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Abstract

We propose a visual recognition system that is designed

for fine-grained visual categorization. The system is com-

posed of a machine and a human user. The user, who is un-

able to carry out the recognition task by himself, is interac-

tively asked to provide two heterogeneous forms of informa-

tion: clicking on object parts and answering binary ques-

tions. The machine intelligently selects the most informative

question to pose to the user in order to identify the object’s

class as quickly as possible. By leveraging computer vision

and analyzing the user responses, the overall amount of hu-

man effort required, measured in seconds, is minimized. We

demonstrate promising results on a challenging dataset of

uncropped images, achieving a significant average reduc-

tion in human effort over previous methods.

1. Introduction

Vision researchers have become increasingly interested

in recognition of parts [2, 8, 21], attributes [6, 11, 12], and

fine-grained categories (e.g. specific species of birds, flow-

ers, or insects) [1, 3, 14, 15]. Beyond traditionally studied

basic-level categories, these interests have led to progress

in transfer learning and learning from fewer training ex-

amples [7, 8, 10, 15, 21], larger scale computer vision al-

gorithms that share processing between tasks [15, 16], and

new methodologies for data collection and annotation [2, 4].

Parts, attributes, and fine-grained categories push the

limits of human expertise and are often inherently ambigu-

ous concepts. For example, perception of the precise lo-

cation of a particular part (such as a bird’s beak) can vary

from person to person, as does perception of whether or

not an object is shiny. Fine-grained categories are usually

recognized only by experts (e.g. the average person cannot

recognize a Myrtle Warbler), while one can recognize im-

mediately basic categories like cows and bottles.

We propose a key conceptual simplification: that humans

and computers alike should be treated as valuable but ulti-

mately imperfect sources of information. Humans are able
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Figure 1. Our system can query the user for input in the form of

binary attribute questions or part clicks. In this illustrative exam-

ple, the system provides an estimate for the pose and part locations

of the object at each stage. Given a user-clicked location of a part,

the probability distributions for locations of the other parts in each

pose will adjust accordingly. The rightmost column depicts the

maximum likelihood estimate for part locations.

to detect and broadly categorize objects, even when they

do not recognize them, as well as carry out simple mea-

surements such as telling color and shape; human errors

arise primarily because (1) people have limited experiences

and memory, and (2) people have subjective and percep-

tual differences. In contrast, computers can run identical

pieces of software and aggregate large databases of infor-

mation. They excel at memory-based problems like recog-

nizing movie posters but struggle at detecting and recog-

nizing objects that are non-textured, immersed in clutter, or

highly shape-deformable.

In order to achieve a unified treatment of humans and

computers, we introduce models and algorithms that ac-

count for errors and inaccuracies of vision algorithms (part

localization, attribute detection, and object classification)

and ambiguities in multiple forms of human feedback (per-

ception of part locations, attribute values, and class labels).

The strengths and weaknesses of humans and computers for
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Figure 2. 2(a) Images in our dataset are clustered by k-means on the spatial offsets of part locations from parent part locations. Semantic

labels of clusters were manually assigned by visual inspection. Left/right orientation is in reference to the image. 2(b) The user clicks on

his/her perceived location of the breast (x̃p, ỹp), which is shown as a red X and is assumed to be near the ground truth location (xp, yp).
The user also can click a checkbox indicating part visibility ṽp. Features ψp(x, θp) can be extracted from a box around θp.

these modalities are combined using a single principled ob-

jective function: minimizing the expected amount of time

to complete a given classification task.

Consider for example different types of human annota-

tion tasks in the domain of bird species recognition. For the

task “Click on the beak,” the location a human user clicks

is a noisy representation of the ground truth location of the

beak. It may not in isolation solve any single recognition

task; however, it provides information that is useful to a

machine vision algorithm for localizing other parts of the

bird, measuring attributes (e.g. cone-shaped), recognizing

actions (e.g. eating or flying), and ultimately recognizing

the bird species. The answer to the question “Is the belly

striped?” similarly provides information towards recogniz-

ing a variety of bird species. Each type of annotation takes

a different amount of human time to complete and provides

varying amounts of information.

Our models and algorithms combine all such sources of

information into a single principled framework. We have

implemented a practical real-time system1 for bird species

identification on a dataset of over 200 categories. Recog-

nition and pose registration can be achieved automatically

using computer vision; the system can also incorporate hu-

man feedback when computer vision is unsuccessful by in-

telligently posing questions to human users (see Figure 1).

