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Abstract—We address two shortcomings of the Common Spa- maximally (in terms of the variance) between condition<iSu
tial Patterns (CSP) algorithm for spatial filtering in the context  gpatial filters are especially suited for BCls utilizing miot
of Brain-Computer Interfaces (BCls) based on EEG/MEG: First, imagery paradigms, in which the intention of the user is typ-
the question of optimality of CSP in terms of the minimal . . : o . .
achievable classification error remains unsolved. Second, CSPICaIIy inferred from frequency specific Chfi_nge_s in varianée
has been |n|t|a||y proposed for two-class paradigms_ Extensions EEG/MEG Components. Exce”ent Cla.SS|f|Ca.t|0n reSUItS ha.Ve
to multi-class paradigms have been suggested, but are basedbeen reported using CSP for pre-processing in non-invasive
on heuristics. We address these shortcomings in the framework BCls based on motor imagery (e.g., in one of the winning
of Information Theoretic Feature Extraction (ITFE). We show entries of the BCI competition 2003 [2]), and improvement

that for two-class paradigms CSP maximizes an approximation . - . .
of mutual information of extracted EEG/MEG components and ©f the CSP algorithm, especially its extension to the spéctr

class labels. This establishes a link between CSP and the minimaldomain, is an active area of research (cf. [6], [13], [22] and
classification error. For multi-class paradigms, we point out that the references therein).
CSP by joint approximate diagonalization (JAD) is equivalentto |n this article, we address two shortcomings of the CSP
Independent Component Analysis (ICA), and provide a method  5qrithm. The first is that at present there is no estalfishe
to choose those independent components (ICs) that approxinely . . - .
maximize mutual information of 1Cs and class labels. This connection between the CSP algorithm and the minimal elassi
eliminates the need for heuristics in multi-class CSP, and allows fication error of a BCI. While from an intuitive point of view
incorporating prior class probabilities. The proposed method is the optimization problem solved by CSP, i.e., maximization
applied to the dataset llla of the third BCI competition, and is of the ratio of the variance of the extracted EEG/MEG
shown to increase @he mean classification accuracy by 23.4% in components between conditions, seems sensible, it is an ope
comparison to multi-class CSP. . . . . .
guestion whether this approach is actually optimal in terms
of the minimal achievable classification error. The second
. INTRODUCTION shortcoming is that CSP has been designed for two-class BCls
. While extensions to multi-class paradigms have been prapose
((j)e'\\l/;::Ne\s/A;ZEer?eiz:g-Eﬁgepgtt:rttl)nf(;z(rfusnigﬂsivi?r:iand have been shown to deliver good experimental results
) ], these extensions are largely based on heuristics. More

using the peripheral nervous system (see [24] for a revie ecifically, the extensions of CSP to multiple classesqseg
This can be realized by measuring the electric or magnetct ﬂ(?n [6] are ’based on a two-step procedure: computation of
gen er?rtled by.the Icetntr.a:cnetrr\‘/ogstsy?tem fbt{]EEG or ][thgf B dset of potential spatial filters and selection of a subset
using these signa’s to infer the intention of the user ot of these filters. The selection of a subset of spatial filters
One of the main problems in this context is the low signal-t

noise-ratio (SNR) of the recorded EEG/MEG data. This h?s based on heuristics which are evaluated experimentally.

tivated h tial filters that desianeditact While convincing classification accuracies are reported]n [
motivated research on spatial Titers that are gesigneatia@Xx 5 14 pe desirable to establish a theoretical framework f

Fhose cc.)mponents.of th? EEG/MEG data that provide mossélecting a subset of spatial filters that is optimal in terms
information on the intention of the BCl-user.

) ) . of either the minimum or the expected classification ernor. |
One algorithm that is very frequently used for this PUrPGS€ ;5 article, we address these two shortcomings in the frame

the Comm_on Spatial Patterns (CSP) algorithm. C.:SP was fi| rk of Information Theoretic Feature Extraction (ITFE).
proposed in the context of EEG/MEG analysis in [12], an he principle of ITFE is to extract those components of the

'dnt;OdquES t%_]tcpe BtCI lcommunlty n [lt8]' G ven EE?{( ';]AEIG EG/MEG data that maximize mutual information of extracted
ata ot two diirerent classes, €.g., motor imagery o X omponents and class labels. Under some assumptions,ghat w

and right hand, the CSP algorithm computes spatial filteas ﬂ};\ gue are justified in the context of non-invasive BCls based

maX|m|ze| the raélc?[hof the vanar}cti ofdtrt\e datzltf:ond(;none motor imagery paradigms, we prove that two-class CSP is
on one class and the variance ol the data conditioned on imal in terms of maximizing an approximation of mutual

other class. In this way, spatial filters can be designed .tq ormation of extracted EEG/MEG components and class
extract those components of the EEG/MEG data that d'ff%{bels. Since mutual information establishes a lower and an
M. Grosse-Wentrup and Martin Buss are with the Institute aftoA upper bound on th? minimal cIa_ssification error,.thi.s presid
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and extracted EEG/MEG components. To resolve the secolhd Two-class Common Spatial Patterns
shortc_oming, we cons_id_er an exte_nsion qf CSP t[O rr_1u|ti-c|ass|n this section, we assume a two-class paradigm, i.e.,
paradigms based on joint approximate diagonalization JJAR _ (., c,1. The CSP algorithm then solves the optimization
of several EEG/MEG covariance matrices conditioned orsclas,gpjiem [16]
labels that has been shown to perform well in practice [6].
We point out that multi-class CSP by JAD is equivalent w = argmax{wTRmclw} @
to Independent Component Analysis (ICA), and provide a wery (W Rgj,w |7
method to choose those independent components (ICs) of th|ﬁ1 R R the covariance matrices af given ¢
EEG/MEG data that maximize an approximation of mutua zley Fale; . 9 b
. . L co respectively. Since (1) is in the form of the well-known
information of ICs and class labels. This eliminates thedneciza leiah . . . .
C . I : yleigh quotient, solutions to (1) are given by eigenvecto

