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Abstract—This paper proposes a peer-to-peer energy market
platform based on the new concept of multi-class energy manage-
ment, to coordinate trading between prosumers with heteroge-
neous (i.e. beyond purely financial) preferences. Power networks
are undergoing a fundamental transition, with traditionally
passive distribution network consumers becoming ‘prosumers’;
proactive consumers that actively manage their production and
consumption of energy. The paper introduces the new concept of
energy classes, allowing energy to be treated as a heterogeneous
product, based on attributes of its source which are perceived
by prosumers to have value. Examples include generation tech-
nology, location in the network and owner’s reputation. The
proposed peer-to-peer energy market platform coordinates trad-
ing between subscribed prosumers and the wholesale electricity
market, to minimise costs associated with losses and battery
depreciation, while providing added value by accounting for the
prosumers’ individual preferences for the source/destination of
the energy they consume/produce. The decomposable structure of
the multi-class energy management problem is exploited to devise
a distributed price-directed optimisation mechanism, providing
scalability and prosumer data privacy. Receding horizon model
predictive control allows the prosumers to adjust their planned
power flows based on the wholesale energy price, and up-to-date
renewable generation and load predictions.

Index Terms—Distributed Optimisation, Dynamic Optimal
Power Flow, Energy Management System, Energy Class, Energy
Market, Microgrid, Peer-to-Peer, Prosumer

I. INTRODUCTION

POWER networks are undergoing a fundamental transition,

with traditionally passive distribution network consumers

becoming ‘prosumers’; proactive consumers, with local gen-

eration sources and/or energy storage systems, that actively

manage their consumption and production of energy [1].

Previously, limited communications and control infrastruc-

ture at the distribution level has not allowed small consumers

to directly interact with the wholesale electricity market.

Instead, they have signed a contract with a retail supplier,

and the supplier buys energy from the wholesale market on

their behalf [2]. Under these contracts, the consumers are

individually metered so that they can be charged for energy

used, and paid a feed-in tariff for energy supplied to the

network.

Under a contract based on individually metered usage, pro-

sumers with energy storage capacity only benefit from shifting

their locally generated energy [3]. However, this neglects the
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additional value that coordinated control of distributed energy

storage systems can provide by reducing losses and congestion

[4]. In addition, coordinating local energy storage systems

based on the wholesale energy market allows them to respond

to upstream energy needs [5].

The problem of coordinating bidirectional power flows

between distribution network prosumers has been studied as

the optimal energy management problem, i.e. the problem of

scheduling the power flows between energy storage systems

over a time horizon, considering renewable generation and

load predictions [6]–[10].

The scalability of centralised energy management is of

concern, since renewable generation and load predictions

are required for all of the prosumers [11]. Sending all of

this information to a central processor introduces privacy

and security issues [12]. To address this, distributed energy

management strategies have been proposed, including dual

decomposition [13], [14], alternating direction method of mul-

tipliers (ADMM) [15], [16] and distributed consensus based

algorithms [17], [18]. Distributed optimisation methods based

on dual prices (e.g. dual decomposition, ADMM) can be

interpreted as competitive market mechanisms [19].

Existing energy management strategies treat energy as a

homogeneous product. However, it has been found that pro-

sumers are willing to buy/sell energy at different prices de-

pending on its source/destination. Studies in several countries

have found that consumers are willing to pay a premium for

renewable energy [20]–[23]. A choice modelling experiment

undertaken in Germany found a greater willingness to pay

for local generation, and for certain renewable technologies

over others [24]. In [25], latent class modelling was used to

group residential consumers in Denmark according to their

energy preferences. Three distinct groups were identified,

‘value seeking consumers’, ‘price sensitive consumers’ and

‘green consumers’. The prosumer survey in [26] found a

majority of respondents would be willing to share unused

energy resources with their local community.

Peer-to-peer (P2P) market platforms have emerged in a

range of sectors, allowing small suppliers to compete with

traditional providers of goods and services [27], [28]. Promi-

nent examples include Uber for P2P transport, Airbnb for P2P

accommodation and eBay for P2P auctions. P2P platforms

allow for matching between suppliers and consumers with a

high degree of heterogeneity [29]. With the rise of distributed

renewable sources, energy storage and communications at the

distribution level, P2P energy market platforms could be used

to coordinate energy trading between prosumers [30], [31]. In

addition, a P2P energy market platform offers the new op-
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Fig. 1. A distribution network with three prosumers and three energy classes.
The green prosumer is willing to pay a premium for green energy. The
philanthropic prosumer is willing to supply subsidised energy to the low-
income household at a reduced price.

portunity to incorporate the heterogeneous energy preferences

of individual prosumers into the management of the network

[32].