The contributions of this paper are: (1) We introduce

models and algorithms for object detection, part localiza-

tion, and category recognition that scale efficiently to large

numbers of categories. Our algorithms can localize and

classify objects on a 200-class dataset in a fraction of a sec-

ond, using part and attribute detectors that are shared among

classes. (2) We introduce a formal model for evaluating the

usefulness of different types of human input that takes into

account varying levels of human error, time spent, and in-

formativeness in a multiclass or multitask setting. We intro-

duce fast algorithms that are able to predict the informative-

ness of 312 binary questions and 13 part click questions in a

1See http://visipedia.org/ for a demo of our system.

fraction of a second. All such computer vision algorithms,

forms of user input, and question selection techniques are

combined into an integrated framework. (3) We present a

thorough experimental comparison of a number of methods

for optimizing human input.

The structure of the paper is as follows: In Section 2, we

review related work. We define the problem and describe

the algorithm in Sections 3 and 4. In Section 5 we discuss

implementation details, in Section 6 we present empirical

results, and finally in Section 7 we discuss future work.

2. Related Work

Our work extends prior work by Branson et al. [3],

who introduced a system combining human interaction with

computer vision that was applied to bird species classifi-

cation. They used an information-theoretic framework to

intelligently select attribute questions such as “Is the belly

spotted?”, “Is the wing white?”, etc. to identify the true bird

species as quickly as possible. Our work has 3 main dif-

ferences: (1) While [3] used non-localized computer vision

methods based on bag-of-words features extracted from the

entire image, we use localized part and attribute detectors.

Thus [3] relied on experiments with test images cropped by

ground truth bounding boxes; in contrast, our experiments

are performed on uncropped images in unconstrained en-

vironments. (2) Whereas [3] incorporated only one type

of user input – binary questions pertaining to attributes –

we allow heterogeneous forms of user input including user-

clicked part locations. Users can click on any pixel location

in an image, introducing significant algorithmic and com-

putational challenges as we must reason over hundreds of

thousands of possible click point and part locations. (3)

Whereas [3] measured human effort in terms of the total

number of questions asked, we introduce an extended ques-

tion selection criterion that factors in the expected amount

of human time needed to answer each type of question.

A number of papers have recently addressed fine-grained

categorization [1, 3, 13, 14, 15, 22]. One important differ-
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ence between this paper and prior work is that we use local-

ized computer vision algorithms based on part and attribute

detectors (in contrast, [3, 13, 14, 15] rely on bag-of-words

methods). The differences between fine-grained categories

are subtle, such that it is likely that lossy representations

such as bag-of-words are insufficient. Bird field guides [19]

suggest that humans use strongly localized methods based

on parts and attributes to perform bird species recognition,

justifying our approach. Also, we introduce an extended

version of the CUB-200 dataset [18] that consists of 200
bird species and nearly 12, 000 images, each of which is la-

beled with part locations and attribute annotations (example

images are shown in Figure 2(a)). Additional discussion of

related work covered in [3] is not revisited here.

Our integrated approach builds on two areas in com-

puter vision: part-based models and attribute-based learn-

ing, which have both been explored in depth in other

works. Specifically, we use a part representation simi-

lar to a Felzenszwalb-style deformable part model [8, 9]

(sliding window HOG-based part detectors fused with tree-

structured spatial dependencies). Whereas most attribute-

based methods [6, 12] use non-localized classifiers, [5,

20] incorporate object or part-level localization with at-

tribute detectors. Our methods differ from earlier work

on parts and attributes by (1) the specific combination of

a Felzenszwalb-style deformable part model with localized

attribute detectors, (2) the additional ability to combine part

and attribute models with different types of user input, and

(3) the deployment of such methods on a dataset of larger

scale, localizing 200 object classes, 13 parts, 11 aspects,

and 312 binary attributes in a fraction of a second.

3. Framework for Visual Recognition

In this section, we introduce a principled framework for

integrating part-based detectors, multi-class categorization

algorithms, and different types of human feedback into a

common probabilistic model. We also introduce efficient

algorithms for inferring and updating object class and lo-

calization predictions as additional user input is obtained.

We begin by formally defining the problem.