for heuristics in chosing subsets of spatial filters and joles a of the generalized eigenvalue problem
solid theoretical foundation for spatial filtering in thentext
of non-invasive BCls with multiple classes. Furthermote, i Ryje,w = ARy, w. (2
allows incorporating prior probabilities of classes. Welgip ] ) ]
this procedure to experimental EEG data from a four-clad®€ €igenvectors of (2) thus correspond to the desiredaspati
motor imagery paradigm provided by the Laboratory of Brairfiltérs. Furthermore, for a given eigenvectar* the corre-
Computer Interfaces at the Technische Univétg@raz for the SPONding eigenvalue determines the value of the cost fumcti
third BCI competition, and show that it leads to an average w*TRm\c w*
increase in classification accuracy of 23.4% in comparison A" = : 3)
multi-class CSP as proposed in [6].

The rest of this article is structured as follows. In Sectiohhe eigenvalues thus are a measure for the quality of the
Il, we describe the CSP algorithm for two-class problems amiptained spatial filters, i.e., the eigenvalue associatéd w
present some previously proposed extensions to multsclas spatial filter expresses the ratio of the variance between
paradigms. In Section IlI, we introduce the framework of ETF conditions of the component of the EEG/MEG data extracted
in the context of BClIs based on motor imagery paradigmgy the spatial filter. Pre-processing is then usually done by
This framework is then used in section IlI-C to prove theombining theL eigenvectors of (2) with the smallest/largest
optimality of two-class CSP in terms of (an approximatiogigenvalues to formi¥ € RV*L and computingt = W'.
of) maximum mutual information of class labels and extrdcte
EEG/MEG components. In Section 11I-D, we show how ITFE  pMulti-class Common Spatial Patterns

can be extended to multi-class paradigms. After presenting i lti-cl di is either d b
some experimental results in Section IV, we conclude this =Xt€nding CSP to multi-class paradigms is either done by
article in Section V with a discussion of the results. performing two-class CSP on different combinations of ss

(e.g., by computing CSPs for all combinations of classes or
by computing CSP for one class versus all other classes), or
by joint approximate diagonalization (JAD) (see [6] and the
references therein). Since the first approach is concéyptual

We begin by stating the variables and assumptions uddgntical to CSP for two-class paradigms, we will focus here
throughout the article. We consider the random variable ©" CSP by JAD.
R¥ to represent the EEG/MEG data, recordedVaglectrodes, ~Given EEG/MEG data from\/ different classes, the goal
from which we wish to infer the intention of the BCl-use®f CSP by JAD is to find a transformatioi” € RV*" that

*T *
w* Ry, w

II. COMMON SPATIAL PATTERNS

c€C={ec,....,car}. We denote the class probability bydiagonalizes the covariance matrickg,., i.e.,

P(Ci)j. i =1,...,M, and assume that the EEG/_ME_G dat_a WTRm‘C‘W —D,.,i=1,...,M, (4)
conditioned on any class follows a Gaussian distributioti wi ’

zero mean, i.ep(x|c;) = N (0, Ry).,), i=1,...,M.Thisis with D., € RN*N diagonal matrices. There are several

no limitation in the context considered here for the follogi approaches to this problem (discussed in [25]), the detdils
reasons. First, we will only consider linear transformatad which are not of interest here. The idea of using JAD for
x, and hence any mean can be first subtracted and added agaitti-class CSP lies in the fact that CSP for two classes can
in the end. Second, BClIs based on motor imagery paradighesunderstood as diagonalizing two covariance matricese Mo
typically infer the intention of the user from changes iprecisely, if the eigenvectors of the generalized eigereval
the variance of the EEG/MEG data in specific frequengyroblem (2) are combined in a matrix, thenW ' Ry, ., W =
bands across conditions. As long as no information contain®,.,, : = 1,...,2. It then seems plausible to extend CSP
in higher moments ofx is being used for inference, noto multi-class paradigms by finding a transformatidn that
information is lost by assuming(z|c) to follow a Gaussian approximately diagonalizes multiple covariance matrioks
distribution. We then wish to find a linear transformatiomotal of L columns of the obtained matri¥” are then taken

W e RV¥*L with L << N, such that for finite training as the desired spatial filters.

data using the dimension reducg&d= W Tz for inferring the There are, however, two caveats. First, this approach is
intention of the BCl-user leads to an increased classifinatimotivated heuristically and lacks a firm theoretical fouiata
accuracy in comparison to using Second, it remains unclear which columns f provide



the optimal spatial filters. Or, as it is put in [6hs op- 0.8

posed to the two-class problem, there is no canonical way
to choose the relevant CSP patterns for multi-class CSP
In [6], the following heuristic is proposed to choose the (.6}
L optimal spatial filters: Given a matrix¥ obtained by P, <1—2l(cd)~H()
JAD, compute the eigenvalues of all covariance matrices, i. - -
computeX; = diag{W R, W}, i = 1,..., M. Then map
all j =1,..., N eigenvalues of each clags=1,...,M to A 0.4¢
)\i,j = max{)\i,j, ]./(]. + (M— 1)2)\1J/(1 — )\i,j))}y and select
the L /M eigenvectors with the largest transformed eigenvalues
of each class as spatial filters. If one eigenvector is ssdect
more than once, replace it by the eigenvector with the next
highest transformed eigenvalue.

We will point out in this article that multi-class CSP by
JAD is equivalent to ICA, and provide a method to choose 0 ‘ ‘ ‘ ‘
those columns of¥ that are optimal in terms of maximizing 0 0.4 0.8 1.2 1.6 2
an approximation of mutual information of class labels and I(c,e)
eXt_raCted EEQ/MEG components. We thereby prowdg a‘_thqf?gj. 1. Admissible combinations (shaded area) of mutual inftionaand
retical foundation for multi-class CSP by JAD, and elim&atminimal error probability foré = f(x), C = X = {c1,...,can}, Plc;) =
the need for heuristics in choosing spatial filters. /M, i=1,...,M, andM = 4.

