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Abstract: In breast tomosynthesis, multiple low-dose projections are acquired in a single scanning
direction over a limited angular range to produce cross-sectional planes through the breast for three-
dimensional imaging interpretation. We built a next-generation tomosynthesis system capable of
multidirectional source motion with the intent to customize scanning motions around “suspicious
findings”. Customized acquisitions can improve the image quality in areas that require increased
scrutiny, such as breast cancers, architectural distortions, and dense clusters. In this paper, virtual
clinical trial techniques were used to analyze whether a finding or area at high risk of masking cancers
can be detected in a single low-dose projection and thus be used for motion planning. This represents
a step towards customizing the subsequent low-dose projection acquisitions autonomously, guided
by the first low-dose projection; we call this technique “self-steering tomosynthesis.” A U-Net was
used to classify the low-dose projections into “risk classes” in simulated breasts with soft-tissue
lesions; class probabilities were modified using post hoc Dirichlet calibration (DC). DC improved the
multiclass segmentation (Dice = 0.43 vs. 0.28 before DC) and significantly reduced false positives
(FPs) from the class of the highest risk of masking (sensitivity = 81.3% at 2 FPs per image vs. 76.0%).
This simulation-based study demonstrated the feasibility of identifying suspicious areas using a
single low-dose projection for self-steering tomosynthesis.

Keywords: digital breast tomosynthesis; virtual clinical trials; artificial intelligence; risk stratification

1. Introduction

Digital breast tomosynthesis (DBT) uses a limited angle of acquisition with a small
number of low-dose projections acquired in a single left–right scanning motion to produce
cross-sectional planes through the breast for three-dimensional data visualization. Today,
DBT is considered the state-of-the-art technique for screening, demonstrating increased
sensitivity in cancer detection and lower recall rates as compared to digital mammog-
raphy (DM) [1,2]. Despite the substantial technological advancements in DBT, clinical
tomosynthesis systems are not autonomous; the scanning orbit is not customized based on
suspicious findings or other imaging biomarkers. Instead, the scanning orbit follows the
same left–right motion [3] in every patient, regardless of breast size or internal composition.

The University of Pennsylvania has developed a prototype next-generation tomosyn-
thesis (NGT) system with more complex scanning motions than current clinical DBT
systems [4–7]. The NGT system is capable of scanning with an additional component of
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source motion in the posteroanterior direction (perpendicular to the conventional motion),
reducing out-of-focus structures [7]. Our ultimate goal is to incorporate scanning motions
into the NGT system that are customized around suspicious areas (e.g., breast cancers,
parenchyma distortions, and dense clusters), as well as areas prone to cancer masking, for
improved breast screening and diagnosis. For that, the NGT requires the acquisition of
a single low-dose projection (i.e., a scout image) that is processed to identify the suspi-
cious areas precisely, and to determine in real time the subsequent projections acquired
autonomously during the scanning motion.

Although the NGT system is not yet capable of customizing its scanning acquisitions
autonomously, we wanted to demonstrate the feasibility of identifying suspicious areas
using low-dose projections. This work represents an important step in that direction by
proving that findings or areas prone to masking can be identified in a single projection;
the information acquired from the low-dose image acquired at the start of the scan could
ultimately be used to guide the remainder of the scanning motion (“self-steering tomosyn-
thesis”). Since the NGT is not being used clinically yet, the feasibility of a self-steering
scanning motion was investigated in this work using virtual clinical trial (VCT) methods.

VCT methods have been used for the optimization of the NGT system [8,9] as a
cost-effective alternative to conducting clinical trials, allowing researchers to answer fun-
damental questions using in silico simulations; VCTs can prototype and replicate clinical
trials [9,10] by making available a plethora of evidence-based data for regulatory approval
of novel imaging systems [10]. VCTs are targeted toward specific “tasks”, usually requir-
ing the complex simulation of human anatomy (anthropomorphic phantoms) in order to
answer clinical questions [8].

