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Abstract Recent observational analysis reveals the central role of three multi-cloud types, congestus, strati-
form, and deep convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves,
westward propagating two-day waves, and the Madden–Julian oscillation. The authors have recently developed
a systematic model convective parametrization highlighting the dynamic role of the three cloud types through
two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low level
heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes a
systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow
cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep con-
vective precipitation and a nonlinear switch which favors either deep or congestus convection depending on
whether the troposphere is moist or dry. Here several new facets of these multi-cloud models are discussed
including all the relevant time scales in the models and the links with simpler parametrizations involving only
a single baroclinic mode in various limiting regimes. One of the new phenomena in the multi-cloud models is
the existence of suitable unstable radiative convective equilibria (RCE) involving a larger fraction of congestus
clouds and a smaller fraction of deep convective clouds. Novel aspects of the linear and nonlinear stability
of such unstable RCE’s are studied here. They include new modes of linear instability including mesoscale
second baroclinic moist gravity waves, slow moving mesoscale modes resembling squall lines, and large scale
standing modes. The nonlinear instability of unstable RCE’s to homogeneous perturbations is studied with
three different types of nonlinear dynamics occurring which involve adjustment to a steady deep convective
RCE, periodic oscillation, and even heteroclinic chaos in suitable parameter regimes.
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1 Introduction

Observational data indicate that tropical deep convection is organized on a hierarchy of scales ranging from
hundreds of kilometers due to mesoscale organized squall lines to intraseasonal oscillations over planetary
scales of order 40,000 km [1–3]. The present practical models for prediction of both weather and climate
involve general circulation models (GCM) where the physical equations for these extremely complex flows
are discretized in space and time and the effects of unresolved processes are parametrized according to various
recipes [4,5]. With the current generation of supercomputers, the smallest possible mesh spacings are roughly
50–100 km for short-term tropical weather simulations and of 200–300 km for short-term climate simulations.
With such coarse mesh spacing, despite much progress in the parametrization of tropical convection, the current
generation of GCMs [4,5] still fails to reproduce most of the significant features of the observational record
[1–3] regarding tropical convection [4,5]. Thus, given the importance of the tropics for short-term climate,
new strategies for parametrizing the unresolved effects of tropical convection are very important.

In particular, contemporary general circulation models (GCMs) often perform poorly in parameterizing
and/or resolving the observed large scale features of organized tropical convection such as convectively cou-
pled waves as well as their impact on the planetary scale tropical circulation [6,7]; the reasons for such poor
performance are not well understood.

Simplified models with crude vertical resolution, typically involving a single baroclinic vertical mode,
have been used for theoretical and numerical studies of various strategies for parameterizing moist convection
and convectively coupled waves [8–16]. Two types of models have dominated the arena of tropical moist
convection: convergence-driven models and quasi-equilibrium models. Convergence models date back to the
work of Charney and Eliassen [17], followed by Yamasaki [18], Hayashi [19], and Lindzen [20]. The conver-
gence models, also called convective instability of second kind (CISK) models, sustain convection through
large reservoirs of convectively available potential energy (CAPE) driven by low-level convergence. Such
models exhibit extreme sensitivity to grid scale behavior and linearized stability analysis reveals the unde-
sirable feature of catastrophic instability with increasingly larger growth rates on the smallest scales [12,13].
In the quasi-equilibrium thinking, first introduced by Arakawa and Schubert [21], one assumes a large scale
quasi-equilibrium state where CAPE is nearly constant and deep convection acts as an energy regulator in
restoring quickly the equilibrium by consuming any excess of CAPE. The triggering and the amplification
of convection in quasi-equilibrium models rely on boundary layer variables and surface fluxes. Indeed, such
quasi-equilibrium models are linearly [10] and even nonlinearly stable [16]. The most popular mechanism
used in concert with the quasi-equilibrium models to create instability is wind induced surface heat exchange
(WISHE) [8,22].

Recent analysis of observations over the warm pool in the tropics reveals the ubiquity of three cloud types
above the boundary layer: shallow congestus clouds, stratiform clouds, and deep penetrative cumulus clouds
[23,24]. Furthermore, recent analysis of convectively coupled waves on the large scales reveals a similar
multi-cloud convective structure with leading shallow congestus cloud decks which moisten and precondition
the lower troposphere followed by deep convection and finally trailing decks of stratiform precipitation; this
structure applies to the eastward propagating convectively coupled Kelvin waves [3,25] and westward prop-
agating 2-day waves [26] which reside on equatorial synoptic scales of order 1,000–3,000 km in the lower
troposphere as well as the planetary scale Madden–Julian oscillation [27,28]. An inherently multi-scale theory
for the Madden–Julian oscillation with qualitative agreement with observations which is based on these three
cloud types has been developed recently [29,30]. While there is no doubt that WISHE plays an important
role in hurricane development [31,32], there is no observational evidence directly linking the structure of
convectively coupled Kelvin waves and 2-day waves to WISHE.

Besides providing intermediate models for parametrization of moist convection, detailed models with
crude vertical resolution are also important for explaining the observational record. Despite the observational
evidence, none of the models with a single vertical mode mentioned earlier account for the multi-mode nature
of tropical convection and the importance of the different cloud types; shallow/congestus, stratiform and deep-
penetrative cumulus clouds. They are concentrated solely on the deep-penetrative convection. Intermediate
model parametrizations with two convective heating modes systematically representing, a deep-convective
mode and a stratiform mode, have first appeared in the work of Mapes [33]. Majda and Shefter [34] (hereafter
MS) proposed a much simpler systematic version of Mapes’ model based on a Galerkin projection of the
primitive equations onto the first two linear-baroclinic modes yielding a set of two shallow water systems. The
first baroclinic system is heated by the deep convective clouds while the second baroclinic system is heated
aloft by the stratiform clouds. Linear stability analysis of this model convective parametrization revealed a



Multicloud convective parametrizations with crude vertical structure 353

mechanism of stratiform instability independent of WISHE [34,35]. Direct numerical simulations carried out
in [35] revealed the resemblance of many features of the moist gravity waves for the MS model and the real
world convective superclusters as depicted in [35] and in observational papers (e.g. [25]). One visible short-
coming of the MS model is however its short-cutting of the role of the shallow/congestus heating as in the
early Mapes’ model. Also, inherited from the quasi-equilibrium school [12,36], the Majda-Shefter model [34]
uses very sensitive parameters which are nonphysically kept fixed/constant and spatially homogeneous, such
as the precipitation efficiency and the area fraction of deep convection.

Recently, the authors have developed a new multi-cloud model convective parametrization, within a frame-
work similar to the MS model [34] involving crude vertical resolution with two vertical baroclinic modes [37].
In addition to the deep convective and stratiform clouds, the present model carries cumulus congestus clouds
which serve to heat the second baroclinic mode from below and cool it from above as in actual congestus cloud
decks. The new model is based on a self-consistent derivation and it avoids many of the commonly used ad hoc
parameters. We systematically derived an equation for the vertically integrated water vapor with mean vertical
background moisture profile forced by both the first baroclinic and second baroclinic (low-level) convergence
within the physical constraints of conservation of vertically integrated moist static energy. Also the new model
takes into account the dryness and moistness of the middle troposphere through a varying-inhomogeneous
switch parameter, �, in order to shut off or favor deep convection and to increase or decrease the downdrafts
from the cooling associated with evaporation of shallow clouds and stratiform rain. Moreover, the congestus
convection is amplified whenever the middle troposphere is too dry to sustain deep convection and is shut off
completely when deep-convection is at its maximum.