3.1. Problem Definition and Notation

Given an image x, our goal is to predict an object class

from a set of C possible classes (e.g. Myrtle Warbler, Blue

Jay, Indigo Bunting) within a common basic-level category

(e.g. Birds). We assume that the C classes fall within a

reasonably homogeneous basic-level category such as birds

that can be represented using a common vocabulary of P

parts (e.g. head, belly, wing), and A attributes (e.g. cone-

shaped beak, white belly, striped breast). We use a class-

attribute model based on the direct-attribute model of Lam-

pert et al. [12], where each class c ∈ 1...C is represented us-

ing a unique, deterministic vector of attribute memberships

a
c = [ac1...a

c
A], a

c
i ∈ 0, 1. We extend this model to include

part localized attributes, such that each attribute a ∈ 1...A
can optionally be associated with a part part(a) ∈ 1...P
(e.g. the attributes white belly and striped belly are both as-

sociated with the part belly). In this case, we express the set

of all ground truth part locations for a particular object as

Θ = {θ1...θP }, where the location θp of a particular part p

is represented as an xp, yp image location, a scale sp, and an

aspect vp (e.g. side view left, side view right, frontal view,

not visible, etc.):

θp = {xp, yp, sp, vp}. (1)

Note that the special aspect not visible is used to handle

parts that are occluded or self-occluded.

We can optionally combine our computer vision algo-

rithms with human input, by intelligently querying user in-

put at runtime. A human is capable of providing two types

of user input which indirectly provide information relevant

for predicting the object’s class: mouse click locations θ̃p
and attribute question answers ãi. The random variable

θ̃p represents a user’s input of the part location θp, which

may differ from user to user due to both clicking inaccura-

cies and subjective differences in human perception (Figure

2(b)). Similarly, ãi is a random variable defining a user’s

perception of the attribute value ai.

We assume a pool of A + P possible questions that can

be posed to a human user Q = {q1...qA, qA+1...qA+P },

where the first A questions query ãi and the remaining P

questions query θ̃p. Let Aj be the set of possible answers to

question qj . At each time step t, our algorithm considers the

visual content of the image and the current history of ques-

tion responses to estimate a distribution over the location of

each part, predict the probability of each class, and intelli-

gently select the next question to ask qj(t). A user provides

the response uj(t) to a question qj(t), which is the value of

θ̃p or ãi for part location or attribute questions, respectively.

The set of all user responses up to timestep t is denoted by

the symbol U t = {uj(1)...uj(t)}. We assume that the user

is consistent in answering questions and therefore the same

question is never asked twice.

3.1.1 Probabilistic Model

Our probabilistic model incorporating both computer vision

and human user responses is summarized in Figure 3(b).

Our goal is to estimate the probability of each class given

an arbitrary collection of user responses U t and observed

image pixels x:

p(c|U t, x) =
p(ac, U t|x)

∑

c p(a
c, U t|x)

, (2)

which follows from the assumption of unique, class-

deterministic attribute memberships a
c [12]. We can in-
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Figure 3. Probabilistic Model. 3(a): The spatial relationship be-

tween parts has a hierarchical independence structure. 3(b): Our

model employs attribute estimators, where part variables θp are

connected using the hierarchical model shown in 3(a).

corporate localization information Θ into the model by in-

tegrating over all possible assignments to part locations

p(ac, U t|x) =

∫

Θ

p(ac, U t,Θ|x)dΘ. (3)

We can write out each component of Eq 3 as

p(ac, U t,Θ|x) = p(ac|Θ, x)p(Θ|x)p(U t|ac,Θ, x) (4)

where p(ac|Θ, x) is the response of a set of attribute de-

tectors evaluated at locations Θ, p(Θ|x) is the response of

a part-based detector, and p(U t|ac,Θ, x) models the way

users answer questions. We describe each of these proba-

bility distributions in Sections 3.2.1, 3.2.2, and 3.3 respec-

tively and describe inference procedures for evaluating Eq 3

efficiently in Section 3.4.

3.2. Computer Vision Model

As described in Eq 4, we require two basic types of com-

puter vision algorithms: one that estimates attribute proba-

bilities p(ac|Θ, x) on a particular set of predicted part loca-

tions Θ, and another that estimates part location probabili-

ties p(Θ|x).