This paper proposes a P2P energy market platform based

on the new concept of multi-class energy management, to

coordinate trading between prosumers with heterogeneous

(i.e. beyond purely financial) preferences. The proposed P2P

energy market platform has the following key features:

(i) The new concept of ‘energy classes’ allows energy to be

treated as a heterogeneous product, based on attributes

of its source which are perceived by prosumers to have

value. Examples include generation technology, location

in the network and the owner’s reputation.

(ii) The P2P platform minimises costs associated with power

losses and battery depreciation, while providing added

value by accounting for the prosumers’ individual pref-

erences for the source/destination of the energy they

consume/produce.

(iii) The decomposable structure of the multi-class energy

management problem is exploited to devise a distributed

price-directed optimisation mechanism, using ADMM.

This provides scalability and prosumer data privacy.

(iv) Receding horizon model predictive control (MPC) allows

the prosumers to adjust their planned power flows based

on differences between the actual and predicted wholesale

energy price, their renewable generation and their loads.

The operation of the proposed P2P energy market platform is

verified for the IEEE European Low Voltage Test Feeder, with

55 subscribed prosumers.

The rest of this paper is organised as follows. Section II

presents the principle of operation of the proposed P2P energy

market platform based on multi-class energy management. In

Section III, the centralised multi-class energy management

problem is formulated. In Section IV, ADMM is used to devise

the distributed price-directed optimisation mechanism. Section

V presents results verifying the operation of the proposed P2P

energy market platform. Section VI concludes the paper.

II. PRINCIPLE OF OPERATION

This study considers energy trading between distribution

network prosumers, each with local loads, renewable gener-

ation sources and/or battery energy storage systems. A P2P

Wholesale 
Electricity Market

P2P Platform Agent

Prosumer 1

Buy/sell grid energy to balance 
the distribution network

Wholesale 
energy price

Net demand for 
each energy class

Energy 
class prices

Prosumer N

Fig. 2. A block diagram of the proposed P2P energy market platform.

energy market platform is proposed to allow the prosumers to

trade energy with each other, and with the main grid through

the wholesale electricity market.

The P2P energy market platform has the following objec-

tives:

1) Provide social welfare maximising power flows between

the prosumers. The solution needs to account for the

prosumers’ heterogeneous energy supply/demand prefer-

ences, battery depreciation costs and the cost of buying

energy from the wholesale electricity market.

2) Satisfy power network constraints and prosumer energy

resource constraints. The distribution network power

balance must be maintained, and each prosumer has re-

newable generation, energy storage and load constraints.

3) Satisfy informational constraints for scalability and data

privacy. Only the P2P platform has access to the whole-

sale electricity market and each prosumers’ energy re-

source capacities, preferences and renewable generation

and load predictions are private information.

It is assumed the prosumers have individual energy prefer-

ences. For example:

• Prosumers may prefer to obtain the best financial return,

regardless of the source/destination of their energy.

• Prosumers may prefer to obtain energy from local sources

or particular generation technologies.

• Prosumers may prefer to trade energy with particular

subscribers (e.g. friends/relatives, low-income residents,

community organisations).

To account for the prosumers’ heterogeneous preferences,

each unit of energy in the distribution network is assigned

an ‘energy class’ relating to relevant attributes of its source.

The prosumer preferences are incorporated into the proposed

P2P market platform through utility functions (envisaged as

being set by users), giving their additional willingness to pay

to obtain, or to supply, energy with these attributes.

Prosumers wishing only to obtain the best financial return

would set their utility functions for each class of energy to

zero. The proposed P2P market platform still provides value

to these prosumers, by allowing them to trade energy with

the wholesale market and other prosumers to best utilise the

capacity of their energy resources.

Fig. 1 shows an example distribution network where multi-

class energy management adds value. The distribution network
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has a ‘green prosumer’, a ‘philanthropic prosumer’ and a

‘low-income household’. Three energy classes are introduced

to account for their preferences; ‘green energy’, ‘subsidised

energy’ and ‘grid energy’.

A platform agent is introduced to act as an auctioneer and to

allow energy trading between the prosumers and the wholesale

electricity market. The platform agent sets the price of each

energy class in the distribution network. A block diagram of

the proposed P2P energy market platform is shown in Fig. 2.