Linear stability analysis about a standard radiative convective equilibrium (RCE) solution performed in [37]
revealed scale selective instability of convectively coupled gravity waves moving at 15–20 m/s at the planetary
and synoptic scales. The growth rates and the precise range of instability depend strongly on new features in the
model such as the strength of the lower tropospheric coupling of the deep convective parametrization, through
the second baroclinic potential temperature and the second baroclinic moisture convergence. The heating and
fluid dynamical fields of these moist gravity waves are similar to those encountered in the MS model which
are reminiscent of the moist Kelvin waves as observed, e.g. by Wheeler and Kiladis [3] and Straub and Kiladis
[25], including their eastward propagation speed, the tilt in zonal wind and temperature, the upward motion
dominating the heating region, the trailing stratiform part, etc. A notable new feature of the present models, also
present in observations, is congestus clouds leading to moistening of the lower troposphere as preconditioning
for deep convection. The budget analysis presented in [37] indicates that the basic instability operating in the
new multi-cloud models without WISHE is completely different from the stratiform instability of Majda and
Shefter [34].

Numerical simulations of the new multi-cloud parametrizations [38,39] reveal an important role for non-
linear switches in the model with chaotic intermittent and turbulent regimes of nonlinear dynamics exhibiting
large scale organization of convectively coupled waves which captures many features of the observational
record in a qualitative fashion.

The contents of the remainder of the paper are summarized next. In Sect. 2, the basic multi-cloud model
parametrization is reviewed. Section 3 shows the relationship between the present multi-cloud parametriza-
tion with crude vertical resolution and other simpler model parametrizations in various limiting regimes. The
authors briefly remarked in [37] that regimes of RCE with strong congestus clouds and little deep convection in
a dry middle troposphere are linearly unstable to even homogeneous perturbations. Section 4 reviews the basic
RCE solutions and develops the new phenomena that occur in this regime in detail including the nonlinear
development of homogeneous perturbations. The remarkable variety of new convectively coupled moisture
waves of linear instability are discussed in Sect. 5 while Sect. 6 summarizes the results presented herein and
concludes the paper. Finally, a detailed pedagogical derivation of the vertical average moisture equation utilized
in the multicloud parametrizations is given in the appendix at the end.

2 The multicloud model parametrization

2.1 The dynamical core

The dynamical core of the model convective parametrization proposed here consists of two coupled shallow
water systems. A direct heating mode forced by a bulk precipitation rate from deep penetrative clouds and a
second baroclinic mode forced by both stratiform heating and congestus heating.
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∂v j

∂t
+ Ū · ∇v j + βyv⊥

j − ∇θ j = −Cd(u0)v j − 1

τW
v j

∂θ1

∂t
+ Ū · ∇θ1 − div v1 = π

2
√

2
P + S1 (1)

∂θ2

∂t
+ Ū · ∇θ2 − 1

4
div v2 = π

2
√

2
(−Hs + Hc)+ S2.

The equations in (1) are obtained by a Galerkin projection of the hydrostatic primitive equations with constant
buoyancy frequency onto the first two baroclinic modes. More details of their derivation are found in [16,34,40].

In (1), v j = (u j , v j ) j=1,2 represent the first and second baroclinic velocities assuming G(z) = √
2 cos

(
π z
HT

)

and G(2z) = √
2 cos

(
2π z
HT

)
vertical profiles, respectively, while θ j , j = 1, 2 are the corresponding potential

temperature components with the vertical profiles G ′(z) = √
2 sin

(
π z
HT

)
and 2G ′(2z) = 2

√
2 sin

(
2π z
HT

)
,

respectively. Therefore, the total velocity field is approximated by

V ≈ Ū + G(z)v1 + G(2z)v2; w ≈ − HT

π

[
G ′(z)div v1 + 1

2
G ′(2z)divv2

]

where V is the horizontal velocity and w the vertical velocity. The total potential temperature is given approx-
imately by

� ≈ z + G ′(z)θ1 + 2G ′(2z)θ2.

Here HT ≈ 16 km is the height of the tropical troposphere with 0 ≤ z ≤ HT and v⊥
j = (−v j , u j )while Ū is the

incompressible barotropic wind which is set to zero hereafter, for the sake of simplicity. In (1), P ≥ 0 models
the heating from deep convection while Hs, Hc are the stratiform and congestus heating rates. Conceptually,
the direct heating mode has a positive component and serves to heat the whole troposphere and is associated
with a vertical shear flow. The second baroclinic mode is heated by the congestus clouds, Hc, from below and
by the stratiform clouds, Hs, from above and therefore cooled by Hc from above and by Hs from below. It is
associated with a jet shear flow in the middle troposphere [34,35,37].

For simplicity, the nonlinear interactions between the first and second baroclinic modes are ignored but
they can be easily derived and incorporated into the equations [41–43]. The terms S1 and S2 are the radiative
cooling rates associated with the first and second baroclinic modes respectively.

The system of equations in (1) is augmented by an equation for the boundary layer equivalent potential
temperature, θeb, and another for the vertically integrated moisture content, q .

∂θeb

∂t
= 1

hb
(E − D)

∂q

∂t
+ Ū · ∇q + div

(
(v1 + α̃v2)q

) + Q̃ div(v1 + λ̃v2) = −P + 1

HT
D (2)

In (2), hb ≈ 500 m is the height of the moist boundary layer while Q̃, λ̃, and α̃ are parameters associated with
a prescribed moisture background and perturbation vertical profiles. According to the first equation in (2), θeb
changes in response to the downdrafts, D, and the sea surface evaporation E . Here the term downdraft refers
to the subsiding air resulting from evaporative cooling of congestus clouds and stratiform rain in the middle
of the troposphere which therefore results in the moistening of the middle troposphere (increasing q) and
drying and cooling the boundary layer by bringing low θe from aloft. The troposphere moisture equation for
q is derived from the bulk water vapor budget equation by imposing a moisture stratification-like background
vertical profile qv = Q(z) + q . We give a detailed pedagogical derivation of this equation in the Appendix
starting from the equations of bulk cloud microphysics both for its importance and to illustrate the systematic
reduced modeling procedure. The approximate numerical values of λ̃ = 0.8 and α̃ = 0.1, follow directly from
the derivation, while the coefficient Q̃ arises from the background moisture gradient. We use the standard
value Q̃ ≈ 0.9 [16,36].

In full generality, the parametrizations in (1) and (2) automatically have conservation of an approxima-
tion to vertically integrated moist static energy. Notice that, the precipitation rate in (2), balances the vertical
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average of the total convective heating rate in (1), therefore leading to the conservation of the vertical average
of the equivalent potential temperature 〈θe〉 = 〈Q(z)〉 + q + 〈�〉 + hb

HT
θeb when the external forces, namely,

the radiative cooling rates, S1, S2, and the evaporative heating, E , are set to zero. Also note that the sensible
heating flux has been ignored in (1) for simplicity since this is a relatively small contribution in the tropics.
Here and elsewhere in the text 〈 f 〉 ≡ (1/HT)

∫ HT
0 f (z) dz.

The equations in (1) and (2) for the prognostic variables q, θeb, θ j , v j , j = 1, 2, are written in non-dimen-
sional units where the equatorial Rossby deformation radius, Le ≈ 1,500 km is the length scale, the first
baroclinic dry gravity wave speed, c ≈ 50 m/s, is the velocity scale, T = Le/c ≈ 8 h is the associated

time scale, and the dry-static stratification ᾱ = HT N 2θ0
πg ≈ 15 K is the temperature unit scale. The basic bulk

parameters of the model are listed in Table 1 for the reader’s convenience.

2.2 The convective parametrization

The surface evaporative heating, E , in (2) obeys an adjustment equation toward the boundary layer saturation
equivalent potential temperature, θ∗

eb,

1

hb
E = 1

τe
(θ∗

eb − θeb) (3)

with τe is the evaporative time scale. The value of θ∗
eb on a warm ocean surface is fixed such that at radiative

convective equilibrium (RCE) we have θ∗
eb − θ̄eb = 10 K, according to the Jordan sounding [44].