In our previous work, a Perlin-based phantom [11] was developed to simulate X-ray
images of complex breast parenchyma in DBT. In a follow-up study by da Nobrega et al.,
Perlin-based phantoms were used to train a U-Net model to segment various classes of
tissue (for example, adipose and dense tissue, as well as lesions), offering preliminary data
suggesting that a low-dose projection could indeed guide the remainder of the scan [12].
However, the U-Net model resulted in a high rate of false positives, especially for regions of
suspicious findings. A high number of false positives reduces the specificity of the detection
method, potentially complicating the development of customized scanning motions for
self-steering tomosynthesis.

Probability calibration can be used to reduce the false positive rates of multiclass
classifiers. In accordance with the main concept of calibration [13], a multiclass prob-
abilistic classifier should only be considered well-calibrated if instances of a particular
class receive probabilities in accordance with the actual class distribution of the data. For
example, if we have amongst the test instances a predicted probability vector s = [0.1,
0.2, 0.7], the class distribution of s should be approximately 10%, 20%, and 70% for the
first, second, and third classes, respectively. This is a fundamental property when using a
classifier for cost-sensitive classification or for human decision making, because a calibrated
classifier correctly quantifies the level of uncertainty or confidence associated with its
predictions [13].

Bringing this concept to our scenario, a U-Net segmentation corresponds to a classifier
prediction at the pixel level of an image. We can directly apply well-known techniques
to visualize (e.g., reliability diagrams) [14] and measure (estimated calibration error or
ECE) [15] the current state of calibration of our segmentation model. In this study, we
used a calibration method (Dirichlet calibration or DC) to adjust the class probabilities
predicted by a U-Net model trained with VCT-based data for the assessment of risk. The
U-Net model is proposed as a method for detecting suspicious findings or areas prone to
masking in a single projection image. This work ultimately has applications in developing
task-directed scanning motions for DBT.
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2. Materials and Methods
2.1. Perlin-Based Phantom and Lesion Simulation

A principal component analysis (PCA)-based method was used to simulate the outlines
of breasts under mammographic compression [16–18]. The outlines were created using a
compressed breast thickness (CBT) of 30–70 mm and a chest wall to nipple distance (CND)
of 50–110 mm. Coarse tissue (adipose and dense) was embedded into the breast outlines
using a recursive partitioning algorithm [19]. Finally, 3D fractal noise (also known as Perlin
noise) [20,21] was used to improve the simulation of breast tissue and to represent the
breast parenchyma [11,22]. Importantly, the Perlin parameters included a random seed
noise generator, ensuring uniqueness for the simulation of each breast parenchyma. More
details about the Perlin parameters and database of phantoms are provided in our previous
proceeding publications [12,22].

Soft-tissue lesions (ellipsoidal and spiculated) were simulated and embedded into
the Perlin-noise phantoms (Figure 1). In total, two breast lesions were inserted into each
phantom using random positions in the posteroanterior and left–right directions, but always
in the center of the phantom in the craniocaudal direction [12]. A voxel additive method [23]
was used to insert the lesion models into each phantom (n = 264). The attenuation of lesions
was controlled by increasing the proportion of dense tissue (w) in each voxel [23]. In this
study, w was set to 0.20 and 0.35 for lesions simulated using the ellipsoidal and spiculated
models, respectively. The three lesion models varied in size to closely match those reported
by Rafferty et al. ([6, 34] mm) [24]. Lesion models I–IV had dimensions of 7 × 7 × 7 mm3,
9 × 8 × 3 mm3, 10 × 14 × 4 mm3, and 15 × 15 × 4 mm3, respectively [25].

Tomography 2023, 9, FOR PEER REVIEW 3 
 

 

2. Materials and Methods 
2.1. Perlin-Based Phantom and Lesion Simulation 

A principal component analysis (PCA)-based method was used to simulate the out-
lines of breasts under mammographic compression [16–18]. The outlines were created us-
ing a compressed breast thickness (CBT) of 30–70 mm and a chest wall to nipple distance 
(CND) of 50–110 mm. Coarse tissue (adipose and dense) was embedded into the breast 
outlines using a recursive partitioning algorithm [19]. Finally, 3D fractal noise (also known 
as Perlin noise) [20,21] was used to improve the simulation of breast tissue and to repre-
sent the breast parenchyma [11,22]. Importantly, the Perlin parameters included a random 
seed noise generator, ensuring uniqueness for the simulation of each breast parenchyma. 
More details about the Perlin parameters and database of phantoms are provided in our 
previous proceeding publications [12,22]. 