Distributed price-directed optimisation parallelises the

multi-class energy management problem. At each wholesale

market trading interval, the prosumers solve local optimisation

sub-problems to schedule their renewable sources and battery

energy storage systems, considering their generation and load

predictions and the price of each class of energy. The platform

agent adjusts the energy class prices, considering the prosumer

energy demands, the wholesale energy price, wholesale price

predictions and expected losses. Iteratively, the prosumers and

platform agent reach agreement on a schedule of social welfare

maximising power flows.

Receding horizon MPC is used to provide a real-time

implementation. Once the energy class prices have converged

for the current trading interval, the trading interval recedes

by a step and the prosumers update their local battery SoC

estimates, generation predictions and load predictions.

It is assumed that the P2P energy market platform operates

as a price-taker in the wholesale electricity market. The

platform agent is programmed to set prices that maximise

social welfare, and the individual prosumers are programmed

to operate as competitive price-takers. This is desirable for all

participants if the platform owner faces competition from other

potential platforms, so it cannot set prices to maximise profits,

and there are sufficient prosumers so that they cannot improve

their position through strategic price-setting behaviour [33].

If these conditions are not met over the long term, the

platform owner/prosumers with market power may need to

be compensated to incentivise their participation.

The proposed P2P energy market platform allows small-

scale prosumers to trade energy with one another, and with

the wholesale market, rather than relying on a traditional retail

supplier. Two distinct types of P2P markets can be identified

[29]: 1) P2P markets with individual sellers responsible for

adjusting prices (e.g. eBay and Airbnb), and 2) P2P markets

with a centralised price setting mechanism to balance supply

and demand (e.g. Uber). The proposed P2P market platform

is a member of the second type. It should be noted that the

platform’s description as a P2P market is separate from its

underlying network architecture, which is distributed, but not

fully P2P [34].

The proposed P2P energy market platform operates in a

distribution network so that local prosumer energy balancing

can be incentivised, and the costs associated with importing

energy from the main grid can be accounted for. Through the

P2P market, prosumers can trade energy with one another and

the wholesale market without a retail supplier. However, retail

suppliers could still have an important role, providing services

such as invoicing, real-time metering and local energy man-

agement [35]. Also, small-scale prosumers may not wish to

Prosumer 1

Main Grid

Prosumer N

Fig. 3. The simplified real power distribution network model used to formulate
the multi-class energy management problem. Each prosumer has a battery
energy storage system, renewable source and/or load.

be exposed to fluctuating wholesale energy prices. Prosumers

could contract with retail suppliers to obtain predictable energy

prices, and then their supplier could act on their behalf within

the P2P platform based on their energy preferences.

III. MULTI-CLASS ENERGY MANAGEMENT

Let the set of distribution network prosumers be N =
{1, . . . , N} and the set of energy classes generated by the

prosumers be K = {1, . . . ,K}. The MPC time horizon is

T = {t0, . . . , T}, where t0 is the current trading interval.

Each time interval t ∈ T has its own duration T
(t)
s .

Wholesale electricity markets operate with high temporal

resolution trading intervals (e.g. 5 minute intervals for the

Australian National Electricity Market (NEM)), while price

predictions available from day-ahead trading and day-ahead

prosumer renewable generation and load predictions often have

lower temporal resolution (e.g. 2 hour intervals). Therefore,

each time horizon interval may have a different duration. For

example, with a 5 minute trading interval and 2 hour day-

ahead predictions, t0 lasts for 5 minutes, t0 + 1 lasts from

the end of interval t0 until the next full 2 hour interval and

{t0 + 2, . . . , T} are the remaining full 2 hour intervals until

the end of the day.
For prosumer i ∈ N , time interval t ∈ T and energy

class k ∈ K; y
(t)
ik is the average renewable source output

power, b
(t)
ik is the average battery output power, z

(t)
ik is the

average allocated load power and x
(t)
ik is the average net power

supplied to the prosumer. For grid class energy, the renewable

generation export, average battery output power, allocated load

power and net supplied power are y
(t)
ig , b

(t)
ig , z

(t)
ig and x

(t)
ig .

Implementing the proposed P2P energy market platform in

real-time requires computational speed. In recognition of this,

simplifying assumptions are made to obtain a convex formula-

tion of the proposed multi-class energy management problem,

since fast and robust solvers are readily available for convex

optimisation problems [36]. Energy management strategies

often use simplified models to obtain a convex formulation

[6]–[8], [13]–[17]. In Section IV, the convex formulation

allows the proposed multi-class energy management problem

to be parallelised using distributed price-directed optimisation.
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Fig. 3 shows the simplified real power distribution network

model used to obtain a convex formulation for the proposed

multi-class energy management problem. g(t) is the average

grid power supplied to the distribution network during inter-

val t, Vg is the nominal RMS grid voltage and Rg is the

average resistance between the main grid and the distribution

network prosumers. Losses between the main grid and the

distribution network are approximated by
Rg

V 2
g
g(t)2, based on

the assumption of small network voltage drops and relatively

low reactive power flows [37]. Losses due to power flows

between prosumers are assumed to be relatively small and

are not included in the model.