3.2.1 Attribute Detection

Using the independence assumptions depicted in Figure

3(b), we can write the probability

p(ac|Θ, x) =
∏

ac
i
∈a

c

p(aci |θpart(ai), x). (5)

Given a training set with labeled part locations θpart(ai), one

can use standard computer vision techniques to learn an es-

timator for each p(ai|θpart(ai), x). In practice, we train a

separate binary classifier for each attribute, extracting lo-

calized features from the ground truth location θpart(ai).

As in [12], we convert attribute classification scores zi =
fa(x; part(ai)) to probabilities by fitting a sigmoid func-

tion σ(γazi) and learning the sigmoid parameter γa using

cross-validation. When vpart(ai) = not visible, we assume

the attribute detection score is zero.

3.2.2 Part Detection

We use a pictorial structure to model part relationships (see

Figure 3(a)), where parts are arranged in a tree-structured

graph T = (V,E). Our part model is a variant of the model

used by Felzenszwalb et al. [8], which models the detection

score g(x; Θ) as a sum over unary and pairwise potentials

log(p(Θ|x)) ∝ g(x; Θ) with

g(x; Θ) =

P
∑

p=1

ψ(x; θp) +
∑

(p,q)∈E

λ(θp, θq) (6)

where each unary potential ψ(x; θp) is the response of a

sliding window detector, and each pairwise score λ(θp, θq)
encodes a likelihood over the relative displacement between

adjacent parts. We use the same learning algorithms and

parametrization of each term in Eq 6 as in [23]. Here,

parts and aspects are semantically defined, multiple aspects

are handled using mixture models, and weight parameters

for appearance and spatial terms are learned jointly using a

structured SVM [17]. After training, we convert detection

scores to probabilities p(Θ|x) ∝ exp (γg(x; Θ)), where γ

is a scaling parameter that is learned using cross-validation.

3.3. User Model

Readers interested in a computer-vision-only system

with no human-in-the-loop can skip to Section 3.4. We as-

sume that the probability of a set of user responses U t can

be expressed in terms of user responses that pertain to part

click locations U t
Θ ⊆ U t and user responses that pertain to

attribute questions U t
a ⊆ U t. We assume a user’s percep-

tion of the location of a part θ̃p depends only on the ground

truth location of that part θp, and a user’s perception of an

attribute ãi depends only on the ground truth attribute aci :

p(U t|ac,Θ, x) =





∏

p∈Ut
Θ

p(θ̃p|θp)









∏

ãi∈Ut
a

p(ãi|a
c
i )



 .

(7)

We describe our methods for estimating p(θ̃p|θp) and

p(ãi|a
c
i ) in Sections 3.3.1 and 3.3.2 respectively.

3.3.1 Modeling User Click Responses

Our interface for collecting part locations is shown in Figure

2(b). We represent a user click response as a triplet θ̃p =
{x̃p, ỹp, ṽp}, where (x̃p, ỹp) is a point that the user clicks

with the mouse and ṽp ∈ {visible, not visible} is a binary

variable indicating presence/absence of the part.

Note that the user click response θ̃p models only part lo-

cation and visibility, whereas the true part location θp also

includes scale and aspect. This is done in order to keep the

user interface as intuitive as possible. On the other hand, in-

corporating scale and aspect in the true model is extremely



important – the relative offsets and visibility of parts in left

side view and right side view will be dramatically different.

We model a distribution over user click responses as

p(θ̃p|θp) = p(x̃p, ỹp|xp, yp, sp)p(ṽp|vp) (8)

where the relative part click locations are Gaussian dis-

tributed
(

x̃p−xp

sp
,
ỹp−yp

sp

)

∼ N (µ̃p, σ̃
2
p), and each p(ṽp|vp)

is a separate binomial distribution for each possible value of

vp. The parameters of these distributions are estimated us-

ing a training set of pairs (θp, θ̃p). This model of user click

responses results in a simple, intuitive user interface and

still allows for a sophisticated and computationally efficient

model of part localization (Section 3.4).

3.3.2 Attribute Question Responses

We use a model of attribute user responses similar to [3].

We estimate each p(ãi|ai) as a binomial distribution, with

parameters learned using a training set of user attribute re-

sponses collected from MTurk. As in [3], we allow users to

qualify their responses with a certainty parameter guessing,

probably, or definitely, and we incorporate a Beta prior to

improve robustness when training data is sparse.