Soft-tissue lesions (ellipsoidal and spiculated) were simulated and embedded into 
the Perlin-noise phantoms (Figure 1). In total, two breast lesions were inserted into each 
phantom using random positions in the posteroanterior and left–right directions, but al-
ways in the center of the phantom in the craniocaudal direction [12]. A voxel additive 
method [23] was used to insert the lesion models into each phantom (n = 264). The atten-
uation of lesions was controlled by increasing the proportion of dense tissue (w) in each 
voxel [23]. In this study, w was set to 0.20 and 0.35 for lesions simulated using the ellip-
soidal and spiculated models, respectively. The three lesion models varied in size to 
closely match those reported by Rafferty et al. ([6, 34] mm) [24]. Lesion models I–IV had 
dimensions of 7 × 7 × 7 mm3, 9 × 8 × 3 mm3, 10 × 14 × 4 mm3, and 15 × 15 × 4 mm3, respec-
tively [25]. 

 
Figure 1. Example of (A) complex breast parenchyma and (B) Perlin-based phantoms simulated for 
risk assessment and optimization of DBT acquisitions. (C) Lesion models used to simulate risk of 
(masking) breast cancers. (D) Maximum intensity projection (MIP) used as ground truth (3 risk clas-
ses) for central DBT projection using the lesion models. Red boxes represent the targeted locations 
randomly selected for lesion insertion. 

2.2. Imaging Acquisition and Risk Maps 
DBT projections of the breast phantoms were simulated using the OpenVCT frame-

work (University of Pennsylvania, Philadelphia US) [26]. A GPU implementation of the 
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Figure 1. Example of (A) complex breast parenchyma and (B) Perlin-based phantoms simulated
for risk assessment and optimization of DBT acquisitions. (C) Lesion models used to simulate risk
of (masking) breast cancers. (D) Maximum intensity projection (MIP) used as ground truth (3 risk
classes) for central DBT projection using the lesion models. Red boxes represent the targeted locations
randomly selected for lesion insertion.

2.2. Imaging Acquisition and Risk Maps

DBT projections of the breast phantoms were simulated using the OpenVCT frame-
work (University of Pennsylvania, Philadelphia US) [26]. A GPU implementation of the
Siddon algorithm [27] was used to project the path and attenuation of each X-ray (i.e., ray-
tracing). The projections were simulated using an acquisition geometry of the NGT system
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(Table 1). The goal of the VCTs was to demonstrate that areas at high risk of harboring or
masking cancers can be detected in a single low-dose projection image, which could ulti-
mately be used to guide the remainder of the scan. The acquisition exposure settings were
adjusted to match the thickness and glandularity of each phantom; automatic exposure
control data of a clinical system were simulated [28]. The attenuation coefficient data of the
materials used to simulate phantoms were taken from the International Commission on
Radiation Units & Measurements Report 44 [29].

Table 1. Parameters used to simulate acquisition geometry of the NGT system.

Radiation exposure (mode) AEC

Detector size (width × height, mm) 239.36 × 304.64

Detector type (detector motion) a-Se (stationary)

Detector element size (width × height, mm) 0.085 × 0.085

Source image distance (mm) 738.01

Target/filter combination (X-ray tube motion) W/Al (step-and-shoot)

Reconstructed voxel size (width × height, mm) 0.085 × 0.085

Imaging processing None (raw)

The maximum intensity projections (MIPs) of the coarse phantoms (i.e., the thresholds
of Perlin noise in predominantly adipose and predominantly dense tissues, as shown in
Figure 1A) were used to create “risk maps” (Figure 1D). The voxel labels in the phantoms
(in order of increasing numerical value) were as follows: air or “background”, “skin”,
“adipose”, “dense”, and “lesion”. The MIP operator returned the label with the highest
numerical value transected by each ray through the phantom. The MIP image served as
the ground truth of the four risk classes used in the multiclass segmentation: background
or skin (class 0), predominantly adipose tissue (class 1), predominantly dense tissue (class
2), and lesion (class 3). The MIP images were rescaled to match the dimensions of the DBT
central projections.