L H(c)—I(c,6)—H (P,
R

I1l. I NFORMATION THEORETIC FEATURE EXTRACTION ) ) ) o -
. . . relation of mutual information and minimal error probatyili
In this section, we introduce the framework of Informa: B

. ) ) i Sfor C =X =Aer,...,em}, Pley) =1/M, i =1,....M
tion Theoretic Feature Extraction (ITFE) for pre-procegsi and M = 4 is illustrated in Fig. 1.

IT'.:E has rgcently rece|'ved cons@erable attention n the Ma Note that the bounds in (6) and (7) have been derived using
chine learning community, mostly in a non-parametric Bgtti discrete and not differential entropv. As such. thev onipl
(cf. [9], [17], [23]). The general idea of ITFE is the follong. ! : PY- » (NEY oNigiap
) 0 discrete feature spacés. The bounds can be extended to
Let z € A be a random variable, e.g., the ObserVabt:eontinuous feature spaces by considering a specific qaantiz
EEG/MEG data, from whiche € C, e.g., the intention of the P Y © g P g
. . X ) tion scheme, and thus qualitatively also apply to contirsuou
BCl-user, is to be inferred. The goal of ITFE is to find LT .
eature spaces. However, when working in continuous featur

transformat|onf N A= XAthat.maps theiorlgllnal fea.turespaces (6) and (7) can not be used to quantitatively predict
spaceX’ into a discrete seft’ while preserving information L P .
bounds on the minimum classification error in terms of the

on the class labelg in x: . .
mutual information.

f* = argmax{](c, f(m))}v (5)

feF
with I (¢, f(x)) the mutual information of and f (x) (cf. [5]), . . . '
and F some function space. This approach is based on twoIn th? con;tjext gf non-mve:s[[\'/e B?ti V:;év/'fﬂhEéodf":d '[?l i
inequalities that provide upper and lower bounds on tlgémensmn-re uced representation ot the ata tha

minimal achievable classification error in terms of the nalitu maximizes mutual information of class Iab](\afls and extracted
information. The first of these two inequalities, called &an EEE(EM%E? c;)hmpg_nents.. we tgus Za?e:t RY, and Chl?r:).seh
inequality (cf. [5]), establishes a lower bound on the mimiu =~ or the dimension-reduced leature space. This has

error probability in estimating: from f(x) for any classifier got two_implications. First, we only wish to extract one

A. ITFE and Non-invasive BCls

g X C EEG/MEG component at a time. While we could also choose
to extract several components simultaneously, this isvatgrit
P, = argmin {Prc £ g(f(x)}} > H(c|f(z)) — 1 to extracting components sequentially in the setting ctersid
g€ log |C| here, as we will show in Sections 1lI-C and IlI-D. Second,
 H(c)—1I(c, f(x)) — 1 6 since in this contextt = R is not a discrete set, (6) and
- log [C| ) (6) (7) only apply if additionally a suitable quanitzation sofe

. for X is specified. This quantization scheme, however, has no
with H{(.) the Shannon entropyC| the number of elements ualitative influence, and is thus disregarded. We furtioeem

in C, andg .the space qf all classifiers. The second mquallt mit ourselves to linear transformations. Equation (5ush
presented in [8], provides an upper bound on the minimugy i
. implifies to
error probability:
o flz))—H(c w* = argmax {I(c,w" . 8
P, <1 ollef@)—H(), % rgma {1( )} (8)
Together these two bounds imply that maximizing mutu®ote that this implies that we wish to compute the mutual
information of ¢ and f(x) minimizes the minimal error information of a discrete and a continuous variable. To make

probability, and indeed that, = 0iff I(c, f(x)) = H(c). The this expression well defined, we again need to assume a



quantization that discretizes the continuous variable:. This since the fourth moment of a Gaussian distribution with zero
quantization scheme, however, has negligible influencéhen mean and unit variance equals three andar) = a*k4(z)
mutual information, since the entropy ofrabit quantization (see any textbook on advanced statistics). Combining (@) a
of a continuous random variable is approximately the entrofl3) we thus have

of the continuous variable plus[5]. Since the entropy enters v 2

twice with different sign into the computation of mutual AN 3 4

information, the terms due to the quantization cancel ow. W H(2) ~ log v/2me — 16 (ZP@) (05”":1' B 1)) - (14)

will thus disregard the quantization scheme in the sequél an . = ) _

work with differential entropy. Combining (9), (10) and (14) we obtain an estimate of the

To the best of our knowledge, no analytic expression féputual information ofc and: as
I(c,w'z) exists given our assumptions. Hence, we will first X M -
derive an analytic approximation of the mutual information I(c,2) =~ —ZP(Ci)IOg \ W' Ry e, w
=1

I(c,w"x). We will then find a solution to (8) based on this

approximation for two-class paradigms, and finally disahss 3 (M . ) ?
extension to multi-class paradigms. T > P(ci) (w'Rgje,w)* — 1) | (15)

1=1
B. Approximation of Mutual Information It then remains to investigate the accuracy of this approx-

imation of mutual information. The only approximation used
in deriving (15) is the approximation of negentropy in (13).
This approximation is based on an Edgeworth expansion up to

First note that the mutual information efand & = w'x
can be written as

I(c, ngc) = H(wa) — H('wTa:|c) = H(%) — H(Z|c) order four of the true probability density function (11) abo
M its best Gaussian approximation. As such, (15) is exas(iif
= H(%) - Z P(ci)H(&|c;). 9) is Ga_ussian di.stribut(.ad,. and the quality of the gpproxionati
i—1 deteriorates with deviation gf(Z) from Gaussianity.