Besides the second baroclinic moisture advection in (2), the originality of the present model resides in a new
treatment of the deep convective heating/precipitation, P , and the downdrafts, D, as well as the introduction
of the congestus heating, Hc, into the θ2 equation. The middle tropospheric equivalent potential temperature
anomaly is defined approximately by

θem ≈ q + 2
√

2

π
(θ1 + α2θ2) (4)

where α2 = 0.1. Notice that the coefficient 2
√

2/π in (4) results from the vertical average of the first baroclinic
potential temperature,

√
2θ1 sin(π z/HT), while the small value for α2 adds a non-zero contribution from θ2 to

θem to include its contribution from the lower middle troposphere although its vertical average is zero.
Following [37], we use a switch parameter � which serves as a measure for the moistness and dryness of

the middle troposphere [31]. When the discrepancy between the boundary layer and the middle troposphere
equivalent potential temperature is above some fixed threshold, θ+, the atmosphere is defined as dry. Moist
parcels rising from the boundary layer will have their moisture quickly diluted by entrainment of dry air, hence
losing buoyancy and stop to convect. In this case, we set� = 1 which automatically inhibits deep convection
in the model (see below). When this discrepancy is below some lower value, θ−, we have a relatively moist

Table 1 Bulk constants in two layer mode model

HT = 16 km: height or the tropical troposphere
Q̃ = 0.9: moisture stratification factor
λ̃ = 0.8: 2n baroclinic relative contribution to the moisture convergence associated with the moisture background
α̃ = 0.1: 2n baroclinic relative contribution to the moisture (nonlinear) convergence associated with the moisture anomalies
τW = 75 days: Rayleigh-wind friction relaxation time
τR = 50 days: Newtonian cooling relaxation time
cd = 0.001: boundary layer turbulence momentum friction
Le ≈ 1500 km: equatorial deformation radius, length scale
c ≈ 50 m/s: speed of the first baroclinic gravity wave, velocity scale
T = Le/c ≈ 8 h: time scale
ᾱ ≈ 15 K: dry static stratification, temperature scale
N = 0.01s−1: Brunt–Vaisala buoyancy frequency
θ0 = 300 K: reference temperature
hb = 500 m: boundary layer height
X̄ : RCE value of the variable X
α2 = 0.1: relative contribution of θ2 to the middle troposphere θe
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atmosphere and we set � = �∗ < 1. The lower threshold �∗ can basically take any value between zero
and one and here �∗ = 0.2 to guarantee a non-zero downdraft fraction minimum within the regions of deep
convection. We are avoiding the value �∗ = 0 here because we believe it is unphysical; even if a given grid
cell is deep convecting at its maximum, it doesn’t mean that there is deep convection all over the cell, there
should be some congestus, stratiform, and/or even clear sky regions within that cell. The function � is then
interpolated (linearly) between these two values. More precisely we set

� =



1 if θeb − θem > θ+
A(θeb − θem)+ B if θ− ≤ θeb − θem ≤ θ+
�∗ if θeb − θem < θ−.

(5)

Here θ+ = 20 K and θ− = 10 K while A and B are fitting constants guaranteeing continuity of �. The value
of θ− is chosen according to the Jordan sounding (Fig. 3.5 from [44]). It represents a threshold below which
the free troposphere is locally moist and “accepts” only deep convection while the value of θ+ = 20 K is
somehow arbitrary.

Therefore, the precipitation, P , and the downdrafts, D, obey

P = 1 −�

1 −�∗ P0 and D = �D0 (6)

while the stratiform and congestus heating rates, Hs and Hc, solve the relaxation-type equations

∂Hs

∂t
= 1

τs
(αs P − Hs) (7)

and

∂Hc

∂t
= 1

τc

(
αc
�−�∗

1 −�∗
D

HT
− Hc

)
, (8)

respectively. Notice that, as anticipated above, when the middle troposphere is dry,� = 1, deep convection is
completely inhibited, even if P0, i.e, CAPE is positive, whereas congestus heating is favored. In the absence of
deep convection the downdrafts are interpreted as the subsidence associated with the detrainment of shallow
clouds. In this sense the shallow clouds serve to moisten and precondition the middle troposphere to sustain
deep convection by lowering � in the model via both the increase of q and the decrease of θeb. The situation
is somewhat inverted during the deep convective episodes when � = �∗. Nevertheless, when this downdraft
minimum fraction is reached, the downdraft will increase because of increasing stratiform heating, Hs, and
the vanishing congestus heating, Hc (because of the factor (�−�∗ in Eq. 8).

Moreover, the dry atmosphere increases the downdrafts, D, and promotes boundary layer clouds. This also
is well reflected in the model.

The quantities P0 and D0 represent respectively the maximum allowable deep convective heating/precipi-
tation and downdrafts, independent of the value of the switch function �. Notice that conceptually the model
is not bound to any type of convective parametrization. A Betts–Miller relaxation type parametrization as well
as a CAPE parametrization can be used to setup a closure for P0. Indeed, here we use some combination
of the two parametrization concepts. Recall that a Betts–Miller type parametrization consists of relaxing the
moisture q (and/or the temperature) toward a fixed vertical profile, q̂ , (typially a tropical sounding or a moist
adiabat) over some convective relaxation time τconv [45]. A CAPE parametrization, on the other hand, is based
on the kinetic energy available for deep convection which is directly converted into upward motion whenever
deep convection is triggered. Recall also that CAPE is computed as the vertical integral of the buoyancy of the
rising moist parcel which is proportional to the difference between the boundary layer and the environmental
saturation equivalent potential temperatures, θeb−θ∗

eb [46]. Furthermore, θ∗
eb anomalies are often approximated

by some linear function of the tropospheric dry potential temperature (e.g. [13]). Here we let

P0 = 1

τconv

(
a1θeb + a2(q − q̂)− a0(θ1 + γ2θ2)

)+ (9)

where q̂ is a threshold constant value measuring a significant fraction of the tropospheric saturation and
τconv, a1, a2, a0 are parameters specified below and in Table 2 [15,16]. In particular the coefficient a0, which
is somewhat related to the inverse buoyancy relaxation time of Fuchs and Raymond [15], is an important
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Table 2 Parameters in the convective parameterization

θ∗
eb: boundary layer saturation equivalent potential temperature
τe ≈8 h or 9 days: evaporative time scale in the boundary layer
θ± = 10, 20 K: temperature thresholds used to define the switch function �
�∗ = 0.2: lower threshold of the switch function �
A, B: linear fitting constants interpolating the switch function �
τs = 3 h: stratiform heating adjustment time
αs = 0.25: stratiform heating adjustment coefficient
τc = 1 h: congestus heating adjustment time
αc = 0.5 (varies): congestus heating adjustment coefficient
a0 = 7.5 (varies): inverse buoyancy time scale of convective parametrization
a1 = 0.1 (varies): relative contribution of θeb to the convective parametrization
a2 = 0.9 (varies): relative contribution of q to the convective parametrization
τconv = 2 h: deep convective reference time scale
q̂: Threshold beyond which condensation takes place in Betts–Miller scheme
γ2 = 0.1 (varies): relative contribution of θ2 to the convective parametrization (strength of lower troposphere coupling)
θ̄eb − θ̄em = 14 K: discrepancy between boundary and middle tropospheric equivalent potential temperature at RCE.
m0 (value is set by RCE): scaling of downdraft mass flux
µ2 = 0.5: relative contribution of stratiform and congestus mass flux anomalies

parameter to vary. The parameter γ2, which couples θ2 to P0 is also varied to assess the effects of the lower
troposphere temperature variation on the parametrizations; a relatively warm lower troposphere will promote
evaporation and detrainment of cumulus clouds. Thus, it should result in a weakening of the deep convection.