2.3. Multiclass Segmentation

The MIPs were used to train a U-Net [30] model along with the corresponding cen-
tral DBT projection. The purpose of training the U-Net model in this manner was to
demonstrate the feasibility of using a single projection image to identify high-risk areas
or areas prone to cancer masking, as this could ultimately be applied to the design of a
system capable of real-time image analysis for task-directed scanning motions (self-steering
tomosynthesis).

Each central projection image and MIP was cropped to reduce the background and
thus the burden of U-Net processing—the cropped region corresponded to the largest
phantom AP dimension (20% reduction). Each image and MIP was then downsampled to
360 × 600 pixels.

The U-Net was trained for multiclass segmentation using four risk classes, a batch size
of 6, 12 workers (subprocesses used for loading images), a learning rate default of 3 × 10−4,
and an Adam optimizer. Early stopping with weighted cross-entropy loss (WCEL) was
used to optimize the number of epochs (maximum of 250 epochs).

The hyperparameter weights and learning rate were optimized using weights and bias
sweeps (WandB v0.12, San Francisco, CA, USA). The model was built using PyTorch 1.10
(LF Projects, LLC, Wilmington, NC, USA) and Python 3.9.9 (PSF, Wilmington, NC, USA).
All experiments were conducted on a Dell workstation (Dell Technologies, Round Rock,
TX, USA) equipped with two NVIDIA Quadro P5000s (32 GB VRAM), 16 GB DDR RAM,
and an Intel Xeon CPU E5-2620 v3 (2.40 GHz, 2401 MHz, six cores).

In total, 168, 24, 24, and 48 input images were used for training, validation, calibration,
and testing (~ratio 64:9:9:18%), respectively. For each set, the input images were randomly
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selected but equally distributed by volumetric breast density, lesion type, Perlin parameters,
and breast thickness to avoid bias in the data selection for training, validation, calibration,
and testing.

2.4. Dirichlet Calibration and Statistical Analyses

The number of instances that were represented as class 3 (i.e., predominantly lesion
tissue) was significantly lower than the numbers represented as classes 0 through 2 (back-
ground or healthy breast tissue). Each pixel from the input images represented a specific
class; the number of instances could not be substantially increased or forcibly simulated to
obtain a balanced class-data distribution. Imbalanced class data can result in models for
which the overall performance is not representative of the performance for the underrepre-
sented classes. Post hoc Dirichlet calibration (DC) was used to adjust the model’s output
probabilities and address potential problems with overconfidence in the predictions [13].

DC provides a calibration map (µ̂) using a vector of class probabilities equal to the
softmax (σ) on a linear function of an input probability vector (q), parametrized by a matrix
(W) and bias vector (b):

µ̂(q; W, b) = σ(Wln q + b) (1)

The calibration map µ̂ is applied to the vectors of probabilities produced by multiclass
models to reduce overconfidence and miscalibrated predictions.

Reliability diagrams [14] were used to visualize and evaluate the current state of
calibration of each class predicted by the U-Net model. In these diagrams, the class
probabilities are usually binned into m equal-width ranges, e.g., for m = 10, the bins are
[0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]. Within Bi,j, i.e., the i-th bin for the j-th class, the average

probability for class j,
−
s j(Bi,j), is compared to the proportion of positives of that class,

−
y j(Bi,j).

If the classifier is calibrated for bin Bi,j, then
−
s j(Bi,j) =

−
y j(Bi,j). In the diagrams, differences

between
−
s j(Bi,j) and

−
y j(Bi,j) are represented by error bars. The visual information of a

reliability diagram can be aggregated into an overall measure of calibration, called the
classwise estimated calibration error (classwise − ECE), given by Equation (2).

classwise − ECE =
1
k

k

∑
j = 0

m

∑
i = 1

∣∣Bi,j
∣∣

N

∣∣∣−y j
(

Bi,j
)
− −

s j
(

Bi,j
)∣∣∣ (2)

where k and N represent the number of classes and instances, respectively, and
∣∣Bi,j

∣∣
represents the bin size.