The platform agent’s cost function is given by,

fg =
∑

t∈T

f (t)
g =

∑

t∈T

C(t)
g T (t)

s

(

g(t) +
Rg

V 2
g

g(t)2
)

. (1)

C
(t)
g is the predicted wholesale energy price at interval t.

The cost functions for the prosumers, i ∈ N , are given by,

fi =
∑

t∈T

T (t)
s

[

Cdep

(

B
(t)
ci +B

(t)
di

)

−
∑

k∈K

(

ud
ikz

(t)
ik + us

iky
(t)
ik

)

]

.

(2)

B
(t)
ci ≥ 0 and B

(t)
di ≥ 0 are the total battery charging and

discharging powers. Cdep is the cost of battery depreciation,

assuming a uniform energy throughput degradation rate [38].

Prosumer i’s preference for its demand to be satisfied by

energy of class k is modelled by the utility coefficient,

ud
ik ≥ 0. Prosumer i’s preference for supplying energy of

class k, rather than selling to the grid, is modelled by the

utility coefficient, us
ik ≥ 0.

For each interval of the time horizon, t ∈ T , the following

power flow constraints are required to ensure the power flows

of each energy class are balanced.
∑

i∈N

x
(t)
ig − g(t) = 0. (3)

∑

i∈N

x
(t)
ik = 0, ∀k ∈ K. (4)

For each prosumer, i ∈ N , the local power flows must

match the net supplied power of each energy class, introducing

the following coupling constraints,

z
(t)
ig − x

(t)
ig − y

(t)
ig − b

(t)
ig = 0, ∀t ∈ T . (5)

z
(t)
ik − x

(t)
ik − y

(t)
ik − b

(t)
ik = 0, ∀k ∈ K, ∀t ∈ T . (6)

Also, each prosumer, i ∈ N , has load constraints, renewable

generation constraints and battery constraints. The prosumer

load constraints require that the total power allocated to its

load meets its load predictions, z
pred(t)
i , ∀t ∈ T . Let Ki ⊆ K

be the set of energy classes that prosumer i is allowed to use

to supply its loads (e.g. in the example from Fig. 1, subsidised

energy is reserved for low-income households).
∑

k∈Ki

z
(t)
ik + z

(t)
ig = z

pred(t)
i , ∀t ∈ T . (7)

0 ≤ z
(t)
ig , 0 ≤ z

(t)
ik , ∀k ∈ K, ∀t ∈ T . (8)

For prosumer i ∈ N , let y
pred(t)
i be the predicted generation

capacity at interval t.

∑

k∈K

y
(t)
ik + yig = y

pred(t)
i , ∀t ∈ T . (9)

0 ≤ y
(t)
ig , 0 ≤ y

(t)
ik , ∀k ∈ K, ∀t ∈ T . (10)

For prosumer i ∈ N , let s
(t)
ig , s

(t)
ik , k ∈ K be the battery SoC

allocated to each energy class and let Ebi be the battery energy

capacity. A linear SoC model is used to develop constraints

to keep the total battery SoC between smin
i and smax

i over

the time horizon, and to enforce a required final SoC level of

s
(T+1)
i . Prosumer i’s SoC constraints are given by,

smin
i 1 ≤

∑

k∈K

(s
(t0)
ik 1+Abibik) + s

(t0)
ig 1+Abibig ≤ smax

i 1,

(11)
∑

k∈K

(s
(t0)
ik + a

(T )
bi bik) + s

(t0)
ig + a

(T )
bi big = s

(T+1)
i , (12)

bik = [b
(t0)
ik · · · b

(T )
ik ]T, big = [b

(t0)
ig · · · b

(T )
ig ]T,

Abi =













a
(t0)
bi

a
(t0+1)
bi

...

a
(T )
bi













= −
1

Ebi















T
(t0)
s 0 · · · 0

T
(t0)
s T

(t0+1)
s

. . .
...

...
...

. . . 0

T
(t0)
s T

(t0+1)
s · · · T

(T )
s















.

1 is a vector with |T | elements, all equal to 1.

The following additional constraints are needed since neg-

ative SoC levels are not allowed.

