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Abstract

Electroencephalogram (EEG) signal classification plays an important role to facilitate physically impaired patients by
providing brain-computer interface (BCI)-controlled devices. However, practical applications of BCI make it difficult
to decode motor imagery-based brain signals for multiclass classification due to their non-stationary nature. In this
study, we aim to improve multiclass classification accuracy for motor imagery movement using sub-band common
spatial patterns with sequential feature selection (SBCSP-SBFS) method. Filter bank having bandpass filters of
different overlapped frequency cutoffs is applied to suppress the noise signals from raw EEG signals. The
output of these sub-band filters is sent for feature extraction by applying common spatial pattern (CSP) and
linear discriminant analysis (LDA). As all of the extracted features are not necessary for classification therefore,
selection of optimal features is done by passing the extracted features to sequential backward floating
selection (SBFS) technique. Three different classifiers were then trained on these optimal features, i.e., support
vector machine (SVM), Naïve-Bayesian Parzen-Window (NBPW), and k-Nearest Neighbor (KNN). Results are
evaluated on two datasets, i.e., Emotiv Epoc and wet gel electrodes for three classes, i.e., right-hand motor
imagery, left hand motor imagery, and rest state. The proposed model yields a maximum accuracy of 60.61%
in case of Emotiv Epoc headset and 86.50% for wet gel electrodes. The computed accuracy shows an
increase of 7% as compared to previously implemented multiclass EEG classification.
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1 Introduction

Brain signals, produced as a result of interneuronal brain

activity, can be measured using neuroimaging technique

known as an electroencephalogram (EEG) [1]. Brain-

computer interface (BCI) translates these electrical signals

into control commands thus providing a communication

pathway between the brain and outside world devices

such as BCI wheelchair, neuro-gaming, and prosthetics.

BCI facilitates physically impaired patients by capturing

their brain signals which after preprocessing, major

features are extracted and then on the basis of classified

results, outside world devices are controlled [2]. There are

two most common approaches to BCI based on measur-

ing methods of EEG signals, i.e., invasive and noninvasive

BCIs. The invasive technique is more complex and dan-

gerous as electrodes are directly implanted into the brain

by neurosurgery, as a result, firing of neurons can be read

without any external interference which detects high-

quality signal [3]. Conversely, in non-invasive BCI, the

electrodes are placed on the human scalp. Although, these

signals have reduced spatial resolution and have more

noise contents but due to its easiness, safety, and cost ef-

fectiveness, it is used widely [4]. For non-invasive BCI,

EEG data can be acquired in two ways, i.e., by using wet

gel electrodes and dry electrodes. Contact impedance

measured between the skin and an electrode represents

the quality of EEG signal. High contact impedance can

result in increased noise, as a result, gives poor signal

quality. This impedance can be reduced by applying con-

ductive gel paste but require extensive skin preparation

which involves extensive skin abrasion and dead cells

removal from the skin surface [5].

Acquisition of EEG signals by using non-invasive tech-

niques has an influence of external noise; therefore, the ac-

quired signal is contaminated with artifacts such as signals

produced as a result of muscle movement, cable noise, and
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environment noise [6]. These artifacts make the process of

BCI signal translation very complex because pure EEG sig-

nal has low amplitude and frequency components as com-

pared to those of artifacts. So, after EEG signal acquisition,

first of all, the noise is suppressed from the signal using dif-

ferent spatial filters [7]; this process of noise suppression is

known as preprocessing. This signal can directly be fed to

the classifier but this will make the process of classifier

training very time-consuming. Moreover, EEG signal has a

low spatial resolution, low signal-to-noise ratio (SNR) and

its measurement mainly attribute to the volume conduc-

tion, which signifies the electrical field of the brain that is

conducted from the source to the scalp [8]. To measure

this low SNR and spatial resolution, common spatial

pattern (CSP) was proposed to efficiently extract spatial fea-

tures for motor imagery brain signals. This method com-

putes the maximum ration of variances between different

classes of data by applying filters on it. Research shows

that common spatial patterns (CSP) is proved an efficient

and widely used technique to extract feature from EEG

signal [9]. As CSP is mainly carried out on the complete

data while whole EEG data does not contain useful infor-

mation; therefore it ignores the importance of features. So,

to overcome this problem, EEG signal is divided into dif-

ferent sub-bands to extract information from different

portions of the signal and then the selection of features

from extracted features on the basis of different informa-

tion produces better results [10–14].