The performance of the model before and after DC was evaluated using the area
under the pooled receiver operating characteristic (ROC) curve (AUC). Two R libraries,
“pROC” (version 1.17) and “auctestr” (version 1.0), were used to collect the ROC statistics.
The operating point of the ROC curve was defined to be the point that minimized the
Euclidean distance relative to the upper left corner of ROC space; at this operating point,
we calculated the true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), and negative predictive value (NPV). Two segmentation metrics, Jaccard (Jac)
and Dice coefficients, were also calculated using the four class predictions.

2.5. Identification of Suspicious Findings

We also evaluated the accuracy of the U-Net model in identifying suspicious findings.
We defined a suspicious finding as a cluster of pixels labeled as lesion (i.e., class 3) in the MIP.
A suspicious finding was correctly identified (true positive or TP) when the region predicted
as being class 3 overlapped a cluster of class 3 pixels in the ground truth. Analogously, false
positive (FP) findings had no overlap between the predicted class 3 region and any class
3 cluster in the ground truth. False negative findings occurred when none of the pixels in a
class 3 cluster in the ground truth were predicted as being in class 3. True negative (TN)
findings were not evaluated as this was a lesion identification task; this analysis differed
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from the preceding evaluation of class segmentation (Section 2.5). The TP, FP, and FN
findings were calculated for each test image before and after DC.

Softmax was used to obtain the vectors of probabilities of each test image before
and after DC. Free-response ROC (FROC) analyses [31] were performed by thresholding
the probabilities (from 1.00 to 0.00 in 0.01 steps) and by calculating the sensitivity of
findings localized and the number of FP findings per thresholded image. The TP and FP
findings were identified using a postprocessing technique based on connected components
in the thresholded images [32]. The ground-truth images (class 3) were used to classify
the identified findings in TP and FP. FROC curves were created using the fraction of TP
findings as a function of the average number of FP findings per image.

3. Results
3.1. U-Net Segmentation and Dirichlet Calibration (DC)

The reliability diagrams of each class are shown in Figure 2. Before DC, the U-
Net model demonstrated overconfidence, resulting in a disproportionate likelihood of
predicting the highest class (j = 3). Before DC, in the last bin for class j = 3 (Figure 2C), the

average probability,
−
s 3(B10,3) ≈ 0.95, was significantly higher than the observed proportion

of positives (
−
y j(B10,3) ≈ 0.4). The reliability diagrams show that calibration error was

reduced significantly after DC, especially for class j = 1 (Figure 2F) and j = 3 (Figure 2G).
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Figure 2. Reliability diagrams before and after DC for classes (A,E) j = 0, (B,F) j = 1, (C,G) j = 2, and
(D,H) j = 3.

3.2. ROC Analyses

ROC statistics were collected (Figure 3) and a summary of the segmentation and
classification metrics is shown in Table 2. Before DC, the model resulted in AUC values of
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0.94, 0.92, and 0.90 for classes 1, 2, and 3, respectively. After DC, the model obtained an
improvement in the segmentation of classes 2 (AUC = 0.94) and 3 (AUC = 0.93); no change
in performance was observed for the segmentation of class 1. We also observed a decrease
in both TPR (0.90 vs. 0.84) and TNR (0.91 vs. 0.88) after DC for class 3. However, it was
noted that DC substantially improved the Dice (0.28 vs. 0.43) and Jaccard (0.16 vs. 0.28)
segmentation metrics.
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Table 2. Summary of segmentation (Dice and Jac) and classification (AUC, TPR, TNR, PPV, and PNV)
metrics calculated (A) before and (B) after DC.