0 ≤ s
(t0)
ik 1+Abi(bik + bikg), ∀k ∈ K, ∀t ∈ T , (13)

0 ≤ s
(t0)
ig 1+Abi(big −

∑

k∈K

bikg), ∀t ∈ T . (14)

0 is a vector with |T | elements, all equal to 0. In (13), (14),

bikg = [b
(t0)
ikg · · · b

(T )
ikg ]

T, where b
(t)
ikg, t ∈ T is the amount of

class k energy stored as grid energy. Certain energy classes,

k ∈ Kg ⊆ K, are allowed to be substituted for and stored as

grid energy (e.g. in the example from Fig. 1, green energy is

traded at a premium and therefore may be substituted for grid

energy). The following constraints are introduced to restrict

the energy classes that can be substituted and stored as grid

energy.

0 ≤ b
(t)
ikg, ∀k ∈ Kg, ∀t ∈ T , (15)

b
(t)
ikg = 0, ∀k ∈ K\Kg, ∀t ∈ T . (16)

The battery also has output power limits. Let Bmax
ci be

the maximum charging power and Bmax
di be the maximum

discharging power. The battery output power constraints for

prosumer i are given by,

−Bmax
ci ≤

∑

k∈K

b
(t)
ik + b

(t)
ig ≤ Bmax

di , ∀t ∈ T . (17)

The following additional constraints link the total battery

charging power B
(t)
ci and discharging power B

(t)
di at each time
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interval to the battery output powers of each energy class,

B
(t)
di −B

(t)
ci =

∑

k∈K

b
(t)
ik + b

(t)
ig , ∀t ∈ T , (18)

0 ≤ B
(t)
ci , 0 ≤ B

(t)
di , ∀t ∈ T . (19)

The battery depreciation model in (2) requires that for each

interval t ∈ T , either B
(t)
di = 0, or B

(t)
ci = 0. This will be the

case, since for any solution with both B
(t)
di and B

(t)
ci greater

than zero, there is a lower cost feasible solution with one equal

to zero, and the other at a smaller value [9].

The following decision variable vectors are defined for the

prosumers i ∈ N ,

xi = (x
(t)
ig , x

(t)
ik |k ∈ K, t ∈ T ), yi = (y

(t)
ig , y

(t)
ik |k ∈ K, t ∈ T ),

zi = (z
(t)
ig , z

(t)
ik |k ∈ K, t ∈ T ),

bi = (b
(t)
ig , b

(t)
ik , b

(t)
ikg, B

(t)
ci , B

(t)
di |k ∈ K, t ∈ T ),

The centralised formulation of the proposed multi-class

energy management problem can be stated as,

minimise
(xi,yi,zi,bi|i∈N ),

(g(t)|t∈T )

f = fg +
∑

i∈N

fi (20)

subject to (3), (4), ∀t ∈ T , (Power Flow Const.)

(5), (6), ∀i ∈ N . (Coupling Const.)

(7)–(19), ∀i ∈ N . (Prosumer Const.)

Since (20) is a convex quadratic program with affine con-

straints, strong duality holds assuming there is a feasible

solution [36].

Receding horizon MPC can be used to implement multi-

class energy management for real-time control of the distribu-

tion network prosumers. During each wholesale market trading

interval:

1) For the current trading interval, t0, the current wholesale

electricity price and updated price predictions, C
(t)
g , ∀t ∈

T , are obtained. Also, each prosumer, i ∈ N , esti-

mates its current SoC allocated to each energy class,

s
(t0)
ig , s

(t0)
ik , ∀k ∈ K, and obtains updated renewable gen-

eration and load predictions, y
pred(t)
i , z

pred(t)
i , ∀t ∈ T .

2) The multi-class energy management problem (20) is

solved.

3) Each prosumer, i ∈ N , implements the optimal renewable

output powers, y
∗(t0)
ig , y

∗(t0)
ik , ∀k ∈ K, and battery output

powers, b
∗(t0)
ig , b

∗(t0)
ik , b

∗(t0)
ikg , ∀k ∈ K, obtained for the

current trading interval, t0, by using them as lower level

controller references for their energy sources.

4) The MPC time horizon recedes by a step, t0 ← t0 + 1,

for the next trading interval.

To obtain a convex problem formulation, the utility pro-

sumers receive for additional energy in (2) must be concave.

In this study, it is assumed the prosumers receive constant

marginal utility for using their preferred energy classes. How-

ever, any function with constant or diminishing marginal

returns for additional energy could be used. For example, pro-

sumers with smart thermostats could be modelled as receiving

high marginal utility for energy used to reach a minimum

desired temperature level, and diminishing marginal utility for

additional energy usage [39], [40].