The paper is organized as follows: the “Related work”

section presents the detailed literature review, the

“Methodology” section provides the details about pro-

posed methodology while the “Results and discussion”

section describes the findings of this paper. Finally, the

last section presents the conclusion.

1.1 Related work

Recently, various machine learning (ML) approaches for

BCI have been developed to circumvent the complexity of

brain signals. These different methods have shown

remarkable results for binary class EEG classification [10–

14] while for better and more control commands of real-

time applications such as BCI controlled wheelchair,

neuro-gaming, and prosthetics, binary class is not suffi-

cient; therefore, a requirement for multiclass classification

arises. Nicolas et al. implemented adaptive generalization

method for classification of multiclass motor imagery

(MI)-based EEG signals, by the selection of optimal ex-

tracted subband CSP features using mutual-information

best individual features (MIBIF) [15]. Classification is done

by using stacked regularized linear discriminant analysis

(SRLDA) [16]. The resulted accuracy has shown better re-

sults for binary class rather than for multiclass, i.e., 85%

and 74% respectively. Shiratori et al. [17] included “rest

state” as a third class along with other two classes for MI

movement of the left and right hand. They extracted CSP

features from the EEG signal is divided into subbands.

Support vector machine (SVM) [18] was used as a classi-

fier to train the system on selected features based on mu-

tual information. Although the implemented methodology

has shown 88.7% results for classification of EEG signals

produced as a result of finger tapping, it did not show

good results for multiclass MI data, i.e., 56.7%.

A lot of research has been conducted for the classifica-

tion of multiclass EEG signals of same limb movements.

Yong and Menon [19] applied a bandpass filter to pre-

process raw data while both CSP and Filter bank common

spatial pattern (FBCSP) [11] were used to extract features

from multiclass EEG signal acquired from the same limb.

This approach showed better results for data acquired

from the same limb than data from different limbs but the

overall accuracy of the system was reported 60.7%. Shi-

man et al. [20] investigated that MI-based brain signals

produced as a result of the imagination of movement from

the same limb produce more results than the signals ac-

quired from different limbs. They applied FBCSP having

unique frequency cutoffs, i.e., (7 to 15 Hz, 15 to 25 Hz, 25

to 30 Hz) on the acquired same limb EEG data for feature

extraction. Then, linear discriminant analysis (LDA) [21]

is trained for classification on the basis of extracted fea-

tures. The results show an accuracy of 69.1% and 62.75%

for 3 and 4 class MI-based brain signal respectively.

Apart from feature extraction, classifier improvements

have also been implemented to enhance the overall accur-

acy of the system. She et al. [22] implemented a multiclass

posterior probability classification technique for twin SVM

through ranking continuous output and pairwise coupling.

Platt’s estimating technique and the ranking continuous

output techniques were used for two class posterior prob-

ability approximation. Then, each pair of class probabilities

were combined by using pairwise coupling for multiclass

probabilistic outputs. This technique has not proven effi-

cient for classification of multiclass MI-based EEG signal.

Further, Gao et al. [23] tested the effectiveness of Adaboost

extreme learning machine (AdaboostELM) for classifica-

tion of features extracted by using Kolmogorov complexity

(Kc). They followed the approach of Adaboost model,

which states that by calling a base lerning algorithm rap-

idly, the performance of that algorithm can be enhanced.

So, the features were extracted from muthe lticlass MI-

based brain signal by using Kc after removing EOG artifacts

from the signal using a single wide band filter, then classi-

fied by using AdaboostELM. Although, the results showed

improved results for adboost approach on the classifica-

tion accuracy, but these results were calculated by using

one versus rest approach which is considered as a binary

class classification technique [24]. Meisheri et al. [25] pro-

duced better CSP features after identification and removal

of artifacts using joint approximate diagonalization (JAD)
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[26] in preprocessing of the MI-based EEG data. Fast Fro-

benius Diagonalization (FFDIAG) [27] was applied on the

EEG signal for obtaining spatial filters by JAD then CSP is

applied on the resulted signal for feature extraction. Self-

regulated interval type 2 neuro fuzzy inference system

(SRIT2NFIS) is used for classification of these extrated

features. The implemented technique have shown good

results on the produced algorithm, i.e., maximum of

74.65% accuracy for a single subject. Table 1 shows a brief

comparison of previous researches for classification of

multiclass MI based brain signals.