3.4. Inference

We describe the inference procedure for estimating per-

class probabilities p(c|U t, x) (Eq 2), which involves evalu-

ating
∫

Θ
p(ac, U t,Θ|x)dΘ. While this initially seems very

difficult, we note that all user responses ãip and θ̃p are ob-

served values pertaining only to a single part, and attributes

ac are deterministic when conditioned on a particular choice

of class c. If we run inference separately for each class c,

all components of Eqs 5 and 7 can simply be mapped into

the unary potential for a particular part. Evaluating Eq 2

exactly is computationally similar to evaluating a separate

pictorial structure inference problem for each class.

On the other hand, when C is large, running C inference

problems can be inefficient. In practice, we use a faster

procedure which approximates the integral in Eq 3 as a sum

over K strategically chosen sample points:

∫

Θ

p(ac, U t,Θ|x)dΘ

≈
K
∑

k=1

p(U t|ac,Θt
k, x)p(a

c|Θt
k, x)p(Θ

t
k|x) (9)

= p(U t
a|a

c)

K
∑

k=1

p(ac|Θt
k, x)p(U

t
Θ|Θ

t
k, x)p(Θ

t
k|x).

We select the sample set Θt
1...Θ

t
K as the set of all local max-

ima in the probability distribution p(U t
Θ|Θ)p(Θ|x). The set

of local maxima can be found using standard methods for

maximum likelihood inference on pictorial structures and

then running non-maximal suppression, where probabilities

for each user click response p(θ̃p|θp) are first mapped into

a unary potential ψ(x; θp, θ̃p) (see Eq 6)

ψ(x; θp, θ̃p) = ψ(x; θp) + log p(θ̃p|θp). (10)

The inference step takes time linear in the number of parts

and pixel locations2 and is efficient enough to run in a frac-

tion of a second with 13 parts, 11 aspects, and 4 scales.

Inference is re-run each time we obtain a new user click re-

sponse θ̃p, resulting in a new set of samples. Sampling as-

signments to part locations ensures that attribute detectors

only have to be evaluated on K candidate assignments to

part locations; this opens the door for more expensive cate-

gorization algorithms (such as kernelized methods) that do

not have to be run in a sliding window fashion.

4. Selecting the Next Question

In this section, we introduce a common framework for

predicting the informativeness of different heterogeneous

types of user input (including binary questions and mouse

click responses) that takes into account the expected level

of human error, informativeness in a multitask setting, ex-

pected annotation time, and spatial relationships between

different parts. Our method extends the expected informa-

tion gain criterion described in [3].

Let IGt(qj) be the expected information gain

IG(c;uj |x, U
t) from asking a new question qj :

IGt(qj) =
∑

uj∈Aj

p(uj |x, U
t)
(

H(U t, uj)−H(U t)
)

(11)

H(U t) = −
∑

c

p(c|x, U t) log p(c|x, U t) (12)

where H(U t) is shorthand for the conditional class entropy

H(c|x, U t). Evaluating Eq 11 involves considering every

possible user-supplied answer uj ∈ Aj to that question, and

recomputing class probabilities p(c|x, U t, uj). For yes/no

attribute questions (querying a variable ãi), this is compu-

tationally efficient because the number of possible answers

is only two, and attribute response probabilities p(U t
a|a

c)
are assumed to be independent from ground truth part loca-

tions (see Eq 9).

4.1. Predicting Informativeness of Mouse Clicks

In contrast, for part click questions the number of possi-

ble answers to each question is equal to the number of pixel

locations, and computing class probabilities requires solv-

ing a new inference problem (Section 3.4) for each such lo-

cation, which quickly becomes computationally intractible.

2Maximum likelihood inference involves a bottom-up traversal of T ,

doing a distance transform operation [8] for each part in the tree (takes

time O(n) time in the number of pixels).



We use a similar approximation to the random sampling

method described in Section 3.4. For a given part location

question qj , we wish to compute expected entropy:

Eθ̃p
[H(U t, θ̃p)] =

∑

θ̃p

p(θ̃p|x, U
t)H(U t, θ̃p). (13)

This can be done by drawing K samples θ̃tp1...θ̃
t
pK from the

distribution p(θ̃p|x, U
t), then computing expected entropy

Eθ̃p
[H(U t, θ̃p)] ≈ (14)

−
K
∑

k=1

p(θ̃p|x, U
t)
∑

c

p(c|x, U t, θ̃tpk) log p(c|x, U
t, θ̃tpk).