Since differential entropy is not scale invariant, we assum 10 duantitatively evaluate the accuracy of the approxima-
o2 = 1. This is no loss of generality, sinae can always be tion of mutual information, the true mutual information in
xT : ’

scaled to meet this assumption. Now note that we assuni@y Was computed by numerical integration (using recursive
p(a|c) = N'(0, Ry).). Sinced is a linear combination of the adaptive Lobatto quadrature as |mpleme_nted in M&tafor
elements ofz it also follows a (now one-dimensional) conC = {¢1, c2} andog ., €]0,1]. Note that this covers the whole

ditional Gaussian distribution with zero mean, ig(i|c) = range ofos ... i € {1,2} due to symmetry of (9) with respect
N0, Ugl ). We can thus express the entropyiofjiven class to 03|, and the assumption of unit variance f The error
¢ as of the approximation of mutual information in (15) was then

evaluated for different prior class probabilities by sabting
H(%|e;) = 10g1/27re<r§‘ci =log\/2mew" Ry, w. (10) the numerically computed true mutual information from the
approximation of mutual information. The resulting error (
The marginal distributiorp(i), however, does not follow a per cent of the true mutual information) is shown in Fig. 2.
Gaussian distribution since Note thatos ., = 1 implies o4, = 1 and hencep(i) =
M M N(0,1). As expected, the error between the approximated and
p(&) =Y Ple)p(@le) = > P(ei)N(0,04,), (1) true mutual information is zero fors ., = 1 and small for
i=1 i=1 o3, close to one. In fact, the error of the approximation
which is a sum of\/ Gaussian distributions and thus not itselis below one per cent for; ., < [0.84,1]. As long as
Gaussian. To the best of our knowledge there is no analytieal., > 0.36 the error stays below ten per cent. However, for
solution to the entropy of a sum of Gaussian distributionsyen smaller values ef;|., the error grows large, limiting the
and thus no closed form solution &f(z). We can, however, usefulness of the approximation. Qualitatively, this hébraof
approximateH (i) in the following manner. First, define thethe approximation is independent of the number of classes,
negentropy oft as i.e., if p(z) is close to Gaussianity a small error can be
. . R expected also fod/ > 2. Quantitatively, the goodness of the
J(&) = Hy(2) - H(2), (12)  approximation varies as a function of the number of classes.
with i, (i) the entropy of a Gaussian random variable with thehe validity of the approximation in (15) for multiple class
same variance as The negentropy of can be approximated Will be experimentally validated in Section IV.

as ) ) The applicability of the approximation of mutual informa-
J(&) ~ —r3(2) + —ka(2)?, (13) tion in the context of non-invasive BCIs thus depends on by
12 48 how much EEG/MEG sources that provide information on the

with the third- and fourth-order cumulantg;(2) = E{23} intention of the user of a BCI deviate from Gaussianity, i.e.
andry(2) = E{2*} — 3 [4]. Sincep(#) is a sum of Gaussian how much their variances vary across conditions. In geperal
distributions with zero mean it is symmetric, and hencguch sources can be expected to be rather close to Gaugsianit
M and thus the approximation to be accurate, for the simple
~ _ ~ _ . 4 _ y
r3(2) = 0. Furthermore,ry (&) = 32-; Plei) (%l%’ 1) reason that inferring the intention of the user of a BCl is@lha



100 il Rearranging and letting := — 2222 then yields

90 i} ] a1+

80f1Y 1 Ryje,w = ARy, w. (19)

70 1

6O F: 4N | Inthe case of two-class paradigms and the stated assurmption
—= | solutions to (8) are thus given by the eigenvectors of the
g, 50 generalized eigenvalue problem (19). Comparing the swisti
S 40 1 obtained by ITFE (19) and CSP (2) shows that for two-
m 30 1 class paradigms both methods yield identical spatial $ilter

20 { Furthermore, if equal class probabilities are assumed, i.e

10 | P(c1) = P(c2) = 1/2, and the obtained spatial filters are

A ranked in terms of the ratio of the variance between conutio
(CSP) and in terms of mutual information (ITFE) the ordering
—10¢ ' 1 s the same. This can be seen by the following argument. For

) i i i i i i i i i i 1 1
00 01 02 03 04 05 06 07 08 09 1 CSP, spatial filters are ranked according to
Oz|ey 2 2
1 O-;fc\c Z|e
* L I G 1 2
Fig. 2. Error of the approximation of mutual information (15)per cent fF7) = max {)\ % } max { o2 g2
for C = {c1, c2} as a function ofr;, for different prior class probabilities. ) ) Blez “ler
_ 0‘:@‘(,‘1 2 - O’.’i‘cl 20
= maxgg > —5 ; (20)
- O’gfr,‘lcl O-IIA,“C]

task. If variances of EEG/MEG sources providing informatio
on the_ |nter_1t|on _Of the user WOUId vary significantly aCroSRith the third equality due to the assumption of equal class
conditions, inferring the intention of the user of a BCI abul robabilities and unit variance df. For o2, €]0, 2[ this is

L . L . Z|ey
be .expe_cted to be _substantlally. ea3|er_than 't. Is the cass. Q convex function that attains its minimumaf,. = 1 and
claim will be experimentally validated in Section IV. |e1

is symmetric abouv? ., = 1. As it is easy to check, the
S same holds true for the approximation of mutual information
C. Two-class ITFE and Optimality of Two-class CSP in (15), which is used toprpank spatial filters in ITFE (note

We will now discuss solutions to (8) based on the abovfat a'a%lc = w'R;|.,w). For equal class probabilities, both
approximation of mutual information for two-class paradiy functions used for ranking spatial filters thus depend omly o
l.e., we again assun= {c, c;}. Equation (15) then reduces;2 . are convex, symmetric aboaf,, = 1, and attain their
to minimum ato?, = 1. Now consider two spatial filtersv,