The related work for multiclass EEG classification shows

that most of the results were evaluated by using one versus

rest approach which is considered as a binary class classifi-

cation. Therefore, for run-time control of BCI-controlled

devices, multiclass classification is required [24]. This paper

aims to implement multiclass classification to improve the

results of motor imagery brain signals by using sub-band

common spatial patterns with sequential backward floating

selection (SBCSP-SBFS). Feature extraction and then selec-

tion of optimal features on the basis of the final perform-

ance of the classifier is the principle of this approach. The

motor imagery-based EEG signal is decomposed into

different subbands using a filter bank which contains filters

of different frequency cutoffs. Once the signal is decom-

posed, then CSP is applied on it to extract sub-band CSP

features, these features are fed into LDA for eigenvector

computation. All of the features are not optimal for getting

better accuracy from classifier; therefore, sequential back-

ward floating selection (SBFS) technique is used to select ‘k’

optimal features from ‘n’ extracted features. Different classi-

fiers SVM, k-nearest neighbor (KNN) [29] and naïve Bayes-

ian Parzen window (NBPW), are trained and tested on

these ‘k’ optimal features for evaluation of the proposed

model.

2 Methodology

In this section, the proposed methodology implemented to

classify multiclass motor imagery EEG signal is presented.

The complete block diagram is shown in Fig. 1. In the first

stage, preprocessing is done using a filter bank by decom-

posing EEG signal into sub-bands. In the second stage, CSP

is applied to every bandpass filtered signal. Then LDA is

applied to these features to acquire scores which represent

the classification capability of every frequency band. The

third stage involves feature extraction in which SBFS is

Table 1 Comparison of related work in literature

Author No. of channel Dataset Feature
extraction

Feature
selection

Results

Data type Classifier Accuracy

Nicolas Alonso
et al. (2015) [16]

22 Dataset 2a, BCI Competition IV CSP MIBIF Binary class SRLDA 85%

Multi class 74%

Shiratori et al.
(2015) [17]

15 Dataset acquired by themselves
from 8 healthy subjects

CSP Mutual
information

Finger tapping Random
forest (RF)

88.7 ± 4.5%

Motor imagery 56.7 ± 4.4%

Yong and Menon,
(2015) [19]

32 Dataset acquired by themselves
from 12 healthy persons

CSP, FBCSP, and
band power

– Binary class SVM 80.5%

Multi class 60.7%

Shiman et al.
(2017) [20]

32 Dataset acquired by themselves
from 9 healthy persons

FBCSP – 3 classes LDA 69.1 ± 7.9%

4 classes 62.8 ± 6.8
%

Ge, Wang and Yu,
(2014) [28]

60 Dataset IIIa open BCI
competition

STFT and CSP – FP2 channel SVM 78.3%

C4 channel 88.1%

She et al. (2015) [22] 22 Dataset 2a, BCI competition IV CSP – Multiclass SVM 48.4%

NBPW 53.8%

NBPW along
FBCSP

59.3%

PPTSVM 62.4%

Gao et al. (2016) [23] 64 Dataset acquired by themselves
from 10 healthy subjects

Kolmogorov
complexity

– Multiclass ELM 73.0%

Adaboost
ELM

79.5%

Meisheri et al.
(2018) [25]

22 Dataset 2a, BCI competition IV CSP – Multiclass
Data

SRT2NFIS
using JAD

74.65%

Proposed algorithm for
multiclass classification
by SBCSP-SBFS

8 and 14 Wet gel rlectrodes and Emotiv
Epoc

SBCSP SBFS Emotiv Epoc NBPW 60.61%

Wet gel
electrodes

KNN 86.50%
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implemented to pick out the most effective features from

all of the sub-band features resulted via LDA. This feature

selection is carried out on the basis of best accuracy of the

classifier for specific combinations from extracted sub-band

features. Finally, three classifiers, i.e, SVM, KNN, and

NMPW are applied for training and testing of the proposed

system. EEG processing blocks of the proposed model are

explained in the following section.