(A) (B)
Class Dice Jac AUC TPR TNR PPV NPV Dice Jac AUC TPR TNR PPV NPV

0 1.00 0.99 - - - - - 1.00 0.99 - - - - -
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3.3. Lesion Identification and FROC Statistics

DC improved the performance of the multiclass segmentation explored in this work
(Figure 4). Before DC, we observed that the U-Net model had a high rate of FP predictions
for class 3. DC resulted in a significant reduction in the number of FPs with a small increase
in FN predictions of suspicious regions (Figure 4F and Table 3). Most FN predictions
occurred in thicker or larger breast phantoms. In total, after DC, 11 out of 19 FN predictions
occurred in breasts with CBT > 65 mm (mean CND = 104.3 mm). The images in which
both lesions were missed were those in which CBT > 75 mm or CND > 110 mm (n = 4).
Importantly, by examining the maximum probability of the vectors obtained by the softmax
(i.e., the peak probability value of class 3 after DC), additional lesions could be identified,
potentially reducing the number of FN findings. For example, in Figure 4F, one lesion
was associated with the maximum probability in the image, but it fell below the threshold
for identification.
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Tomography 2023, 9 1128

Table 3. Identification of suspicious regions (A) before and (B) after DC using output predictions.
TNs were not applicable (NA) in this analysis.

. . . (A) (B)

Positive Negative Positive Negative

Predicted Positive 85 236 69 24
Predicted Negative 11 NA 27 NA

FROC curves were used to evaluate the performance of the U-Net model before and
after DC. The FROC curves demonstrated an improvement in performance after DC with a
substantial increase in sensitivity at a given FP rate (Figure 5). After DC, at 2 FPs/image,
the sensitivity was 81.3%; before DC, the sensitivity was only 76.0%. At 5 FPs/image, the
sensitivity was 96.6% with DC, and 89.9% otherwise.
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4. Discussion

DBT systems acquire images over a limited angular range with a limited number of
projections; the resulting datasets are undersampled and produce out-of-plane artifacts
in the reconstructions that may compromise the detectability of lesions. Our previous
work with virtual phantoms demonstrated that there is benefit to customizing the scanning
motion based on breast size, but it did not consider the impact of lesion detectability [6].
Our long-term goal is to customize the scanning motion based on the location of suspicious
regions, such as clinical findings or areas susceptible to cancer masking, in an effort
to improve both the sensitivity and specificity of DBT. The method of detecting these
suspicious regions should be robust to breast size and shape, as well as the complexity of
the internal breast composition.

Using a VCT-based method, this study demonstrated the feasibility of using the central
(low-dose) projection image to segment the breast into various classes of tissue for a variety
of breast sizes and compositions. Regions of low or high risk can be segmented accurately
from simulated low-dose projections of complex breast parenchyma. ROC statistics were
collected to evaluate changes in performance before and after DC. We achieved AUC values
of 0.93, 0.94, and 0.94 for the segmentation of classes 1, 2, and 3, respectively. To obtain
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these results, optimization and calibration methods were required to address problems of
overconfidence and training with imbalanced class data.

There was a clear trade-off between the reduction of FPs and an increase in FN
findings. We showed using computer simulations that DC is a good method to optimize the
identification of high-risk areas cost-effectively using low-dose projections, substantially
reducing the number of FP findings. This was expected because, in our task, DC had
the effect of decreasing the confidence of some high-risk areas. Nevertheless, given the
calibrated probabilities, a possible next step would be to find optimal decision thresholds
based on the costs of misclassification for each class [33]. The thresholds could also be
varied as a function of breast size and volume to accommodate population-based differences
in the risk of masking. Finally, when applying DC, we considered that every pixel was
independent, which does not happen in practice, given that nearby pixels tend to be
assigned to similar classes. Thus, in the future we will investigate calibration methods that
consider pixel neighborhoods and different image regions.

FROC analysis helped us to better understand the sensitivity of localizing lesions (TP
findings) and the costs associated with FP findings. After DC, the FROC curve showed a
higher sensitivity and specificity when compared with the curve before DC. In the future,
we will perform more detailed statistical analyses of TP rates and the costs associated with
FP findings.