Zler

(¢, &) ~ —P(c1)10g /W Ryje, w and w, with associated eigenvalueg and Az. If f(A1) >
5 f(X\2) then elther(a?chl)(Al) > (aglq)w and (ogm)w >
—P(co)log \/wT Ry, w — G (P(cl) (a;}‘cl - 1) 1, or (ag‘q_)(m_ < (o?glq)(&) and (o;‘q)(m < 1. Since
9 the approximation of mutual information is convex, attaiiss
+P(cz) (o;}l@ - 1)) ‘ (16) minimum ato? . = 1, and is symmetric about?, =1, it
Jpllows that also!(c, wiz) > I(c,wlz). Consequently, the
ordering of spatial filters ranked by CSP and ITFE is the same.
Summarizing the results of this section, we have shown that
for equal class probabilities, conditionally Gaussiarriisted

We will from here on refer to this expression as mutu
information, keeping in mind that it is in fact an approximat
thereof. Taking the derivative of (16) with respectdothen

ields
y EEG/MEG data, and linear transformations pre-processyng b
i[(q i) =— P(er) Ry, w — P(cs) Ryje,w CSP and ITFE leads to the same spatial filters. Under the given
ow W Ryje, w ! W Ry, w ’ assumptions, two-class CSP thus maximizes an approximatio
3 T 9 T 5 of mutual information of extracted EEG/MEG components and
_2 (P(Cl)(w Rm\qw) +P(62)(w Rm\czw) - 1) class labels.

(P(e1)w" Rgje, WRy e, w + Pc2)w' Ry, wRy,w) (17) It should be pointed out that(#) is completely described
by the class conditional variances. As such, an approximati

Lettin ; : : ; .
d of mutual information using Edgeworth expansion of arbi-
o = — P(ei) trary order will also be a function of the class conditional
wT Ry, w variances only. Hence, it should be possible to extend the
3 (2 above argument to approximations of mutual information of
G = —= Z P(¢;)(w Ryje.w)? — 1 | w' Ry, w, arbitrary order, thereby proving optimality of two-clasSEin
2 J | 7 I i . .
i=1 terms of true mutual information of class labels and exéact

EEG/MEG components (under the assumption of conditionally
Gaussian distributed sources). However, a rigorous préof o
(a1 + B1)Rgje,w + (a2 + B2) Ryjc,w = 0. (18) this conjecture is beyond the scope of this work.

and setting (17) to zero results in



D. Multi-class Information Theoretic Feature Extraction the data space and using the derived approximation of mutual

) ) ] ] _information to identify the signal subspace, will be termed
We will now d|§cuss possible solutions _of _(8) for mU“"muIti-class ITEE.

class paradigms, i.e., f@ = 1,..., M. In principle, taking e begin by considering a linear model for the EEG/MEG

the derivative of (15) with respect @ and setting it to zero data, i.e.,

gives an implicit solution for the spatial filters that capend r — As. (21)

to local extrema of (15). However, due to the presence of

multiple covariance matrice8I(c,w'z)/0w = 0 can not Here,s € R" is a random vector with zero mean representing

be formulated as a generalized eigenvalue problem anymdhe original EEG/MEG current sources inside the cortex,

Furthermore, to the best of our knowledge, no analytic gmiut and A € RV*Y is a full-rank mixing matrix with each

to this expression exists. This leaves the possibility oiviteg columna;, j = 1,..., N describing the projection strength

a gradient descent rule for finding a solution to (8). Whiles thiof sources; to each of theN' EEG/MEG electrodes. We

is a straightforward procedure, (8) does not constituter@eso  furthermore assume(s) = ijzlp(sj), i.e., we assume the

optimization problem. Consequently, gradient descenbisain elements ofs to be mutually statistically independent. This

efficient approach for finding all local extrema of (15). is the standard instantaneous mixing model assumed in ICA,

Due to these difficulties we consider a different approacihich has been shown to be a good working assumption
First note that the problem of finding optimal linear spatidPr EEG/MEG data (cf. [11] and the references therein).
filters can be understood as a subspace identification pnobld-inally, we assume that there are odlysources that provide
Assume there ard, < N EEG/MEG sources within the information on the intention of the BCl-user. Without loss o
brain providing information on the intention of the user ofenerality, we assume these to be the fitssources, i.e.,

a BCI. TheseL sources span &-dimensional subspace ofl(c,s;)) =0, i=L+1,...,N.
the data, which we denote as the signal subspace. The spad&e will now show how for this model the original sources
orthogonal to the signal subspace, spanned by the souréegan be reconstructed only from observationsroby JAD
that do not provide information on the intention of the Bcof the class-conditional covariance matricesaofFirst note
user, is denoted as the noise subspace. The goal of spdfiaf the covariance matrix af given conditionc; is given by
filtering in the context of non-invasive BCIs is to extract R — AR.. AT

. . xlc; — s|e; ) (22)
the signal subspace. The actual procedure of extracting the
signal subspace can be decomposed into two steps. The figh R, the covariance matrix o given conditionc;. If
step is to find a transformation of the data space such theg now perform JAD, it is obvious that’™ = A~! is a
the signal and the subspace become orthogonal in the revution of the JAD procedure that diagonalizes all covaréa
basis, and the second step is to identify the subset of the nmatrices:
basis vectors that span the signal subspace. This procedure WTRm‘CiW = Rgc, = D¢, (23)
equivalent to first finding a set of potential spatial filteaind . ) )

fori=1,..., M. Note thatR,., = D,, are diagonal matrices

then identifying those spatial filters that extract sounvbgch b f th lind q f the el iof
provide information on the intention of the user of the BCPECaUSE O the mutual independence of the elements

i.e, sources that span the signal subspace. this case we have that

As discussed above, the approximation of mutual informa- &=WTe=WTAs = s, (24)
tion in (15) is not well suited for computing a set of potehtia i o i
spatial filters. However, once a transformation of the dpses and the obtained spathl fllterlng matri¥’ applied to th'e
has been obtained in which the signal and noise subsp&zeG/MEG data results in estimates of the underlying mdg-
are orthogonal, (15) can be employed to identify those bafgndent components (ICs) of the observed data. It remains