IV. DISTRIBUTED PRICE-DIRECTED OPTIMISATION

To satisfy informational constraints for scalability and data

privacy, the decomposable structure of the multi-class energy

management problem is exploited to devise a distributed price-

directed optimisation mechanism, using ADMM.

ADMM is a distributed convex optimisation method, which

uses iterative local optimisation and dual price adjustments

[41]. The dual price adjustments can be interpreted as the

tâtonnement process of a Walrasian auction i.e. a competitive

market mechanism, where the prices of goods are increased in

the case of excess demand and decreased in the case of excess

supply, to achieve equilibrium at a set of market clearing

prices. ADMM provides convergence even if the local sub-

problems are constrained [41].

At each wholesale electricity market trading interval, the

following distributed mechanism is used to solve the multi-

class energy management problem (20).

The platform agent initialises the net power of each en-

ergy class assigned to the prosumers over the time horizon,

x
(t)
ig (0), x

(t)
ik (0), k ∈ K, t ∈ T , as well as dual price variables,

ν
(t)
g (0), ν

(t)
k (0), k ∈ K, t ∈ T , which can be interpreted as the

prices of each class of energy in the distribution network for

each interval of the time horizon. These initial values are sent

to the individual prosumers. Then, during each iteration κ:

1) In parallel, each prosumer, i ∈ N , updates its local

decision variables for the current iteration, κ, by minimising

an augmented Lagrangian, Li, subject to local constraints.

minimise
yi(κ),zi(κ),bi(κ)

Li (21)

subject to (7)–(19). (Prosumer i Const.)

The augmented Lagrangian includes the prosumer cost func-

tion, the price of each class of energy over the time horizon

and penalty terms for violations of the coupling constraints.

Li = fi+

+
∑

t∈T

[

ν(t)g (κ− 1)
(

z
(t)
ig (κ)− x

(t)
ig (κ− 1)− y

(t)
ig (κ)− b

(t)
ig (κ)

)

+
ρ

2

(

z
(t)
ig (κ)− x

(t)
ig (κ− 1)− y

(t)
ig (κ)− b

(t)
ig (κ)

)2

+
∑

k∈K

(

ν
(t)
k (κ− 1)

(

z
(t)
ik (κ)− x

(t)
ik (κ− 1)− y

(t)
ik (κ)− b

(t)
ik (κ)

)

+
ρ

2

(

z
(t)
ik (κ)− x

(t)
ik (κ− 1)− y

(t)
ik (κ)− b

(t)
ik (κ)

)2)
]

.

ρ > 0 in the penalty terms is the ADMM step size.

2) The prosumers calculate their net power demands for

each energy class over the time horizon, and send this infor-

mation to the platform agent,

x̃
(t)
ig (κ) = z

(t)
ig (κ)− y

(t)
ig (κ)− b

(t)
ig (κ), t ∈ T ,

x̃
(t)
ik (κ) = z

(t)
ik (κ)− y

(t)
ik (κ)− b

(t)
ik (κ), k ∈ K, t ∈ T .

3) The platform agent, in parallel for each interval of the

time horizon, t ∈ T , updates the net power of each energy
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Fig. 4. IEEE European Low Voltage Test Feeder with 55 prosumers.
(H): Main grid point of coupling.
(�/ ): Green prosumer, (with/without) a PV source and battery.
(�): Philanthropic prosumer, with a PV source and battery.
( ): Low-income household.

class supplied to each prosumer and the power imported from

the grid, for the current iteration, κ, by solving,

minimise
(g(t)(κ),x

(t)
ik

(κ),x
(t)
ig

(κ)|k∈K,i∈N )

L
(t)
g (22)

subject to (3), (4), (Power Flow Const.)

L(t)
g = f (t)

g +
∑

i∈N

[

ν(t)g (κ− 1)
(

x̃
(t)
ig (κ)− x

(t)
ig (κ)

)

+
ρ

2

(

x̃
(t)
ig (κ)− x

(t)
ig (κ)

)2
+

∑

k∈K

(

ν
(t)
k (κ− 1)

(

x̃
(t)
ik (κ)− x

(t)
ik (κ)

)

+
ρ

2

(

x̃
(t)
ik (κ)− x

(t)
ik (κ)

)2)
]

.