2.1 Bandpass filtering by overlapping filter bank

For preprocessing, filter bank having each bandpass filter is

implemented instead of applying one wide bandpass filter

of 8–30 Hz on raw EEG signal. The proposed filter bank in-

cludes 12 filters of two distinct categories having unique

frequency edges between 6 and 32 Hz. Every category in

filter bank has 6 filters, and cutoffs of the filters in every

category are different in a manner that there is an overlap-

ping of 2 Hz between frequencies of both categories. One

filter bank category has a gap of 4 Hz in a range of 8 to 32

Hz, at the same time another category has also a gap of 4

Hz ranging from 6 to 30 Hz. The overlapping of 2 Hz helps

to avoid the possible information loss between two con-

secutive bands.

2.2 Feature extraction by common spatial pattern and

linear discriminant analysis

Common spatial pattern (CSP) is applied after filter

bank in order to extract the features which are utilized

for classification of multiclass data. It yields excellent

outcomes by means of extracting considerable EEG fea-

tures for MI-based signal. The goal of CSP is to grasp

the spatial filters for maximizing the converted data vari-

ance ration among distinctive classes in EEG data. Basic-

ally, CSP is used for a binary class problem, but in the

proposed approach, it is used for the multiclass problem

by using one-vs-rest (OVR) algorithm.

Multiclass EEG data is generally assumed to be cen-

tered without generality loss, i.e., Ej, 1, Ej, 2, and Ej, n.

Shape of the acquired data matrix represents “channels

by number of samples,” where j = unique trail in data.

For ‘n’ classes, Eq. (1) can be used to compute the com-

posite spatial covariance matrix E.

E ¼
X

Mn

j¼0

E j;nE
T
j;n ð1Þ

Where, Mn = All trials in ‘n’ classes

n ¼ 1; 2……n

Here, the classification of three classes is done; therefore,

n = 3 results three covariance matrices, i.e., E1, E2 and E3
which results in the composite covariance matrix, i.e., E =

E1, E2 and E3. This matrix is further factored by using (2).

E ¼ P0∂ P
T
0 ð2Þ

Where, P0 = L × L unitary matrix of principal

components

∂ = L × L diagonal matrix of eigenvalues

The major goal of CSP is to find transformed data

variance between distinct multiclass data which is com-

puted by using (3)

maxsW sð Þ ¼
sTEc1s

sTEc2s
s:t: sk k2 ¼ 1 ð3Þ

Where, W(s) = Rayleigh quotient maximization

s = Spatial filter

‖s‖2 = the n2 normal

Ec1 = Covariance matrix of class 1

Ec2 = Covariance matrix of class 2

The solution of the generalized eigenvalue Eq. (4) re-

sults in W(s).

X

1
s ¼ λ

X

2
s ð4Þ

Finally, from the learned spatial filter matrix ‘S’, the ei-

genvectors are calculated to compute the projection of

an EEG signal using Eq. (5).

Fig. 1 Block diagram of SBCSP-SBFS. Step by step processing of EEG
signal by applying different machine learning algorithms is shown in
this picture. Each main block represents a specific step, i.e., preprocessing,
feature extraction, and classification
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Pn ¼ STn G ð5Þ

Where

P = EEG signal’s CSP projections matrix

S = Learned spatial matrix

G = EEG signal

After CSD, sub-band scores are generated by applying

LDA which are then used as features. These features are

computed by using the projection matrix that guarantees

maximum separability by maximizing the ratio of the

variance between and within different classes [21]. The

cost function for the projection matrix is generated by

LDA using Eq. (6).

C ¼
STlda V BSlda

STlda VWSlda
ð6Þ

Where, C = cost function for LDA projection matrix

of EEG signal

Slda = Projection matrix generated by LDA

VB = Variance among MI-based right and left hand classes

VW = Variance within MI-based right or left hand classes

VB and VW are calculated by (7) and (8) respectively.

V B ¼ f 2− f 1ð Þ f 2− f 1ð ÞT ð7Þ

VW ¼
X

Zp∈n1

Zp− f 1
� �2

þ
X

Zp∈n2

Zp− f 2
� �2

ð8Þ

Where f1 and f2 represent means of CSP computed fea-

tures for empirical classes. Finally, the one-dimensional

score by LDA can be calculated by (9). These scores are

then sent to the feature selector.