! . : oo e
vectors that span the signal subspace. In multi-class c&pPe established if, or under which conditioni,” = A

as presented in Section II-B, JAD of class-conditional dafh the only matrix that jointly diagonalizes all covariance

covariances matrices is used for computing a set of potenfiirices. This question of uniqueness has been addressed fo
spatial filters. In this Section, we will point out that this i orthogqnal mixing matngeﬁ (Qr for sphered data) in [l]_’ and

an implementation of Independent Component Analysis (ICAJ" arbitrary mixing matrices in [20]. It turns out that ineth
(cf. [15]). We will then show that under certain condition&ontext considered here a necessary and sufficient comditio

T oo eessaly aiy .
ICA is capable of separating the signal and noise subspace!q" W' = A" to be the unique joint diagonalizer (up to

multi-class CSP, the identification of the sources spantiieg Sc@ling and permutations) .., i = 1,..., M, is that the
signal subspace is then carried out by means of the heuridlatx 2 2

presented in Section 1I-B. Here, it will be shown that the siles. 71T Tenla

identification of the sources spanning the signal subspace ¢ S = : : (25)
be done by means of the derived approximation of mutual o2 o2

information. This eliminates the need for heuristics innide siler 77T Tsnlem

tifying the signal subspace, and provides a solid theaktidhhas no pair of proportional columns, i.e, that for no pair
foundation for spatial filtering in the context of non-inixees of ICs the variances covary across conditions. Under these
BClIs with multi-class paradigms. The complete procedurepnditions any JAD procedure that converges, i.e., thatljoi
i.e., performing ICA to obtain a suitable transformation ofiagonalizes all covariance matrices, returns a maifrixhat,



if applied to the observed EEG/MEG data, returns (scaled and V. EXPERIMENTAL RESULTS
permuted) estimates of the underlying ICs according to.(24)
While it is not possible to ensure a-priori that the variances We Wwill now present experimental results from a four-
of no pair of ICs covary across conditions, we consider thfd@ss motor imagery paradigm supporting the results of the
to be highly unlikely. Consequently, JAD of the EEG/MEGPrevious section. The purpose of this section is to compare
covariance matrices conditioned on the class labels can R§g-processing by multi-class ITFE with multi-class CS®, i
considered an implementation of ICA. comparing the effect of choosing spatial filters that maxani

It then remains to be shown that the unmixing mafiix mutual information versus choosing spatial filters aceuydo

indeed separates the signal and the noise subspace, afBedeuristic presented in Section II-B.

procedure has to be derived that identifies those columns off Ne data we use was recorded in the Laboratory of Brain-
W that extract the signal subspace. Now note that if the ICROmputer Interfaces at the Technische Univats(eraz for
model (21) and the uniqueness condition hold a makFix the third BCI Competition (data set llla), and is available
obtained by JAD that diagonalizes all EEG/MEG covariancd http://ida.first.fraunhofer.de/ projects/bci/compigtit_iii/ . A

matrices conditioned on class labels implies that detailed description of the recording procedure can bedaan

[3]- Three subjects (k3b, k6b, and 11b) were asked to perform

N motor imagery of the left/right hand, one foot, or tongue.

I(c,x) = Ic, WTw) =1I(c,8) = 21(07 5;) Each trial lasted for seven seconds, with the motor imagery

i—1 performed during the last four seconds of each trial. During
L L the experiment EEG was recorded at 60 channels, using the

= ) I(e;si) =Y I(c,w]x). (26) left mastoid as reference and the right mastoid as grounel. Th
i=1 i=1 sampling rate was 250 Hz, and the data was filtered between

1 and 50 Hz with a notchfilter on. For subjects k6b and I1b a
with w; the i column of W. Here, the first equality follows total of 60 trials per condition were recorded, and for sobje
from the fact that mutual information is invariant undereny  k3b 90 trials per condition were recorded. Four trials ofisab
ible transformations [5], the second equality follows fr@@4), k6b had to be discarded due to missing data. Otherwise no
the third equality follows from the mutual independencehef t trials were rejected and no artifact correction was peréatm
elements ok, and the fourth equality from our assumption that For each subject the following evaluation procedure was
only the firstL sources provide information on Hence, all performed. First, all data was filtered with a fifth-order -but
information inx on ¢ is contained in the firsL ICs, i.e., the terworth filter with cut-off frequencies 5 and 35 Hz. Then,
signal subspace is spanned by the firdCs. This establishes the four seconds of each trial in which motor imagery was
that under the stated assumptions ICA does indeed seplaeateperformed were extracted. Afterwards, the data was rangdoml|
signal and the noise subspace. In practice,/trepatial filters partitioned into a training and a test set. The size of thaitrg
that extract the signal subspace are then chosen as those€et was varied between 10 and 50 trials in steps of ten trials
columns ofl¥” with the highest mutual informatiof(c, w;x). for subjects k6b and I1b, and between 10 and 80 trials for
This term can be easily evaluated, and thus the optimalapagubject k3b. The covariance matrices of all four conditions
filters identified, according to the approximation of mutualere computed using only data of the training set. JAD
information (15) derived in Section II-B. was performed on the obtained covariance matrices using the