The downdrafts are closed by

D0 = m0

P̄

(
P̄ + µ2(Hs − Hc)

)+
(θeb − θem) (10)

where m0 is a scaling of the downdraft mass flux and P̄ is a prescribed precipitation/deep convective heating
at radiative convective equilibrium. Here µ2 is a parameter allowing for stratiform and congestus mass flux
anomalies [34,35]. Finally the radiative cooling rates, S1, S2 in (1) are given by a simple Newtonian cooling
model

S j = −Q0
R, j − 1

τR
θ j , j = 1, 2 (11)

where Q0
R, j , j = 1, 2 are the radiative cooling rates at RCE. The basic constants in the model convective

parametrization and the typical values utilized here are given in Table 2. The physical features incorporated in
the multi-cloud model are discussed in detail in [37].

3 Formal limit regimes and related model parametrizations

It is interesting to rewrite the multi-cloud parametrization from Sect. 2 in a fashion where the relevant time
scales of central physical processes are more explicit. We introduce the boundary layer to free troposphere
aspect ratio,

R = hb

HT
= 500 m

16 m
= 1

32
≈ 0.03 (12)

and the downdraft time scale, τD, with

τD = hb

m0
(13)

where m0 is the downdraft mass flux from (10). We also use (9), (10) in (6) to rewrite the deep convective
heating and downdraft mass flux as

P = τ−1
conv P̃ (14)



358 B. Khouider, A. J. Majda

and

D

hb
= τ−1

D D̃ = τ−1
D m̃(θeb − θem) (15)

where the definitions of the nonlinear functions P̃ , D̃, m̃ are clear from (6), (9), (10). Similarly with (12), (13)
and (15) the coefficient in (8) is recast as

αc
�−�∗

1 −�∗
D

HT
= R

τD
α̃c D̃. (16)

With the above preliminary definitions and ignoring the barotropic advection, the multi-cloud model convective
parametrization is rewritten as given by

∂θeb

∂t
= τ−1

e (θ∗
eb − θeb)− τ−1

D m̃(θeb − θem)

∂q

∂t
+ div

(
(v1 + α̃v2)q + Q̃ div(v1 + λ̃v2)

) = −τ−1
conv P̃ + R

τD
m̃ (θeb − θem)

(17)
∂Hc

∂t
= τ−1

c

(
R

τD
α̃cm̃(θeb − θem)− Hc

)

∂Hs

∂t
= τ−1

s

(
αsτ

−1
conv P̃ − Hs

)

together with the temperature and momentum equations in (1).
The important time scales for the key processes in the parametrization are the two for the boundary layer

moist processes involving evaporation and downdrafts, τe, τD, and the three time scales for the three cloud
types, congestus, stratiform, and deep convective, τc, τs, τconv. Actually, with the nondimensionalization dis-
cussed at the end of Sect. 2.1, these time scales are ratios with the standard equatorial gravity wave time scale,
TE ≈ 8 h; we ignore this distinction below. We show below in Sect. 4.1 that standard values for an RCE based
on the Jordan sounding yield τe ≈ 8 h. Clearly, the ratio of the times scales, τD/τe can be found for a given
RCE by evaluating the right hand side of the first equation in (17) at RCE. For the standard RCE utilized in
Khouider and Majda [37,39], this procedure yields that τD ≈ τe ≈ 8 h. The values of τe and τD for a wide range
of representative RCE’s in a reasonable physical range are given in Table 3. On the other hand, the adjustment
times for the three cloud types in the parametrization can vary over a wide range of times comparable to τe
with

1 h ≤ τc, τs ≤ 8 h

2 h ≤ τconv ≤ 8 h. (18)

Time scales in the shorter range typically are utilized in contemporary model convective parametrizations [16,
33,37–40] mimicking the adjustment time scales used in GCM’s [45,47]. On the other hand, recent interpre-
tations of observations [48] suggested longer adjustment times, at least for τconv at the upper limit in (18),
τconv = 8 h ≈ TE; we have included the upper limit for τc, τs in (18) in order to keep the possibility of larger
time scales for these variables, too. Thus, it is interesting to explore the behavior of the multi-cloud paramet-
rizations in the range of parameters in (18); this is done briefly in Sects. 4 and 5 below. Obviously, in regimes
of parameters where τc, τs << TE, τD, τe, τconv, formally, one can replace the two dynamic equations in (17)
for Hc and Hs by their equilibrium limits but in general the above discussion shows that all the time scales in
(17) should be regarded as roughly comparable.

Table 3 Typical radiative convective equilibria (RCE) in the multi-cloud parametrizations. Notice that positive Q0
R,2 values

correspond to RCE’s where the congestus heating dominate the stratiform heating

2
√

2
π

Q1
R,0 (K/day) τe (h) θ̄eb − θ̄em τD (h) 2

√
2

π
Q0

R,2 (K/day)

0.5 16.9253 14 12.6296 −0.0225
19 26.6268 0.0900

1 8.4626 14 6.3148 −0.0450
19 13.3134 0.1801

2 4.2313 14 3.1574 −0.0900
19 6.6567 0.3601
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3.1 Model parametrizations with a simple vertical baroclinic mode

The simplest limiting case of the multi-cloud parametrization is simply to arrange the parameters to decouple
the second baroclinic mode from the active dynamics [35]. Thus, we set λ̃, α̃ = 0 in the second equation in
(17), γ2 = 0 in (9) defining P0, and α2 = 0 in the formula from (4) for the middle troposphere equivalent
potential temperature so that

θem = q + 2
√

2

π
θ1. (19)

Then the active equations in the multicloud parametrization consist of the four equations for θeb, q, Hc, Hs
in (17) coupled to the equations for θ1 and v1 involving the potential temperature and velocity of the first
baroclinic mode. However, one should keep in mind that linear stability analysis and nonlinear simulations
reveal an important role in the dynamics for the multicloud parametrization with the more realistic values
λ̃ = 0.8, γ2 = 0.1, allowing for second baroclinic moisture convergence and lower middle tropospheric
destabilization through second baroclinic cooling. For a comparison of these effects with the decoupled values
λ̃ = 0, γ2 = 0, the interested reader is referred to the detailed discussion in those papers [37–39].

A further, more drastic simplification occurs if the contribution from both stratiform and congestus heat-
ing/cooling on the downdrafts are suppressed by setting µ2 = 0 in the formula in (10) in addition to the
above simplifications. The stratiform and congestus heating terms, Hs, Hc from (17) completely decouple and
a convective parametrization for the first baroclinic mode alone results with the four equations

∂θeb

∂t
= τ−1

e (θ∗
eb − θeb)− τ−1

D D̃

∂q

∂t
+ div

(
v1(q + Q̃)

) = −τ−1
conv P̃ + R

τD
D̃

(20)
∂θ1

∂t
− div v1 = π

2
√

2
P + S1

∂v1

∂t
+ βyv⊥

1 − ∇θ j = −Cd(u0)v1 − 1

τW
v1

Compared to early first baroclinic modes [11–13], novel features in (20) arise due to the nonlinear dependence,
�(θeb − θem), in (5) for both P̃ and D̃ which allows for the effects of a dry middle troposphere on convection
as well as the nonlinear moisture advection, div(v1q) in the second equation in (20). In particular, the system
in (20) avoids the use of constant area fraction and precipitation efficiency parameters. The simplified models
in (20) are interesting for further mathematical analysis beyond that in Frierson et al. [16]; a linearized stability
analysis for (20) with a special choice of P0 from (9) and � = �0 with �0 constant, i.e., a deep convective
RCE, can be found in [13].

