should be maximal. Consequently, the optimal smoothing
factor maximizes the sum of all sensitivities. Based on this criterion, the PNN
performed best for a smoothing factor of 0.03 on the training set. Therefore, we
chose this smoothing factor to classify the cases of the validation set. Table 2
shows the resulting confusion matrix for the classification of the cancer subclasses.

Table 2.   Confusion matrix for the classification of the leukemia subclasses.

Real class
M1 M2 M4 M5 B-cell T-cell N/a Σ

M1 1 1 - - 3 - 1 6
M2 - 4 1 - - - - 5
M4 - - - - - - - -
M5 - - - - - - 2 2

B-cell - - 2 - 16 1 2 21
T-cell - - - - - - - -

N/a - - - - - - - -
Σ 1 5 3 - 19 1 5 34

sensitivity 1.00 0.80 0.00 - 0.84 0.00 0.00
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specificity 0.85 0.97 1.00 0.94 0.67 1.00 1.00

The PNN is very sensitive to the class M1 and M2, but fails to classify the M4
cases correctly. This can be explained by the fact that only one case of this subclass
is contained in the training set. The sensitivity for the subclass B-cell is relatively
high (0.84). However, the PNN misclassified the T-cell case a B-cell case, although
the training set contained 8 T-cell cases. Given this relatively large number of cases
of T-cell cases in the training set, this result is rather disappointing. In the
validation set, 5 cases are of type AML, but no further subclass specification is
given. In the training set, this class is not present, thus the PNN is not able to
predict this class. Interestingly, 3 of these 5 cases are correctly classified as cases of
type AML (1 case is classified as M1, 2 cases are classified as M5).

4 Analysis of the NCI60 data set

The NCI60 data set comprises 1,416 gene expression profiles of 60 cell lines [19].
The data set includes nine different cancer classes: central nervous system (CNS, 6
cases), breast (BR, 8 cases), renal (RE, 8 cases), lung (LC, 9 cases), melanoma (ME,
8 cases), prostate (PR, 2 cases), ovarian (OV, 6 cases), colorectal (CO, 7 cases), and
leukemia (LE, 6 cases). The gene expression data comprise mainly ESTs of known
and unknown function given by the negative logarithm of the ratio between the red
and green fluorescence of the signals. The 60

×
1,416 microarray matrix contains



2,033 missing values in total. Different methods for missing value imputation in
the context of microarrays have been discussed. We propose the following missing
value imputation method: Let v(ci, g) denote the gene expression value for case ci

and gene g. If v(ci, g) is a missing value, then replace it by the mean of all values
v(cj, g) where the cancer class of ci and cj is the same. This method makes explicit
use of the class membership of each sample and is based on the following rational:
O. Troyanskaya et al. resumed that k-nearest neighbor (kNN) methods provide for
the best estimation of missing values in microarrays [20]. A major problem with
kNN methods is the adequate choice of the number of neighbors (k) to be taken into
account. It is probable that a gene is similarly expressed in samples of the same
cancer type. For missing value imputation, we therefore consider only the neighbors
that belong to the same class. For some genes, our imputation method was not
possible. For example, the expression values of topoisomerase II alpha-log are
missing for both cases of class PR. In total, the missing value imputation was not
possible with the described method for 11 genes. These genes were excluded from
further analysis.

Feature selection and dimension reduction techniques are both used to remove
features that do not provide significant incremental information. In the context of
microarray data, such features can be redundant genes. For example, if two genes are
similarly co-regulated, then they provide the same basic information, and the
removal of one of these genes does, in general, not result in a loss of information
for a classifier. Numerous studies have revealed that in high-dimensional microarray
data, feature selection and dimension reduction methods are essential to improve the
performance of a classifier (for a general discussion, see [21]). Many publications
report on dimension reduction techniques such as principal component analysis
(PCA) that is based on singular value decomposition [22]. To assess the
performance of our model, we tested the PNN in a leave-one-out cross-validation
procedure (1) on the original data set, and (2) on a reduced data set, comprising
only a set of principal components. We compared the performance of the PNN with
the performance of two other machine learning methods: the decision tree C5.0
[23], and a neural network: the multi-layer feedforward perceptron (MLP), trained
with the backpropagation algorithm [24]. The training of the MLP was stopped
when no further optimization was possible. The MLP comprised one hidden layer,
containing 7 neurons for classifying the original data, and 4 neurons for classifying
the reduced data. We applied the leave-one-out cross-validation procedure as
described above to all models; i.e. each model is trained on all but one sample
(hold-out case), and then we used the model to predict the class of the hold-out
case. We iterated this procedure until each case was used as hold-out case.

4.1 Analysis of the NCI60 original data set

After data cleansing, the original data set consisted of 60 cell-line samples (9 cancer
classes), and 1,405 features (expression values of genes and ESTs). We assumed
equal misclassification costs for all classes. Given the relatively small number of



cases per class, we chose a relatively small value for the smoothing factor. Table 3
shows the confusion matrix for σ = 0.3.

Table 3.   Confusion matrix for the NCI60 original data set.