To summarize the results of this section, we have pointetborithm presented in [25], and the optimal spatial filters
out that the problem of finding a set of optimal linear spatialere chosen according to a) the heuristic presented indecti
filters can be interpreted as a subspace identification @mobl 11-B (multi-class CSP), b) the procedure described in Fig. 3
with the signal subspace defined as the space spanned(roulti-class ITFE), and ¢) multi-class ITFE with evaluatio
all sources that provide information on the intention of thef the mutual information of class labels and extracted EEG
user of the BCI. We have further shown that JAD of theomponents by numerical integration as described in Sectio
EEG/MEG covariance matrices conditioned on class labelslisB. Note that while procedure c) is feasible due to the
an implementation of ICA, which is capable of separating tHenowledge ofp(#) in (11), it is undesirable from a practical
signal and the noise subspace under the stated assumptpist of view due to increased computational complexity: Fo
and thus provides a suitable set of potential spatial filtemnulti-class ITFE equal class probabilities were assumede N
We then showed how the derived approximation of mututdat the choice ofL is a problem of model identification
information can be used to identify those spatial filterst théhat is beyond the scope of this article. We arbitrarily &os
provide most information on the intention of the user of thé = 8. The spatial filters obtained by procedures a) - c)
BCI. We have thereby eliminated the need for heuristics imere then applied to the training- and test data sets. This
and provided a sound theoretical basis for spatial filtefing resulted in eight-dimensional signals for each trial of the
the context of non-invasive BCls with multi-class paradiggmtest and training data set. Features were then computed by
Finally, multi-class ITFE, as derived here, allows incagiing extracting 15 frequency bands of 2 Hz width ranging from 5
unequal class probabilities by choosing those spatialrdilteo 35 Hz using a fifth-order butterworth filter, and computing
that maximize mutual information in (15). For conveniencehe sample variance in each frequency band for each of the
the complete procedure of multi-class ITFE is summarized @xtracted EEG/MEG components. This resulted in a 120-
Fig. 3. dimensional feature vector for each trial. The featureaesobf



Input: Covariance matrice®.,, i =1,..., M
1) Perform joint approximate diagonalization W.TRw‘C,iW =D, i=1,...,M (e.g., with the FFDiag-algorithm [25]).
2) For each columnw;, j=1,...,N, of W scalew; s.t. ijwaj =1 and estimate mutual information according to

M

M 2
3
I(c, w;r:c) ~— ZP(ci)log A /w}Rﬂcle ~ 16 (Z P(c;) ((w;Rz|cle)2 - 1)> .
i=1

i=1
3) Choose thd. columns of W with highest mutual information.
Output: Pre-processing matrik/ € RV*E

Fig. 3. Multi-class Information Theoretic Feature Extraati

the training set were then used to train four logistic regjees tuned using methods such as cross-validation on the trainin
classifiers with L1-regularization, since this classifieknown set to achieve higher classification accuracies. This, hene
to perform well in the presence of many irrelevant featurés not the point of this study. We chose a rather simple clas-
[14]. Each classifier was trained on one versus all othsification procedure to emphasize the importance of chgosin
conditions, with a regularization parameter chosen maywuathe optimal spatial filters: while the total set of spatiakfit is
as 0.1. To infer the class label of trials in the test data seentical for multi-class CSP and multi-class ITFE, chogsi
the continuous output of each classifier was computed for alsubset of filters that maximize mutual information acaogdi
trials. The output of each logistic regression classifieigess to the procedure of multi-class ITFE summarized in Fig. 3, as
from zero to one, representing the probability of a certéass opposed to the procedure proposed in [6], leads to a significa
Then, the class label attached to each trial was chosen asitloeease in classification accuracy.
index of the classifier with maximum output for that trial.rFo
each partitioning of the data in a test- and training set this V. CONCLUSIONS
procedure was repeated 20 times. In this article, we investigated the Common Spatial Pastern
The resulting classification accuracies for all subjects amlgorithm for spatial filtering in non-invasive Brain-Comtpr
evaluation procedures a) and b) are shown in Fig. 4, withterfaces in the framework of Information Theoretic Featu
the thin horizontal line indicating chance level. Resulfs dxtraction. We showed that for two-class paradigms CSP max-
evaluation procedure c) are not shown, since on average thiesizes (an approximation) of mutual information of extextt
differed from procedure b) by only 0.4%. This experimentallEEG/MEG components and class labels. This provides a previ-
validates the accuracy of the derived approximation of miutuously unknown link between CSP and the minimal achievable
information (15) in the context of non-invasive BCls. Whileerror probability of a BCI for a given data set. In the context
the classification accuracies vary significantly acrosgesid, of multi-class paradigms, we pointed out that finding a set of
it is evident that multi-class ITFE outperforms multi-cdasoptimal linear spatial filters can be understood as a sulspac
CSP by far, with a mean increase in classification accuraigientification problem. We further pointed out that mulss
of 23.4%. This increase is especially significant for subje€SP solves this problem by ICA and subsequent identification
I1b, for which multi-class CSP performs only slightly abovef the most suitable spatial filters by means of a heuristie. W
chance. With spatial filters chosen according to multislagould eliminate the need for this heuristic by showing that
ITFE, subject k3b even achieves classification accuradiesIGA is capable of separating the signal and noise subspace,
about 95%. and providing a procedure for choosing a subset of spatial
It should be pointed out that the classification accuraciéifers that maximize (an approximation) of mutual inforiat
achieved here do not, with the exception of subject k3bf class labels and extracted EEG/MEG components. This
compare favorably with the best entries to the BCI competiti procedure, termed multi-class ITFE, was shown to outperfor
Il for the same data set [19]. We attribute this to the faett thmulti-class CSP by on average 23.4% on the data set llla
while the algorithms submitted to the third BCI competitiorf the third BCl competition. Furthermore, the framework of
were extensively tuned, there are several parameters in thelti-class ITFE allows incorporating prior class probiieis
procedure presented here that were determined arbitrBdly into the feature extraction process. Finally, the accutddye
example, it is well known that computing spatial filters iremployed approximation of mutual information was validate
narrow frequency bands, tuned according to the most reasxperimentally in the context of non-invasive BCls by also
tive frequency bands for each subject, significantly impeov considering a numerical integration of mutual informatian
classification accuracy as opposed to selecting a rathedbronulti-class ITFE. Since the obtained classification resdid
frequency band as done here. Furthermore, the numberoofaverage not differ by more than 0.4% between using the an-
spatial filters retained was chosen arbitrarily as eightdibr alytic approximation and the numerical integration of nalitu
subjects and training sets, and the regularization pasrmenformation, this supports the claim, made at the end ofiGect
of the classification procedure was also determined manudlll-B, that EEG/MEG sources providing information on the
and constant for all subjects. All of these parameters cbald intention of the user do not deviate much from Gaussianity.
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Fig. 4. Classification accuracies of subjects k3b, kéb, dhdas a function of the number of training trials for multi-dd3FE and multi-class CSP. The
thin horizontal line indicates chance level.