In this case, each sample θ̃tpk is extracted from a sample Θt
k

(Section 3.4) and each p(c|x, U t, θ̃tpk) is approximated as a

weighted average over samples Θt
1...Θ

t
K . The full question

selection procedure is fast enough to run in a fraction of a

second on a single CPU core when using 13 click questions

and 312 binary questions.

4.2. Selecting Questions By Time

The expected information gain criterion (Eq 11) attempts

to minimize the total number of questions asked. This

is suboptimal as different types of questions tend to take

more time to answer than others (e.g., part click questions

are usually faster than attribute questions). We include a

simple adaptation that attempts to minimize the expected

amount of human time spent. The information gain crite-

rion IGt(qj) encodes the expected number of bits of infor-

mation gained by observing the random variable uj . We

assume that there is some unknown linear relationship be-

tween bits of information and reduction in human time. The

best question to ask is then the one with the largest ratio of

information gain relative to the expected time to answer it:

q∗j(t+1) = argmax
qj

IGt(qj)

E[time(uj)]
(15)

where E[time(uj)] is the expected amount of time required

to answer a question qj .

5. Implementation Details

In this section we describe the dataset used to perform

experiments, provide implementation details on the types

of features used, and describe the methodologies used to

obtain pose information for training.

5.1. Extended CUB-200 Dataset

We extended the existing CUB-200 dataset [22] to form

CUB-200-2011 [18], which includes roughly 11, 800 im-

ages, nearly double the previous total. Each image is anno-

tated with 312 binary attribute labels and 15 part labels. We

obtained a list of attributes from a bird field guide website

[19] and selected the parts associated with those attributes

for labeling. Five different MTurk workers provided part

labels for each image by clicking on the image to designate

the location or denoting part absence (Figure 2(b)). One

MTurk worker answered attribute questions for each im-

age, specifying response certainty with options guessing,

probably, and definitely. They were also given the option

not visible if the associated part with the attribute was not

present. At test time, we simulated user responses in a sim-

ilar manner to [3], randomly selecting a stored response for

each posed question. Instead of using bounding box an-

notations to crop objects, we used full uncropped images,

resulting in a significantly more challenging dataset than

CUB-200 [22].

5.2. Attribute Features

For attribute detectors, we used simple linear classifiers

based on histograms of vector-quantized SIFT and vector-

quantized RGB features (each with 128 codewords) which

were extracted from windows around the location of an

associated part. We believe that significant improvements

in classification performance could be gained by exploring

more sophisticated features or learning algorithms.

5.3. Part Model

As in [8], the unary scores of our part detector are im-

plemented using HOG templates parametrized by a vector

of linear appearance weights wvp
for each part and aspect.

The pairwise scores are quadratic functions over the dis-

placement between (xp, yp) and (xq, yq), parametrized by

a vector of spatial weights wvp,vq for each pose and pair

of adjacent parts. For computational efficiency, we assume

that the pose and scale parameters are defined on an object

level, and thus inference simply involves running a sepa-

rate sliding window detector for each scale and pose. The

ground truth scale of each object is computed based on the

size of the object’s bounding box.

5.4. Pose Clusters

Because our object parts are labeled only with visibility,

we clustered images using k-means on the spatial x- and y-

offsets of the part locations from their parent part locations,

normalized with respect to image dimensions; this approach

handles relative part locations in a manner most similar to

how we model part relationships (Section 3.2.2). Exam-

ples of images grouped by their pose cluster are shown in

Figure 2(a). Semantic labels were assigned post hoc by vi-

sual inspection. The clustering, while noisy, reveals some

underlying pose information that can be discovered by part

presence and locations.
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Figure 4. Classification accuracy as a function of time when

4(a) maximizing expected information gain; and 4(b) minimizing

amount of human labor, measured in time. Performance is mea-

sured as the average number of seconds to correctly classify an

image (described in Section 6.1).

6. Experiments

6.1. Performance Metrics

We evaluate our approach using time as a measure of hu-

man effort needed to classify an object. This metric can

be considered as a common quantifier for different forms

of user input. Performance is determined by computing the

average amount of time taken to correctly classify a test im-

age. The computer presents images of the most likely class

to the user, who will stop the system when the correct class

is shown. This assumes that the user can validate the cor-

rect class with 100% accuracy, which may not be always

possible. Future work will entail studying how well users

can verify classification results.