4) The platform agent then updates the dual prices. For a

particular class of energy k ∈ K and time interval t ∈ T ,

the prosumer coupling constraints (5), (6), will have the same

dual price for all i ∈ N , since relaxations are interchangeable

through the power balance constraints (3), (4). This means that

only a single dual price is needed for each class of energy at

each interval of the time horizon, and the platform agent can

update the prices using the coupling constraint mismatch for

any prosumer i ∈ N ,

ν(t)g (κ) = ν(t)g (κ− 1) + ρ(x̃
(t)
ig (κ)− x

(t)
ig (κ)), t ∈ T , (23)

ν
(t)
k (κ) = ν

(t)
k (κ− 1) + ρ(x̃

(t)
ik (κ)− x

(t)
ik (κ)), k ∈ K, t ∈ T .

Since the multi-class energy management problem (20) sat-

isfies strong duality, the decision variables and dual prices will

converge to their optimal values [41]. For real-time control, the

distributed price-directed optimisation replaces step 2) of the

MPC procedure described in Section III.

V. RESULTS

The operation of the proposed P2P energy market platform

based on multi-class energy management was verified using

the IEEE European Low Voltage Test Feeder [42], with 55

prosumers. The distribution network is shown in Fig. 4. For the

distribution network model, a nominal voltage of Vg = 415V

and average resistance between the prosumers and main grid

of Rg = 0.084Ω are used.
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(a) Prosumer load profiles.
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(b) Zoomed view of the prosumer load profiles.

Fig. 5. The grey plots show the individual prosumer load profiles (with 20%
opacity to show overlaps). The maximum, minimum and mean load are also
shown, as well as the two hour resolution day-ahead predicted profile used
by all of the prosumers.
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Fig. 6. The grey plots show the individual prosumer PV generation profiles
(with 20% opacity to show overlaps). The maximum, minimum and mean
PV generation are also shown, as well as the two hour resolution day-ahead
predicted profile used by all of the prosumers with PV sources.

There are three types of prosumers in the distribution

network, ‘green prosumers’, ‘philanthropic prosumers’ and

‘low-income households’. Based on their preferences, three

energy classes are introduced; ‘grid energy’, ‘green energy and

‘subsidised energy’. Grid energy, is traded with the wholesale

market at five minute trading intervals through the platform

agent. Green energy is traded at a premium, so it is allowed

to be substituted for and stored/sold as grid energy. Only low-

income households are allowed to use subsidised energy.

The green prosumers are labelled 1 to 20. Of these, 1 to 10

have 1kW PV sources and 1kW, 2kWh battery energy storage

systems. The green prosumers obtain additional perceived

utility worth $15/MWh when their loads are supplied with

green energy. The philanthropic prosumers are labelled 21 to

40, and have 1kW PV sources and 1kW, 2kWh battery energy

storage systems. These prosumers obtain additional perceived

utility worth $15/MWh when they supply subsidised energy

to low-income households. The low-income households are

labelled 41 to 55.

The green and philanthropic prosumers’ batteries begin at
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Fig. 7. The wholesale energy market prices and 2 hour resolution predictions,
and the prices for green energy, subsidised energy and grid energy set by the
platform agent.
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Fig. 8. The total power imported from the grid, and the total prosumer load
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60% SoC, with green and subsidised energy respectively. The

batteries have SoC limits of 20% to 100%, and a final required

SoC of 60%. The cost of battery depreciation is assumed to

be $20/MWh.

One minute resolution load data from the IEEE European

Low Voltage Test Feeder is used for the prosumer load profiles.

The prosumer load profiles are shown in Fig. 5. The loads

have 0.95 power factor and the PV sources and battery energy

storage systems have unity power factor.

The prosumer PV generation profiles were generated using

temperature and irradiance data with one minute resolution

from the NREL Baseline Measurement System (from June

2016, with each day’s data used for one of the prosumers)

[43]. The PV profiles are shown in Fig. 6.

It is assumed that the prosumers have access to a common

set of day-ahead 2 hour resolution load and PV generation

predictions, as well as accurate 5 minute ahead predictions

of their individual average load and PV generation. The day-

ahead predicted load profile is based on the average distri-

bution network load. The day-ahead predicted PV generation

profile is based on an 80% rating of the nominal PV generation

capacity, which slightly overestimates the actual average PV

generation.

Multi-class energy management is implemented using dis-

tributed price-directed optimisation and receding horizon

MPC. Each five minute wholesale market trading interval,

the platform agent sets energy prices based on the current
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Fig. 9. The output powers of the individual prosumer battery energy storage
systems are shown in grey (with 20% opacity to show overlaps). The
maximum and minimum battery output powers are also shown.
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Fig. 10. The voltages of the grid and prosumer buses are shown in grey (with
20% opacity to show overlaps). The maximum, minimum and mean of the
bus voltages are also shown. During the middle of the day the bus voltages
rise above the grid voltage (1 pu), due to PV generation export.

wholesale energy price and 2 hour resolution price predictions.