The derived approximation of mutual information can henamore robust to such artifacts, e.g., by regularization [7] o
be considered sufficiently accurate in the context consitlerby logistic regression [21], or if unsupervised approacise
here. provide viable alternatives for multi-class paradigms.

As already pointed out in Section Ill, most recent stud-
ies on ITFE consider a non-parametric setting. The primary

advantage of non-parametric approaches is their gengeralitll A. Belouchrani, K. Abed-Meraim, J.F. Cardoso, and E. Moes. A
. L. h bability distribution ofeth blind source separation technique using second-ordestitat IEEE
I.e., no restrictions on the proba y distribution ore Transactionn Signal Processing, 45(2):434-444, 1997.

observed data have to be imposed. However, non-parametf G. Blanchard and B. Blankertz. BCI competition 2003 - datzt

approaches are computationally intensive and often requir 35 S8.8 ST oL S Tonce (61062 1066, 200
substantial amounts of training data. This is in contrast t@y 5~ Blankertz, K.R. Mueller, D. Krusienski, G. Schalk

the parametric approach considered in this work. By in- JR. Wolpaw, A. Schloegl, G. Pfurtscheller, J.R. Millan,
corporating informed restrictions on the distribution oiet M. Schroeder, and N. Birbaumer. The BCI competition

. . . Ill: Validating alternative approaches to actual BCl pevbb.
EEG/MEG sources a computatlonally S|mple and effective IEEE Transactions on Neural Systems and Rehabilitationrieeging,

feature extraction algorithm could be derived. Furtheemor 14(2):153-159, 2006.
please note again that in the context considered here tff@ P- Comon. Independent component analysis, a new conc&fghal

. . . s Processing, 36:287-314, 1994.
assumption of conditionally Gaussian distributed EEG/MEGs; T, Cover and J.A. ThomasElementsof Information Theory. Wiley,

sources is no limitation. As a long as only variance changes 2006.
are used as features for classification, no information thd§l G- Dornhege, B. Blankertz, G. Curio, and K.R. Mueller. d3éing bit

Id i h | ificati d is | b d rates in noninvasive EEG single-trial classifications batdee combi-
could improve the classitication procedure Is lost by awea nation and multiclass paradigmslEEE Transactionson Biomedical

discarding higher-order information in the feature eximat Engineering, 51(6):993-1002, 2004
process. Notwithstanding this argument, it would indeed bE]1 J- Farquhar, N.J. Hill, T.N. Lal, and B. Schoelkopf. Régised CSP
. . . . . . for sensor selection in BCI. Ifroceedingf the 3rd International
very Interesting to Investigate whether information on the Brain-ComputeinterfaceWorkshopand Training Course, pages 14-15.
intention of the user of a BCI is encoded in higher moments Verlag der Technischen Universitaet Graz, Graz, 2006.
of EEG/MEG sources. [8] M. Feder and N. Merhav. Relations between entropy andrerr
) . . . ) probability. IEEE Transactionsn Information Theory, 40(1):259-266,
In summary, spatial filtering for non-invasive BCIls has 1994.

evolved to a pOiI’lt where even for multi-class paradigmigl K. Fukumizu, F.R. Bach, and M.l. Jordan. Dimensionalitduetion for

. e - . . . supervised learning with reproducing kernel hilbert spac®urnalof
high classification accuracies have become possible. While yachineLeamingResearch, 5:73-99, 2004. —

this constitutes an important step away from toy problems ] M. Grosse-Wentrup, K. Gramann, and M. Buss. Adaptivetiapa
real-world BCI applications, there are still several pesbhs filters with predefined region of interest for EEG based braimputer-

. interfaces. In B. Schoelkopf, J. Platt, and T. Hoffman, editddvances
to be addressed. One significant problem, that has not been in_Neural Information ProcessingSystems19, pages 537-544. MIT

addressed here and from which all supervised spatial fitieri Press, Cambridge, MA, 2007.

algorithms such as multi-class CSP and multi-class ITFE sl A- Hyvaerinen, J. Karhunen, and E. OjaindependentComponent
Analysis. John Wiley & Sons, 2001.

fer, is overfitting. _|f strong artifaCtS_ are present_in the_amed [12] Z.J. Koles. The quantitative extraction and topogiaphapping of the
data, these algorithms tend to train on the artifacts idlstea abnormal components in the clinical EEElectroencephalograptgnd

pattern changes in the EEG/MEG data intentionally induged 513] Clinical Neurophysiology, 79:440-447, 1991.

. . S. Lemm, B. Blankertz, G. Curio, and K.R. Mueller. Spagjmectral
the user of the BCI. For two-class paradlgms, unSUper\”ped filters for improving the classification of single trial EEG.EEE

proaches to spatial filtering such as beamforming havedyjrea  Transactionsn Biomedical Engineering, 52(9):1541-1548, 2005.
been shown to achieve classification accuracies compai@blét4! A-Y. Ng. Feature selectionf; vs.Lo regularization, and rotational

. . . . . invariance. In Carla E. Brodley, editdProceeding®f the Twenty-first
CSP while be'ng robust against artifacts [10]' It remainbeo International Conferenceon Machine Learning (ICML 2004), Banff,

seen if supervised spatial filtering algorithms can be regdie Alberta, Canada,July 4-8. ACM, 2004.
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