6.2. Results

Using our criteria for question selection (Section 6.1)

and our time-to-classification metric, we examine the av-

erage classification accuracy for: (1) our integrated ap-

proach combining localization/classification algorithms and

part click and binary attribute questions; (2) using binary

questions only with non-localized computer vision algo-

rithms and expected information gain to select questions

(representative of [3]); (3) using no computer vision; and (4)

selecting questions at random. We follow with observations

on how the addition of click questions affects performance

and human effort required.

Question selection by time reduces human effort. By

minimizing human effort with the time criterion, we are

trading off between the expected information gain from a

question response and the expected time to answer that

question. Subsequently, we are able to classify images in

36.6 seconds less on average using both binary and click

questions than if we only take into account expected infor-

mation gain; however, the margin in performance gain be-

tween using and not using click questions is reduced.

We note that the average time to answer a part click ques-

tion is 3.01±0.26 seconds, compared to 7.64±5.38 seconds

for an attribute question; in this respect, part questions are

more likely to be asked first.

Part localization improves performance. In Figure

4(a), we observe that by selecting the next question using

our expected information gain criterion, average classifica-

tion time using both types of user input versus only binary

questions is reduced by 33.8 seconds on average. Compared

to using no computer vision, we note an average reduction

in human effort of over 40% (68.2 seconds).

Using the time criterion for selecting questions, the aver-

age classification time for a single image using both binary

and click questions is 58.4 seconds. Asking binary ques-

tions only, the system takes an additional 20.4 seconds on

average to correctly classify an image (Figure 4(b)). Us-

ing computer vision algorithms, we are able to consistently

achieve higher average classification accuracy than using no

computer vision at all, in the same period of time.

User responses drive up performance. There is a

disparity in classification accuracy between evaluating at-

tribute classifiers on ground truth locations (17.3%) versus

predicted locations (10.3%); by using user responses to part

click questions, we are able to overcome initial erroneous

part detections and guide the system to the correct class.

Figure 5(a) presents an example in which the bird’s pose

is estimated incorrectly. After posing one question and re-

evaluating attribute detectors for updated part probability

distributions, our model is able to correctly predict the class.

In Figure 5(b), we visualize the question-asking se-

quence and how the probability distribution of part loca-

tions over the image changes with user clicks. We note in

Figure 5(c) that our pose clusters did not discover certain

poses, especially frontal views, and the system is unable to

estimate the pose with high certainty.

As previously discussed, part click questions take on av-

erage less time to answer. We observe that the system will

tend to ask 2 or 3 part click questions near the beginning

and then continue with primarily binary questions (e.g. Fig-

ure 5(d)). At this point, the remaining parts can often be

inferred reliably through reasoning over the spatial model,

and thus binary questions become more advantageous.

7. Conclusion

We have proposed a novel approach to object recognition

of fine-grained categories that efficiently combines class at-

tribute and part models and selects questions to pose to the

user in an intelligent manner. Our experiments, carried out

on a challenging dataset including 200 bird species, show

that our system is accurate and quick. In addition to demon-

strating our approach on a diverse set of basic-level cate-

gories, future work will include introducing more advanced

image features in order to improve attribute classification

performance. Furthermore, we used simple mouse clicks to
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Figure 5. Four examples of the behavior of our system. 5(a): The system estimates the bird pose incorrectly but is able to localize the

head and upper body region well, and the initial class prediction captures the color of the localized parts. The user’s response to the first

system-selected part click question helps correct computer vision. 5(b): The bird is incorrectly detected, as shown in the probability maps

displaying the likelihood of individual part locations for a subset of the possible poses (not visible to the user). The system selects “Click

on the beak” as the first question to the user. After the user’s click, the other part location probabilities are updated and exhibit a shift

towards improved localization and pose estimation. 5(c): Certain infrequent poses (e.g. frontal views) were not discovered by the initial

off-line clustering (see Figure 2(a)). The initial probability distributions of part locations over the image demonstrate the uncertainty in

fitting the pose models. The system tends to fail on these unfamiliar poses. 5(d): The system will at times select both part click and binary

questions to correctly classify images.

designate part locations, and it would be of interest to inves-

tigate whether asking the user to provide more detailed part

and pose annotations would further speed up recognition.
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