Although this study focused solely on the NGT system, in future work we would
like to apply the multiclass U-Net model to clinical DBT systems. We will fine-tune our
proposed models using clinical data collected retrospectively, and, ultimately, the domain
of virtual models will be adapted to clinical data (effectively making the transition from
the virtual to the real world). We will also explore additional calibration methods and
customizations in the U-Net architecture to improve the performance of this model.

Alternate loss functions and additional AI architectures could be investigated to eval-
uate further the performance of the proposed segmentation method. Abraham and Khan
proposed a loss function to address imbalanced class data for imaging segmentation [34,35].
We have preliminary data showing that the focal Tversky loss (FTL) function may not
result in the outright highest precision or recall rates [36]; however, because of its nonlinear
nature, FTL provides better control and balance between FP and FN predictions. In our
future work, we could compare models developed with WCEL + DC and FTL + DC.

This study had some limitations. The simulation of mammary parenchyma with
Perlin noise does not fully simulate the nuances and fine structures found within the
breast. The noise parameters still need to be fine-tuned in future work to improve the
representation of breast parenchyma [11,37,38]. In a previous review article, Marshall and
Bosmans emphasized that the degree of realism required for breast imaging is somewhat
open and subjective [39]. We acknowledge that the Perlin noise parameters could be further
optimized by validating the realism of the imaging data using human readers. However,
there are other methods besides subjective visual inspection to support the assessment of the
representation of simulated breast parenchyma as compared with real patient images [39].
In our previous work, power spectrum [40] and Laplacian fractional entropy [41] were
used to evaluate the realism and quality of imaging data simulated with Perlin noise [11].
These metrics allowed us to quantify realism objectively and compare the anatomical noise
structures found in the mammary parenchyma; the same noise parameters were used to
simulate images in this work.

Only four lesion models were used and embedded into the simulated parenchyma;
additional lesions that vary in size and composition must be simulated to support the results
obtained in this work. However, it is important to note that the clinical task represented
in this work does not involve the characterization of breast lesions or classification of
abnormalities. Instead, the clinical task is fundamentally different; the proposed AI model
will ultimately identify suspicious areas that require increased scrutiny by the observer; these
include possible areas of cancer, architectural distortions, other suspicious findings, or
clustered dense tissue which could mask cancers. This work is a proof of concept to evaluate
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the feasibility of using a single low-dose projection to customize and guide the NGT system
for subsequent projections.

We also acknowledge that the ground-truth risk estimates used to train the U-Net
model can be improved. The MIP will preserve the location and shape of lesions (e.g., small
spiculations), but it can overestimate the distribution of dense tissues (defined as class 2).
Furthermore, precisely segmenting images to define either dense regions or regions with a
high risk of masking breast cancers is somewhat subjective [42]; however, this imprecision
is present in both phantom and clinical images. This subjectivity supports the need for
calibration methods, as we have shown that DC can improve predictions, leading to more
cost-effective segmentation.

Finally, it should be emphasized that the segmentation method described in this
paper is not intended for use in a computer-aided detection (CAD) system per se, but
instead in a self-steering tomosynthesis system where the goal is to direct the scanning
motion around an area under suspicion. Our results support the feasibility of detecting
suspicious areas in a single projection image, beginning at the start of the scan. Ultimately,
the determination of suspicious regions could be used to direct the remainder of the
scanning motion around these areas. Although the NGT system is not yet capable of
customized scanning motions, our long-term goal is to utilize these customized motions
clinically. Note that the development of task-directed scanning motions is beyond the scope
of this paper. Our future work will investigate whether customizing the scanning motion
around suspicious area(s) in the breast offers improvements in image quality and lesion
detectability.

5. Conclusions

Calibration can address problems with overconfidence of segmentation models and
imbalanced class data used for training U-Nets. The segmentation of risk-classified areas
from computer-simulated low-dose projections improved after DC, resulting in a substantial
reduction of FP predictions of suspicious findings.

Using VCTs, we demonstrated the feasibility of detecting suspicious areas in the breast
in a low-dose projection image. The ultimate goal of this work is to apply this detection
method to develop and use customized scanning motions in an NGT system capable of
self-steering tomosynthesis.
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