Finally, we demonstrate how the simplest moisture models in Neelin and Zeng [40], and Frierson et al.
[16] can be derived from (20) with further simple approximations. First, we note that by combining the first
two equations in (20), q + Rθeb satisfies

∂

∂t
(q + Rθeb)+ div

(
v1(q + Q̃)

) = R

τe
(θ∗

eb − θeb)− τ−1
conv P̃. (21)

Next, we assume that

∂

∂t
(q + Rθeb) = ∂ 〈q〉b

∂t
(22)

where 〈q〉b is the vertically averaged moisture (including a contribution from the boundary layer)

〈q〉b = Rqb + q (23)

and also

θ∗
eb − θeb = θ∗

b − θb + q∗
b − qb ≈ q∗ − 〈q〉b (24)

where θb is the boundary layer temperature, qb is the boundary layer moisture, and X∗ represents the saturation
value of the variable X . We also require that � = �0 and the constants a1 and a2 defining P0 in (9) satisfy
a1 R−1 = a2. With the assumptions in (21)–(24) and ignoring the nonlinear moisture advection in (21), we
arrive at the simplified moisture parametrization,
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∂ 〈q〉b

∂t
+ Q̃div v1 = R

τe

(
q∗ − 〈q〉b

) − τ−1
conv P (25)

coupled to the temperature and momentum equations for θ1, v1 in (20). These are the model parametrizations
studied in Frierson et al. [16]; the interested reader can consult that paper for an alternative direct derivation
directly from the equations for bulk cloud microphysics .

The derivation we have just presented above would be much more elegant if the original model retained
separate equations for the boundary layer temperature, θb, and moisture qb in the boundary layer. To a first
approximation, most of the important fluctuations in θeb in the boundary layer for deep convective processes
in the tropics involve the moisture since sensible heat fluxes are an order of magnitude smaller in the tropics
[16]. This is why an equation for θeb alone is utilized for simplicity in the original multi-cloud parametrization
and also partly justifies the ad hoc approximations in (24).

Finally, note that the time scale for the surface evaporative flux to affect the moisture in the free troposphere
in (25) is determined by the coefficient, Rτ−1

e . With the value R = 1/32 from (12) and τe ≈ 8 h utilized here,
this evaporative time scale is about 10 days, in agreement with standard estimates [16].

4 Stability theory for an RCE to homogeneous perturbations

4.1 Radiative convective equilibrium and linear stability

A standard tool in understanding the basic properties of a convective parametrization is the linearized stabil-
ity analysis at radiative convective equilibrium [8,12,13,15,34]. A radiative convective equilibrium (RCE),
which is a state where the convective heating is balanced by the radiative cooling, is a time independent, static,
and spatially homogeneous solution to the set of equations (1)–(11) described above. It sets up a steady state
solution around which convective waves can oscillate and grow. In Khouider and Majda [37], we constructed
such an RCE solution and performed a linear stability study for small wave-like perturbations from this RCE.
In Sect. 5 of the present paper we elaborate on some of the remarkable physical features of unstable RCE’s to
homogeneous perturbations noted very briefly in Khouider and Majda [37]. To define such RCE we let

(1) Ē = D̄ (2) 1
HT

D̄ = P̄ = 1 − �̄

1 −�∗
P̄0

(3) P̄ = 2
√

2

π
Q0

R,1 (4)
(−H̄s + H̄c

) = 2
√

2

π
Q0

R,2

(5) αs P̄ = H̄s (6) αc
�̄−�∗
1 −�∗

D̄

HT
= H̄c

(26)

Given 0 < �∗ < 1 is fixed, an RCE solution with �̄ < 1 is completely determined by fixing the evap-
orative rate Ē alone provided the state of the upper troposphere is also specified by fixing �̄ or equivalently
θ̄eb − θ̄em. (When� = �∗ we have a pure deep convective RCE with H̄c = 0 and when�∗ < � < 1 we have
a mixed deep-convective–congestus RCE, see [37] for details). With the value θ∗

eb − θ̄eb = 10 K, according to

the Jordan tropical sounding [44], the realistic value of radiative cooling, Q0
R,1, given by 2

√
2

π
Q0

R,1 = 1 K/day
yields a boundary layer evaporative time scale τe ≈ 8 h and this is the standard value utilized below as well as
in Khouider and Majda [37,39].

The linearized equations about an RCE solution are then obtained for the first order perturbation, U (x, t) =
(u1, u2, θ1, θ2, θeb, q, Hs, Hc), and the explicit formulation of the linear system is presented in Appendix B
of Khouider and Majda [37]. In such a linearized stability analysis as utilized in Sect. 4 and 5, we look for
traveling wave solutions for the linearized system with the form U (x, t) = U exp(i(kx − ωt)). Here k is the
wavenumber andω = ω(k) is the generalized dispersion relation where Re(ω)/k is the phase speed and Im(ω)
is the growth of the linear wave. The detailed results are given below.

As noted recently by the authors [37], RCE’s with θ̄eb − θ̄em large enough involving mixture of deep con-
vective and congestus clouds are unstable to homogeneous perturbations. Homogeneous solutions are special
solutions of the parametrization in (17) without spatial gradients, i.e,

(
q(t), Hc(t), Hs(t), θeb(t), θ1(t), θ2(t)

)
with zero velocity components. Here we begin by briefly summarizing the results of linear theory for homoge-
neous perturbations of an RCE which correspond to waves with zero wavenumber (k = 0) in the eigenmode
expansion given above. This is followed by a numerical study of the nonlinear development of the instability
for instructive parameter regimes.
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We consider RCE’s with realistic radiative cooling 2
√

2
π

Q1
R,0 = 1 K day−1 with the parameter values,

τc = τs = 3 h and τconv = 2 h. The diagram showing the transition from stability to instability as the congestus
parameter αc and θ̄eb − θ̄em vary is depicted in Fig. 1. Recall from (8) that αc measures the strength of the
congestus heating while from (5) values of θ̄eb − θ̄em in the range 10 K< θ̄eb − θ̄em < 20 K define RCE’s with
mixed deep convective/congestus structure. Particularly, the relative contribution of the congestus heating at
RCE increases as θ̄eb − θ̄em increases from 10 to 20 K. This figure shows that increasing both αc and θ̄eb − θ̄em
promotes homogeneous instability of this basic RCE. Notice that increasing both these parameters leads to
the same physical situation where the congestus heating dominates at RCE. This is actually suggesting that an
atmosphere dominated by lower troposphere heating from congestus clouds becomes unstable and therefore
should promote deep convection. In Fig. 2, αc is fixed at αc = 2 and the transition diagram is shown for varying
γ2 and θ̄eb − θ̄em. The growth contours in Figure 2 show very little variation with respect to γ2. Recall from
(9), γ2 measures the relative contribution of second baroclinic middle troposphere temperature perturbations
to deep convection. This suggests that among these parameters, αc and θ̄eb − θ̄em are the key parameters which
control the stability of the homogeneous state RCE. Indeed, the homogeneous stability diagrams in Figs. 1
and 2 are robust and change only slightly when other parameters in the model are varied, especially, when
τc, τs, τconv vary over the range in (18). Furthermore, the instability region in Figs. 1, 2 is always characterized
by a single positive eigenvalue with zero phase speed which crosses through zero at the stability boundary.
Under such circumstances, in the simplest scenario, one might anticipate that as the stability boundary is
crossed, the nonlinear development of homogeneous perturbations to the RCE evolves to a new steady state
defining an RCE with a stronger deep convective contribution, i.e, smaller θ̄eb − θ̄em. On the other hand, we
have a six-dimensional set of ordinary differential equations (ODE’s) so there is the possibility of much more
complex dynamics involving periodic orbits and even chaotic dynamics. These possibilities are tested next.