The wholesale energy price and 2 hour resolution day-ahead

predictions are shown in Fig. 7, along with the prices for green

energy, subsidised energy and grid energy, set by the platform

agent during operation. The wholesale energy prices and price

predictions (from day-ahead trading) are from the Australian

NEM for the 30th of August 2016.

To achieve agreement between the prosumers and the plat-

form agent, the ADMM algorithm is run for 300 iterations

at each trading interval, with a step size of ρ = 0.01. The

optimisation sub-problems were solved using IBM’s CPLEX

solver in MATLAB, on an Intel Core i7-6500U CPU with

8GB of RAM. The maximum solution time is 0.0483s for the

prosumer sub-problems, and 0.0395s for the platform agent

sub-problems (the average solution time for the centralised

multi-class energy management problem is 0.249s.)

Fig. 8 shows the net power imported from the main grid,

and the sum of the prosumer loads, PV generation and battery

output powers. The individual battery output powers remain

between the charging and discharging limits of 1kW, as shown

in Fig. 9. The resulting bus voltages are shown in Fig. 10.

As shown in Fig. 7, the price of grid energy is above

the wholesale energy price when power is imported from

the main grid, and below the wholesale energy price when

power is exported to the main grid, accounting for expected

import/export losses.

Green energy always trades at or above the price of grid

energy, since green prosumers are willing to pay a premium to

obtain it. Conversely, subsidised energy remains at or below

the price of grid energy, since the philanthropic prosumers

obtain additional utility for supplying it.
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(b) Prosumer 41, a low-income household.

Fig. 11. 5 minute average load profiles for selected prosumers, with energy
class allocations.
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Fig. 12. SoC profile for Prosumer 1’s battery, with energy class allocations.

Comparing Fig. 7 and Fig. 9, it can be seen that the

prosumer batteries are largely discharged when prices are high,

and charged when prices are low.

Fig. 11 shows how selected prosumers allocate the different

energy classes to their loads during each 5 minute trading

interval. During the middle of the day when there is excess PV

generation, Prosumer 1 is able to supply its loads with green

energy, which it prefers. During this time, Prosumer 41, a low-

income household, is able to supply its load with subsidised

energy. At the start and end of the day, the prosumers use grid

energy.

Fig. 12 shows the battery SoC levels of each energy class

for Prosumer 1. The battery remains within the SoC limits of

20% to 100%. At the end of the day, the prosumer buys grid

energy to restore its battery to the required 60% final SoC

level.

VI. CONCLUSION

The new concept of multi-class energy management has

been presented, which allows energy to be treated as a

heterogeneous product, based on attributes of its source that

are perceived by prosumers to have value. This has been

used for a P2P energy market platform which coordinates

energy trading between distribution network prosumers and the

wholesale electricity market. The P2P energy market platform

adds value by accounting for individual prosumer energy

preferences, which could be financial, social, philanthropic or

environmental. The multi-class energy management problem

has been parallelised using distributed price-directed optimisa-

tion, providing scalability and prosumer data privacy. Receding

horizon MPC has been used for a real-time implementation.
There are several important areas for future research. First,

it has been assumed that the P2P energy market platform is

a relatively small participant in the wholesale market, and

does not have a significant effect on wholesale energy prices.

However, if prosumer energy trading becomes widespread,

this assumption may no longer be valid. P2P energy market

platforms will need to be carefully designed to ensure feedback

effects between transmission and distribution system opera-

tions do not reduce system stability. One approach could be to

introduce an additional penalty term into the platform agent’s

cost function (1) to limit large imports/exports of power. The

aim would be to incentivise the use of local energy storage for

smoothing spikes in local generation and demand, reducing the

need for balancing at the transmission system level.
Another important area for future research could be the

design of new mechanisms allowing the P2P platform operator

and prosumers to agree on a limited common set of energy

classes which provide them with the most value.
Finally, this study has assumed the platform owner and pro-

sumers face significant competition, and therefore cannot im-

prove their position through strategic price-setting behaviour.

If the platform owner does not face external competition, it

may be more appropriate to model its interactions with the

prosumers using a bi-level optimisation approach, with the

platform owner setting prices to maximise its own profits [44].

If individual prosumers have market power, they may need to

be incentivised to participate in the P2P energy market plat-

form. A promising area for future research could be the use of

tools from cooperative game theory (e.g. [45], [46]) to design

allocation mechanisms which compensate for this by dividing

the additional profits obtained when prosumers schedule their

energy resources cooperatively rather than individually.
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