O ¼ STldazp ð9Þ

2.3 Feature SBFS

Optimal features are selected using selection using se-

quential backward floating selection (SBFS). It is a feature

selection technique which selects among all the provided

features in such a way that the overall performance of the

system could be improved. For example, ‘k’ optimal fea-

tures are selected from ‘n’ total features in a way that the

performance of the classifier should be maximized due to

selected features. Let us assume F is a set of all features,

F ¼ f 1; f 2;……; f nf g

If ‘F’ set is given to the SBFS technique as input then

the selection of set ‘P’ (set of output features) is done in

such a way that, first of all, the classifier will be trained

on all of the provided features, i.e., set ‘F.’ In the next

iterations, those features are removed from the input set

which causes the low average accuracy of the system.

These iterations for feature elimination are carried out

until the ‘k’ number of features is not obtained. Once

the iterations are finished, then the set ‘P’ (a subset of

‘F’) containing ‘k’ selected features is returned.

P ¼ p jj j ¼ 1; 2;……; k; p j∈B
n o

wherek

¼ 0; 1; 2;……; n−1ð Þ

2.4 Classification

After feature selection, the classifier is trained which es-

timates the accuracy of the system by predicting each

class label from the testing model. The classifiers used in

the proposed methodology are explained in this section.

2.5 SVM

Support vector machine (SVM) is called the supervised

technique of machine learning because it requires la-

beled training dataset. It acts as a linear classifier be-

cause it draws a separating line known as hyperplane

between data samples of different classes in a dataset.

For margin maximization of training data, measurement

of an optimal hyperplane is the goal of SVM. Hyperplane

can be calculated by equation (10),

vTy ¼ 0 ð10Þ

Where v and y = vectors containing EEG samples

As the hyperplane is a line which separates different

classes in data, the equation for hyperplane is the same

as the equation of a line which can be calculated by the

dot product of v and y where

v ¼
−d

−c

1

2

4

3

5 y ¼
1
s

t

2

4

3

5 ð11Þ

Once the hyperplane is computed then the distance

among hyperplane and the closest data sample is calcu-

lated, which is known as margin value. Double of the cal-

culated margin value is known as margin, no data sample

occurs in this region. After hyperplane calculation, the

classifier is considered ready for classification purpose.

Now, when a test data is passed through the trained classi-

fier it calculates the distance of the data sample from the

margin. Then that class label is assigned to the data from

which the computed distance is nearest.

2.6 KNN

The k-nearest neighbor (KNN) algorithm works on the

principle of forming a majority vote between the ‘k’ most

similar instances and a given test data sample (an unseen

data). While ‘k’ represents a positive integer, which

should be small. The performance of this algorithm de-

pends on two factors, i.e., a suitable similarity function

and an appropriate value for k. This similarity is found

according to a distance matrix between two data
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samples. Euclidean distance is used as the most popular

way to find the distance between the data samples. The

equation for this method is

d p; p0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1 þ p01ð Þ þ p2 þ p02ð Þ þ…þ pn þ p0n
� �

q

Þ

ð12Þ

The algorithm is also known as lazy learning algorithm

because it refers to the decision to generalize the training

data samples until a new query is faced. The major

assumption of this algorithm is that the class probabilities

are locally constant approximately, so it is one of the sim-

plest machine learning algorithms.

2.7 NBPW

Naïve Bayesian Parzen window (NBPW) is a fast classifica-

tion algorithm as compared to other classification algo-

rithms which follow the principle of Bayes theorem of

probability. A major assumption in this algorithm is that

one feature in the data does not relate to any other feature.

As NBPW is based on Bayes theorem which provides the

methodology to calculate posterior probability P (a | y)

from P (a), P (y) and P (y | a) using Naive Bayesian equation

P a j yð Þ ¼
P y j að Þ P að Þ

P yð Þ
ð13Þ

Where

a = target class

y = predictor

P(a | y) = posterior probability

P(a) = prior probability of class

P(y) = prior probability of predictor

P(y | a) = probability of predictor given class

The working principle of NBPW is that, firstly the

dataset is converted into a frequency table then prob-

abilities are computed to create a likelihood table. In the

end, the posterior probability is computed by using the

naïve Bayesian equation.