4.2 Nonlinear homogeneous instability for the RCE

Before developing a detailed discussion, we remark that the conservation of the vertical average of equivalent
potential temperature for (1) and (2) automatically yields the following conservation principle for homogeneous
solutions of (17)

∂

∂t

(
2
√

2

π
θ1 + q + Rθeb

)
= 1

τe

(
θ∗

eb − θeb
) − Q1

R,0 − 1

τR
θ1. (27)

Thus, the dynamics of nonlinear perturbations are strongly constrained by (27). In particular, at any homoge-
neous steady state, the right hand side of (27) must vanish necessarily.
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Fig. 1 Linear stability of RCE to homogeneous perturbations: bifurcation diagram in αc – (θeb − θem) plane. γ2 = 0.1, τc = τs =
3 h, τconv = 2 h. The region of instability is shaded
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Fig. 2 Same as Fig. 1 except for axises in γ2 − θ̄eb − θ̄em plane and αc = 2 is fixed

We did a series of elementary numerical experiments integrating the six-dimensional ODE’s for
(
q(t), Hc(t),

Hs(t), θeb(t), θ1(t), θ2(t)
)

involving initial conditions which are small perturbations of homogeneous unstable
RCE’s for a wide range of parameter values and time scales from (18). For various parameter regimes either
of the two possibilities alluded to earlier occur: either adjustment to a stable RCE or more complex dynamics
with periodic and/or chaotic behavior. Three examples illustrating these regimes are presented next.

In the first example, we use the parameter values τs = 3 h, τc = 3 h, τconv = 8 h, γ2 = 0.1 and congestus
heating coefficient αc = 2. The initial data is a small perturbation of the unstable RCE with θ̄eb − θ̄em =
19.5 K yielding a relatively large second baroclinic cooling Q2

R,0 = 1.65 K/day and a large congestus heat-

ing H̄c = 1.87 K/day, at RCE. The dynamical transient behavior is depicted in Fig. 3 and illustrates the
adjustment to a new stable RCE at large times with θeb − θem = 11.87 K. The adjustment process is very
rapid on the order of 20–30 days for all variables except for θ2 which adjusts more slowly over the order of
100 days on the Newtonian cooling time scale. Notice the large negative perturbed value of θ2 in the final
adjusted equilibrium which compensates for the large value of the homogeneous radiative cooling Q0

R,2 so

that 2
√

2
π
(Hc − Hs)− Q2

R,0 − 1
τR
θ2 = 0 at equilibrium, given the large relaxation time τR = 50 days and the

weaker adjusted values of Hc, Hs depicted in Fig. 3.
Figure 4 illustrates the emergence of a periodic motion, with a period of roughly 100 days for θ1, θ2, and

q and about 400 days for θeb − θem, from a small perturbation of an unstable RCE with θ̄eb − θ̄em = 19.75 K.
The parameters here are τs = 3 h, τc = 3 h, τconv = 2 h, γ2 = 0.1, and αc = 0.5. Note that there are large
fluctuations in moisture and congestus heating accompanied by a large drop in first baroclinic potential tem-
perature, θ1, due to radiative cooling over an interval of roughly 10 days followed by a nearly stationary but
slowly decaying state of deep convection over roughly 90 days; with the radiative cooling of 1/K/day, the drop
of θ1 by roughly 10 K in 10 days is completely natural.

Finally, in Fig. 5, we present an example of transient behavior emerging from a small initial perturbation
of an unstable RCE, θ̄eb − θ̄em = 19.75,K, with nearly periodic behavior which we conjecture is an example
of heteroclinic chaotic dynamics [49,50]. Here τs = 3 h, τc = 3 h, τconv = 8 h, γ2 = 0.1, and αc = 0.5. Notice
that in this case the variables θ1, θ2, q undergo nearly periodic motion with a mechanism very similar to that
discussed earlier for the example in Fig. 4 with a much shorter lifetime for enhanced θ1 compared with the
earlier case. However, a close inspection of Fig. 5 shows that the large amplitude spikes in q and θ1 fluctuate
slightly in amplitude while there are intermittent irregular bursts and spikes in θeb − θem and P1.

1 For the last two cases corresponding to Figs. 4 and 5, the spikes in P and Hs actually exceed the 5 K/day axis-limit and reach
values respectively as large as 100 and 20 K/day and more. Such large heating rates follow naturally from the large growth rates
associated with these extreme parameter regimes (see Fig. 7). The large heating values are avoided on the scales of those figures
for clarity.
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Fig. 4 Same as Fig. 3 except for the parameter values: τs = τc = 3 h, τconv = 2 h, γ2 = 0.1, αc = 0.5, θ̄eb − θ̄em = 19.75 K
leading to the emergence of a periodic solution

We conclude this section by stating that the three types of behavior shown here are robust for unstable
RCE’s in all parameter regimes tested for the multi-cloud models.

5 Unstable moisture waves at RCE

The physical structure of linearly unstable convectively coupled waves about RCE is a basic topic of consid-
erable interest for model convective parametrizations with crude vertical structure [8,10,12,13,15,22,34–37].
This interest arises both in providing physical structures, wavelengths, and phase speeds for comparison with
observations as well as highlighting the characteristics of the convective parametrization including guidelines
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Fig. 5 Same as Figure 3 except for the parameter values: τs = τc = 3 h, τconv = 8 h, γ2 = 0.1, αc = 0.5, θ̄eb − θ̄em = 19.75 K
leading to heteroclinic chaotic dynamics

for nonlinear simulations [35,38,39]. The nature and physical structure of the typical large scale instabilities
that occur when the basic RCE is stable to homogeneous perturbations for the multicloud parametrization
has already been studied by the authors elsewhere [37–39]. Here we address several issues. First, we look at
sensitivity of these results when the time scales τc, τs, τconv in the parametrization vary over the range in (18);
then, we document the remarkable new families of unstable waves at various wavelengths which emerge when
the RCE is unstable to homogeneous perturbations.

5.1 The effect of time scales in the parametrization on instability

Here we consider the growth rate and phase speed of unstable waves for the standard RCE [37] with θ̄eb−θ̄em =
14 K with γ2 = 0.1 and αc = 0.5. According to (18), we consider the following cases

(1) τs = τc = 3 h, τconv = 2 h

(2) τs = τc = 3 h, τconv = 8 h

(3) τs = τc = 8 h, τconv = 8 h
(28)

Figure 6 presents the growth rate and phase speed of the unstable waves for these three cases with the standard
values in Tables 1, and 2. Here and below, the wavenumbers are calculated relative to the natural length scale
L = 40,000 km, which is the circumference of the equator while the unstable waves are marked by circles in
the phase velocity diagrams. Several trends are evident; in all three cases, the instabilities are confined to scales
larger than 1,500 km and are associated with phase speeds in the range of 15–25 m/s. Furthermore, successively
increasing the time-scales from (1) to (2) to (3), results in smaller growth rates for this instability as might
be anticipated from (17) since the amplitudes of crucial source terms are reduced. The case with τc = 1 h,
τs = 3 h, τconv = 2 h has already been discussed extensively in [37] by the authors including its detailed phys-
ical structure which strongly resembles the moist convectively coupled gravity waves seen in observations
[37–39]; the physical structure of the waves in the three cases in (28) is similar and will not be repeated here.