Real class
CNS BR RE LC ME PR OV CO LE Σ

CNS 5 1 - - - - - - - 6
BR 1 5 1 1 - - 1 - - 9
RE - - 7 2 1 - - - - 10
LC - 1 - 5 - 1 1 - - 8

ME - - - - 7 - - - - 7
PR - - - - - - - - - -
OV - 1 - - - - 4 - - 5
CO - - - 1 - 1 - 7 - 9
LE - - - - - - - - 6 6
Σ 6 8 8 9 8 2 6 7 6 60

sensitivity 0.83 0.63 0.88 0.56 0.86 0.00 0.67 1.00 1.00

C
la

ss
ifi

ca
tio

n

specificity 0.98 0.92 0.98 0.94 1.00 1.00 0.98 0.96 1.00

The sensitivity and specificity for the classes CO and LE are very high,
whereas the PNN was not able to classify the PR cases. This can be explained by
the leave-one-out cross-validation procedure: When a PR case is used as the hold-
out case, the training set comprises only one PR case. In total, the PNN
misclassified 14 cases (23.3%). However, if we accept only those classifications
that rely on a confidence of at least 

ˆp
 = 0.8, then the model misclassifies only 2

cases. Both C5.0 and MLP performed very weakly on the original data set (the
respective confusion matrices are not shown). Their classification performance
improved significantly on the reduced data set. Table 4 summarizes the performance
of the three models on both the original and the reduced data set.

4.2 Analysis of the NCI60 reduced data set

We used PCA without mean centering. In our analysis, we used the first 23
principal components as hybrid variables; these variables explain more than 75% of
the total variance. The sensitivities and specificities of the PNN are very similar to
those that resulted from the original data set and are therefore not shown.

So far, we evaluated the performance of the PNN on the basis of its
classification accuracy. However, accuracy-based evaluation metrics alone are
inadequate to evaluate the performance of a classifier. A tacit assumption in the use
of these accuracy measures is that the class distributions among the cases are
constant and relatively balanced. The lift is a measure that takes different class
distributions into account and is the preferred method for evaluating a classifier’s
performance [21].

Definition 2: class lift and total lift
Given the set of class labels, C = {c1, c2 ,..., cm} and the set of cases,
S = {x1, x2, ..., xn}. Let act(xj) denote the actual class (label) of case xj and prd(xj)



the class (label) predicted for xj by a classifier. Then the class lift for a particular
class ci, lift(ci), is measured by the prior probability, p(act(xj) = ci), of class ci

occurring in S, and the conditional probability, p(act(xj) = ci | prd(xj) = ci) of class
act(xj) = ci given the prediction, prd(xj) = ci, as follows:()()0()|()()()ijijiiji, if class c is not predictedpactxcprdxcliftcotherwisepactxc====

11()miitotal liftliftcm==⋅∑

Table 4 shows the lifts resulting from the three models for the original and the
reduced data set.

Table 4.   Lifts for the classification of the NCI60 data set (p.c.: principal component).

Class lift of PNN Class lift of C5.0 Class lift of MLP

Class Maximum lift All data 23 p.c. All data 23 p.c. All data 23 p.c.
CNS 10.00 8.33 8.33 1.67 8.33 0.00 2.00
BR 7.50 4.17 3.75 2.14 3.75 1.67 1.25
RE 7.50 5.25 5.83 1.67 3.21 0.00 1.89
LC 6.67 4.17 5.56 2.50 1.03 0.00 1.82
ME 7.50 6.56 6.56 3.75 5.63 1.07 3.75
PR 30.00 0.00 0.00 0.00 0.00 0.00 0.00
OV 10.00 8.00 8.33 0.00 5.56 0.00 1.67
CO 8.57 6.67 7.50 3.43 6.43 1.43 3.43
LE 10.00 10.00 10.00 10.00 8.57 1.00 6.67

Total lift 10.86 6.01 6.21 2.80 4.72 0.57 2.50

The lift can be interpreted as a score: the more difficult the classification of a case,
the higher the potential score for the classifier. Table 4 also shows the maximum
lift, i.e. the highest score that a classifier can obtain. Although the decision tree and
the neural network performed much better on the reduced data set than on the
original data set, the PNN still outperformed both models. However, it should be
noted that other feature selection methods might significantly improve the
performance of the decision tree and the neural network. But it is interesting that
the PNN performs similarly on both the original and the reduced data set. It seems
that – compared with the other models – the PNN is less sensitive to noise.

5 Discussion

We consider the ability to provide sound confidence levels and the ability to model
asymmetrical misclassification costs as the two most important qualities of PNN in
the context of microarray analysis. PNN have shown excellent classification
performance in other applications, and perform equally or better than other types of
artificial neural networks (ANNs). In contrast to other types of ANNs, e.g. MLPs,



PNN are not “black boxes”: The contribution of each pattern neuron to the outcome
of the network is explicitly defined and accessible, and has a precise interpretation.
The training of MLPs involves heuristic searches like the steepest descent method.
These heuristics involve small modifications of the network parameters that result
in a gradual improvement of system performance. Heuristic approaches are
associated with long training times with no guarantee of converging to an
acceptable solution within a reasonable timeframe. The training of PNN involves no
heuristic searches, but consists essentially of incorporating the training cases into
the pattern layer. However, finding the best smoothing factor for the training set
remains an optimization problem. PNNs tolerate erroneous samples and outliers.
Sparse samples are adequate for the PNN. Other types of ANN and many traditional
statistical techniques are hampered by outliers. Finally, when new training data
become available, PNN do not need to be reconfigured or retrained from scratch;
new training data can be incrementally incorporated in the pattern layer.

A disadvantage of PNNs is the fact that all training data must be stored in the
pattern layer, requiring a large amount of memory. But in general, today’s standard
PCs have a sufficiently large main memory capacity for an efficient implementation
of PNN. In applications where large amounts of training cases are available, this
argument against PNNs becomes relevant. But the problem can be circumvented by
using cluster centroids as training cases, or by resorting to a parallel processor
implementation.

Although the output of the PNN is probabilistic, we should keep in mind that
the probabilities are estimates and conditional on the learning set. Future work will
focus on an exhaustive comparison of state-of-the-art classifiers in multiclass cancer
classification problems.
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