3 Results and discussion
For the evaluation of the proposed system, results are

validated on two different datasets i.e., dry and wet gel

Fig. 2 Electrode placement according to 10–20 electrode system.
Different electrode placement positions where the electrodes are
placed for EEG data acquisition are shown in this picture. The
shaded ones represent the electrodes that are used to acquire EEG
data for this study

Fig. 3 Data acquisition scheme. This picture represents the whole scheme used for EEG data acquisition. It is followed to show various stimuli at
different time. By using this scheme, a specific time stamp for a specific task is also placed in the dataset file which further helps to interpret that
which specific data samples are associated with a specific task
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electrodes. Dry electrodes consist of Emotiv Epoc

which is a 14-channel device with 128 Hz sampling fre-

quency, whereas, wet gel electrodes consist of 8-

channel EEG device and data was sampled at 256 Hz.

Figure 2 shows the 10–20 electrode system used for

placement of wet gel electrodes. EEG signals were ac-

quired for three distinct MI tasks (neutral, the imagin-

ation of left and right-hand movements). The subjects

were instructed to stay calm and imagine their hand

movements according to different stimulus shown on

the screen. For each trial of 8 s, “blank screen” for 4 s,

“+sign” for 2 s, and a “specific stimulus” for 2 s were

shown on the screen. In each session, there were 240

trails, i.e., 80 trials for each task. Figure 3 shows the

scheme used for data acquisition used for acquisition of

both datasets. EEG data of those electrodes which add

eye artifact data in the whole dataset (i.e., electrodes

placed at frontal lobe) are not included so that noise

could be minimized.

After preprocessing by filter bank, 12 features are

extracted from CSP and LDA. Optimal features are then

selected from these extracted features. Then the accuracy

of the system is compared for different classifiers (i.e.,

SVM, KNN & NBPW) by varying number of selected fea-

tures. Figures 4 and 5 show a graphical comparison for

the accuracy results of cross-validations performed on

proposed model with various classification algorithms. For

dry electrodes, the proposed approach shows a maximum

accuracy of 60.61% for 10 selected features with NBPW as

classifier as shown in Figure 4. In the case of SVM and

KNN, maximum system output is 55.31% and 50.76%

which are resulted for 6 and 3 selected features respect-

ively. Figure 5 shows that for MI-based EEG signals ac-

quired using wet gel electrode, a maximum of 86.50%

accuracy is yielded. This accuracy resulted for four se-

lected features with KNN as a classifier. For the same

dataset, the maximum system output for SVM and NBPW

is 76.59% with 6 selected features and 75.11% with 7 se-

lected features respectively. Table 2 provides a tabular

comparison of the accuracy of the proposed model for dif-

ferent selected features on SVM, KNN, and NBWP classi-

fiers for both dry and wet gel electrodes.

The proposed system yields 7% increase in accuracy as

compared to literature which shows that the use of filter

Fig. 4 Graphical comparison of accuracies by different classifiers for Emotiv Epoc dataset. This figure represents the graphical representation of
calculated results for EEG dataset acquired by using Emotiv Epoc headset. These results are computed by varying number of selected features for
three different classifiers. The gradual increase in the accuracies shows the importance of classifier

Fig. 5 Graphical comparison of accuracies by different classifiers for wet gel electrodes headset dataset. This figure represents the graphical
representation of calculated results for EEG dataset acquired by using wet gel electrodes. These results are computed by varying number of
selected features for three different classifiers. The gradual increase in the accuracies shows the importance of classifier
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bank, optimal feature selection, and classifier in the pro-

posed methodology has a remarkable influence on the

classification accuracy of the system. The results for

Emotiv Epoc dataset shows that NBPW produces better

results than SVM and KNN with the proposed model

but for wet gel electrode dataset, KNN outperforms in

comparison to SVM and KNN.

4 Conclusion

This paper presents a framework for the classification of

multiclass MI-based EEG signals. In the proposed

model, results were evaluated on two different headsets.

The proposed methodology shows a maximum of

60.61% and 86.50% accuracy for classification of motor

imagery signals by using Emotiv Epoc and wet gel elec-

trode headset respectively. The overall performance of

the system shows a 7% increase in accuracy than previ-

ously used techniques for multiclass EEG classification.

The results show that the use of overlapped filter bank,

optimal feature selection, and classifier for multiclass

classification have the capability to control BCI applica-

tions and can be tested for controlling BCI applications

in the real world. Currently, further research is being

done on the improvement of results by optimal channel

selection.
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