5.2 Moisture waves for homogeneous unstable RCE’s

For higher values of θ̄eb − θ̄em for which the RCE is unstable to homogeneous perturbations, the stability
and phase diagrams corresponding to Fig. 6 bifurcate drastically as θ̄eb − θ̄em varies and display remarkably
complex behavior with the emergence of other families of unstable moisture waves at various scales. Below,
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Fig. 6 Linear stability of RCE perturbations in the wavenumber domain. Growth and phase diagrams with θ̄eb − θ̄em = 14 K : a
τs = τc = 3 h, τconv = 2 h; b τs = τc = 3 h, τconv = 8 h; c τs = τc = τconv = 8 h. Other parameters are as in Tables 1 and 2. The
zero line is drawn on the top of growth diagrams to clearly separate growing from damped modes

to demonstrate this, we utilize the fixed parameters, τc = 1 h, τs = 3 h, τconv = 2 h, γ2 = 0.1, αc = 2 in the
multicloud model and vary θ̄eb − θ̄em. This example is illustrative of the general behavior which occurs in
particular for the three cases in (28).

Figure 7 gives the phase/instability diagrams for the increasing values θ̄eb − θ̄em = 14, 16, 18, 18.5, 19,
19.5 K for the RCE; for θ̄eb − θ̄em ≥ 18.5 K, the RCE is unstable to homogeneous perturbations. Notice that the
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Fig. 7 Same as Fig. 6 except for τs = 3 h, τc = 1 h, τconv = 2 h, and αc = 2 are fixed while θ̄eb − θ̄em varies

unstable phase diagram begins to bifurcate at θ̄eb − θ̄em = 16 K from the standard case at θ̄eb − θ̄em = 14 K; at
this value, a new band of unstable moist gravity waves appears at mesoscopic scales centered around 666 km
(wavenumber 60) moving at essentially the dry second baroclinic gravity wave speed of 25 m/s.

The physical structure of the eastward unstable wave at wavelength 666 km is presented in Fig. 8 through
bar diagrams for the unstable eigenvector component amplitudes [34,35,37] as well as traces of quantities of
interest through one ad one-half spatial periods. Although this wave is moving at the second baroclinic dry
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Fig. 7 Contd.

gravity wave speed and has a significant second baroclinic structure it is strongly convectively coupled with
prominent moisture, congestus, stratiform, and first baroclinic mode components. It has a structure resembling
those discussed by Mapes [9] which act as triggers for additional organized mesoscale convection. Further-
more, congestus peaks lead moisture peaks which lead deep convective peaks as illustrated in Figs. 8 d, e.
At the value, θ̄eb − θ̄em = 18.5 K, a new band of slower large scale moist gravity waves emerges. Notice the
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movement of the band on instability of the 25 m/s waves. For the even larger value with θ̄eb − θ̄em = 19 K there
is moist gravity waves with maximum phase speed of 15 m/s on planetary to synoptic scales (2 ≤ k ≤ 20)
asymptotically converging to moist gravity waves with nearly zero phase velocity and constant growth rate at
small scales (k ≥ 30) while the 25 m/s instability weakens a great deal moves back toward the small scales
and ultimatly desapears.

The structure of the slow moving westward propagating moist gravity wave with wavelength 666 km and
phase velocity 1.26 m/s is shown in Fig. 9; the wave is dominated by moisture and θeb fluctuations (large
CAPE) and has a deep convective structure with both first and second baroclinic components with moisture
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Fig. 8 Physical structure of eastward 25 m/s−1 moist gravity wave at wavenumber k = 60. θ̄eb − θ̄em = 16 K, τs = 3 h, τc = 1 h,
τconv = 2 h, αc = 2. Other parameters are as in Tables 1 and 2. a bar diagram of eigenmode component amplitudes. x-z Contours
of potential temperature b and convective heating field c with velocity arrows overlaid
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peaks leading deep convective peaks. (Notice from the bar diagram that u1 is slightly larger than u2 leading
to a strong shear and strong winds near the surface and aloft.) Also because of its slow propagation speed,
the slope in the (total) upward motion of nearly one (resulting from the 3 h stratiform lag: 1.26 m/s × 3 h =
13 km) is much smaller than the slope observed for the 15 m/s convectively coupled Kelvin wave analogues
[34,35,37]. Given the aspect ratio on Fig. 9, this yields a nearly vertical upward motion at the center of the
deep convection and an upraising of the air near the surface. These features of the slow moving wave in Fig. 9,
just summarized above, including the spatial structure (strong shear, slope one of upward motion, upraising of
near surface air, strong surface winds immediately in front and in the back of the convective region, etc.), the
phase speed, and the length scale are reminiscent of a westward propagating squall line [46].
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Fig. 9 Same as Fig. 8 except for the slow westward propagating moist gravity at wavenumber k = 60, θ̄eb − θ̄em = 19 K, τs = 3 h,
τc = 1 h, τconv = 2 h, αc = 2
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Finally, at the largest value of θ̄eb−θ̄em = 19.5 K, the unstable phase diagram undergoes another bifurcation
to two standing waves of instability over the entire range of wavenumber k ≥ 2 while at wavenumber one we
have the instability of two convectively coupled waves moving at roughly 13 m/s. The structure of the standing
mode with the larger growth rates is shown in Fig. 10. The second standing mode has a similar structure.
From Fig. 10 we see that these standing modes are essentially deep convective standing waves with the first
baroclinic components dominating. Notice the air rising near the surface directly to the top of the troposphere
at the locations of maximum heating and warm temperatures in Figs. 10b, c. The streamlines are on the form
of Rayleigh-Benard convective cells. From Figures 10d, e, all the thermodynamic variables and forcing terms
(q, θeb, θem, P, H,Hc, and D) are perfectly correlated with each other confirming the non-propagating nature
of the wave.
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Fig. 10 Same as Fig. 9 except for θ̄eb − θ̄em = 19.5 K, for the standing mode with larger growth rate at wavenumber k = 5
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6 Concluding discussion

Here we have discussed a variety of new aspects of the multicloud parametrizations with two vertical baroclinic
modes introduced recently by the authors [37–39]. In Sect. 3, we clarified all of the relevant time scales in these
models and showed how variants of other more familiar parametrization schemes involving a single vertical
baroclinic mode arise as limiting special cases. One of the new phenomena in the multi-cloud parametrizations
is the existence of suitable unstable RCE’s involving a large fraction of congestus clouds and smaller fraction of
deep convective clouds. Various novel aspects of the linear and nonlinear instability of such RCE’s are studied
here in Sects. 4, and 5. In Sect. 4, the nonlinear instability of unstable RCE’s to homogeneous perturbations is
studied with three different types of dynamics involving nonlinear adjustment to a deep convective dominated–
stable RCE (Fig. 3), periodic oscillations (Fig. 4), and even heteroclinic chaos (Fig. 5). In Sect. 5, the linear
instability of unstable RCE’s to perturbations with general spatial structure is analyzed. Besides the large scale
convectively coupled gravity waves [37], new modes of instability arise including mesoscale second baroclinic
moist gravity waves [9], slow moving mesoscale “squall line modes”, and large scale standing modes. The
role of the basic convective adjustment time scales, τc, τs, τconv, on linearized stability is also clarified.
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Appendix: Derivation of the vertically integrated moisture equation

Recall the bulk water budget equations in the atmosphere [16]

∂qv

∂t
+ div(Vqv)+ ∂(wqv)

∂z
= Ev − C

∂qc

∂t
+ div(Vqc)+ ∂(wqc)

∂z
= C − Ev − Ar (29)

∂qr

∂t
+ div(Vqr)+ ∂(wqr)

∂z
− ∂(vtqr)

∂z
= Ar

where qv, qc, qr are the mixing ratios of water vapor, cloud water, and rain, respectively, Ev,C, Ar are the
rates of evaporation, condensation, conversion of cloud water into rain, respectively, and vt is the fall speed
of precipitation (notice the minus sign in front). The quantities V and w represent, respectively, the horizon-
tal and vertical (incompressible) velocity components while div denotes the horizontal divergence operator:
div(u1, u2) = ∂x u1 + ∂yu2.

At the large time (and spatial) scales of interest of a few days (and a few hundreds of kilometers) the
dynamics of both cloud water and rain are simplified (averaged out) by assuming that clouds and rain occur at
smaller scales. Therefore we assume a quasi-equilibrium where

Ar = −∂(vtqr)

∂z
and C = Ev + Ar

where the overbar represents the long-time average.
Introducing these new settings into the first equation in (30) we obtain the large scale equation for qv:

∂qv

∂t
+ div(Vqv)+ ∂(wqv)

∂z
= ∂(vtqr)

∂z
(30)

where the turbulent fluxes are ignored. Assume that the (total) water vapor, qv, decomposes onto

qv(x, y, z, t) = Q(z)+ q(x, y, z, t);
a horizontal/time homogeneous vertical profile background (moisture stratification), Q(z), plus a perturba-
tion, q .
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We introduce the vertical average of the water vapor perturbation

〈q〉 := 1

HT

HT∫

0

q dz (31)

where HT is the height of the troposphere. Let P be the rate of precipitation which reaches the ground as the
vertical average of the long time averaged precipitation flux :

P = − 1

HT

HT∫

0

∂(vtqr)

∂z
dz = 1

HT
vtqr

∣∣∣∣
z=0

,

assuming that on average qr and vt are zero at the top of the troposphere z = HT.
By applying the average in (31) to the equation in (30) we obtain

∂ 〈q〉
∂t

+ 〈div(Vq)〉 +
〈
w

dQ(z)

dz

〉
+ 1

HT
(wq)

∣∣∣∣
z=HT

z=0
= −P. (32)

By assuming that q(HT) ≈ 0; the water vapor content is negligible at the top of the troposphere, we get

1

HT
(wqv)

∣∣∣∣
z=HT

z=0
≈ − 1

HT
(wqv)

∣∣∣∣
z=0

= − 1

HT
Fq

−

where Fq
− represents the net supply of water vapor from the surface. Thus the equation in (32) is rewritten as

∂ 〈q〉
∂t

+ 〈div(Vq)〉 +
〈
w

dQ(z)

dz

〉
= Fq

− − P. (33)

Case of two baroclinic mode models

When the governing (primitive) equations are Galerkin projected onto the first two baroclinic vertical modes
plus a barotropic mode, the velocity field takes the form

V = v̄ + v1
√

2 cos

(
π z

HT

)
+ v2

√
2 cos

(
2π z

HT

)

and

w = −
√

2HT

π

(
div v1 sin

(
π z

HT

)
+ 1

2
div v2 sin

(
2π z

HT

))

where v1, v2 are, respectively, the first and second baroclinic velocity components and v̄ is the barotropic part.
Plugging the formulas for V and w into the equation in (33) yields

∂ 〈q〉
∂t

+ v̄ · ∇ 〈q〉 + div(v1φ(q))+ div(v2ψ(q))+ Q̃(divv1 + λ̃divv2) = Fq
− − P (34)

where

φ(q) =
√

2

HT

HT∫

0

q cos

(
π z

HT

)
dz; ψ(q) =

√
2

HT

HT∫

0

q cos

(
2
π z

HT

)
dz (35)

and

Q̃ = −
√

2

π

HT∫

0

dQ(z)

dz
sin

(
π z

HT

)
dz; λ̃ = −

√
2

2Q̃π

HT∫

0

dQ(z)

dz
sin

(
2π z

HT

)
dz. (36)
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Closures for φ(q), ψ(q), Q̃, and λ̃ in (36)

By assuming plausible vertical profiles for Q(z) and q we derive here some rough estimates for the quantities
φ(q), ψ(q), Q̃, and λ̃ in (36). We start with Q̃ and λ̃. The observed vertical distribution of water vapor in
the tropics (for e.g. see [46] or [51]) suggests a profile for Q(z) which is rapidly decreasing in the lower
troposphere and asymptotically vanishing aloft. For simplicity we assume an exponential form profile,

Q(z) = q0 exp(−z/Hq), (37)

where Hq is the e-folding distance or the moisture scale hight and q0 a constant representing the value of q at
the surface z = 0. We have, from (36),

Q̃ =
√

2q0

πHq

HT∫

0

e−z/Hq sin

(
π z

HT

)
dz =

√
2q0

HT/Hq + π2 Hq/HT

(
1 + e−HT/Hq

)

and

λ̃Q̃ =
√

2q0

2πHq

HT∫

0

e−z/Hq sin

(
2π z

HT

)
dz =

√
2q0

HT/Hq + 4π2 Hq/HT

(
1 − e−HT/Hq

)
, (38)

which yield

λ̃(Hq/HT) = 1 + π2(Hq/HT)
2

1 + 4π2(Hq/HT)2
tanh

(
1

2Hq/HT

)
;

a monotonically decreasing function of Hq/HT with the upper-bound

λ̃ ≤ lim
Hq/HT−→0

λ̃(Hq/HT) = 1,

if for the example Hq/HT = 1/8, then we get λ̃ = 0.7135. Therefore, values of λ̃ ranging from λ̃ = 0.7 to
λ̃ = 1 are plausible, in our case we pick the conservative value of λ̃ = 0.8. Moreover, note that Q̃ depends
linearly on the surface moisture q0 therefore it can take any arbitrary value. For our calculations we use the
standard value of Q̃ = 0.9 also used in [16,42,43,52].

Now we return to φ(q) and ψ(q). We seek closures on the form

φ(q) = α̃1 〈q〉 ; and ψ(q) = α̃2 〈q〉 (39)

where α̃1 and α̃2 are constants. We assume separation of variables

q(x, y, z, t) = q1(z)q2(x, y, t). (40)

Therefore

〈q〉 = 〈q1〉 q2, (41)

then provided that 〈q1〉 
= 0, we have

α̃1 =
√

2

HT 〈q1〉
HT∫

0

q1(z) cos

(
π z

HT

)
dz,

and

α̃2 =
√

2

HT 〈q1〉
HT∫

0

q1(z) cos

(
2π z

HT

)
dz.
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If we assume that the bulk of the moisture variability is concentrated within the lower half 0 ≤ z ≤ HT/2
of the troposphere then we can apply the mean value theorem for the first integral and get

α̃1 ≈
√

2

HT 〈q1〉

HT/2∫

0

q1(z) cos

(
π z

HT

)
dz = q1(zl)

√
2

HT 〈q1〉

HT/2∫

0

cos

(
π z

HT

)
dz ≈ 2

√
2

π
= 0.9003 ≈ 1.

where 0 ≤ zl ≤ HT/2 and we assumed 〈q1〉 ≈ q1(zl) to a first approximation. For α̃2, we use a simple
midpoint quadrature rule on the lower half of the troposphere leading to

α̃2 ≈
√

2

HT 〈q1〉

HT/2∫

0

q1(z) cos

(
2π z

HT

)
dz ≈

√
2

2

q1(HT/4)

〈q1〉 cos
(π

2

)
= 0.

The extreme situation where the above approximation would fail occurs when q1(z) is correlated with cos( 2π z
HT
),

i.e, q1(z) ≈ q0 cos( 2π z
HT
). This yields

〈q1〉 ≈ 0

in which case our assumption 〈q1〉 
= 0 is not valid thus leading to undetermined values for α̃1, α̃2. Neverthe-
less, we believe that such a situation is very unlikely in nature and therefore, overall, we will have an effective
α̃2 << 1. Therefore, in our nonlinear simulations using the system in (1), we use the values

α̃1 = 1, α̃2 = 0.1.

With the values of λ̃, α1, α2 given, (34) yields the moisture equation used in the multicloud parametrizations
with the angle brackets omitted for simplicity in exposition.
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