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This paper develops a maximum likelihood based method for simultaneously performing 
multidimensional scaling and cluster analysis on two-way dominance or profile data. This 
MULTICLUS procedure utilizes mixtures of multivariate conditional normal distributions to 
estimate a joint space of stimulus coordinates and K vectors, one for each cluster or group, in 
a T-dimensional space. The conditional mixture, maximum likelihood method is introduced 
together with an E-M algorithm for parameter estimation. A Monte Carlo analysis is presented 
to investigate the performance of the algorithm as a number of data, parameter, and error 
factors are experimentally manipulated. Finally, a consumer psychology application is dis- 
cussed involving consumer expertise/experience with microcomputers. 
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1. In t roduc t ion  

This  pape r  deve lops  a m a x i m u m  likel ihood based  me thod  for s imu l t aneous ly  per-  

forming  mu l t i d imens iona l  scaling and  c lus ter  analys is  on  a g iven  set of  t w o- w a y  dom-  

inance /p re fe rence  or profile data.  This  p rocedure ,  which  we shall call M U L T I C L U S ,  

ut i l izes  mix tures  of mul t ivar ia te  condi t iona l  no rma l  d i s t r ibu t ions  to es t imate  a j o i n t  

space of  s t imulus  coord ina tes  and  K vectors ,  one  for each c lus ter  or  group,  in a T-di- 

m e n s i o n a l  space.  The  nex t  sec t ion  p resen t s  the technica l  s t ruc ture  of  the mode l  as well  

as the E-M algor i thm devised  for es t imat ing  the m o d e l ' s  pa ramete r s .  Sec t ion  three  

repor ts  the resul ts  of  a Mon te  Carlo  analys is  that  examines  the p e r f o r m a n c e  of  the 

m e t h o d  as a n u m b e r  of  data ,  pa ramete r ,  and er ror  factors  are expe r imen ta l l y  ma n i pu -  

lated.  F ina l ly ,  an  appl ica t ion  is p rov ided  in c o n s u m e r  psycho logy  ut i l iz ing the proce-  

dure .  
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2. The MULTICLUS Method 

The Model  

Let  the indices i , j ,  k, and t denote, respectively, a particular object (e.g., subject), 

stimulus, cluster, and dimension; 1 -< i <- I, 1 -<j -< J ,  1 <-- k -< K, and 1 -< t <-- T. Define: 

A~/: the observed profile/dominance value of  (column) stimulus j for (row) ob- 

ject  i; 

bit: the t-th coordinate value for stimulus j ;  

akt: the t-th coordinate for the vector terminus for cluster k; 

Zk: the J × J variance-covariance matrix for cluster k. 

We assume that the probability density function for the 1 × J random row vector Ai = 

(Ail . . . . .  A/j) is a finite mixture of  conditional distributions: 

K 

9(Ai; k, A, B, ~) = ~ A~f,.k(aila~, B, ~k), 
k = l  

(1) 

where k = ( A 1 ,  A 2 . . . . .  AK_I) are the K - 1 independent mixing proportions of  the 

finite mixture such that 

and 

0<--Ak --< 1, (2) 

K - 1  

A t = l -  ff'~ Ak. 
k = l  

(3) 

Here, ~ is a K x J x J array containing each ~k matrix, A = ((akt)), a k is the 1 x Trow 

vector of  coordinates for the k-th row of  A, and B = ((bjt)). The distribution of  each f/k 

is specified as a conditional multivariate normal: 

j~k(Ailak, B, ~k) = (27r)-J/21~kl-1/2 exp { -  1/2(Ai - akB')~- l (Ai  - akB')'}, (4) 

where akB' represents the scalar products or linear projection of  the stimulus points 

onto cluster k's vector. That is, we assume a random sample of  A i drawn from a 

mixture of conditional multivariate normal densities of K underlying groups or clusters 

in unknown proportions Al, A2 . . . . .  Ar (see McLachlan & Basford, 1988, concerning 

the use of such mixtures in previous approaches to pattern clustering, as well as Good- 

man, 1974, and Takane, 1976, for similarities with latent structure analysis and latent 

profile models). 
Given a sample of  independent objects, the likelihood has the form: 

L = 1-I ~ Ak(21r)-J/2[If, kl -l/z exp { - 1 / 2 ( A / -  akB')l~q(Ai - akB')'} , (5) 

i = l  k = l  

o r  

I 

l n L =  
i = l  

(6) 
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Given A, T, and K, the task is to estimate k, ~, A, and B so as to maximize expressions 

(5) or (6), given the conditions specified in (2) and (3). 

A number of relevant issues need to be discussed concerning this particular max- 
imum likelihood framework. One, unlike finite mixtures of other types of density func- 

tions, the parameters of finite mixtures of normal densities are identified (see Teicher, 

1961, 1963; Yakowitz, 1970; and Yakowitz & Spragins, 1968). Two, there exists no 

simple sufficient statistics for the parameters of such a normal mixture (Dynkin, 1961). 

Three, a potential problem of nonuniqueness in parameter values (e.g., ~k, ak, B) 

theoretically exists if h k = 0 for any k. Such a result might occur if an excessive number 

of clusters were extracted. In such cases, cluster k is eliminated from the solution and 

K reduced accordingly. Fourth, given the bilinear form of the scalar products akB', 

scale and rotational indeterminacies exist with respect to these parameter values. Var- 

ious rotational and normalization options are described later in the paper. Finally, note 

that once estimates of A, B, k, and ~ are obtained through a maximum likelihood 

procedure, each object i may be assigned to each cluster k using the estimated posterior 
probability (applying Bayes' rule): 

ftkfik(Ailak, B, ~k) 
Pik . . . . . . . . .  , ( 7 )  

K 

k = I  

providing a "fuzzy" clustering of each object i into K clusters. Partitions could be 
formed, if desired, by simply assigning object i to the cluster whose Pik was highest 
(note that hierarchical or overlapping clusters cannot be identified here). 

The Algorithm 

The maximum likelihood estimates of k, A, B, and Z, and P = ((Pik)) are found by 
initially forming an augmented Lagrangean to reflect the constraints on Ak: 

= ~ In ~ hkf/k(Aila k, B, ~k) -- u Ak -- 1 , (8) 
i = 1  k = l  t 

where u is the corresponding multiplier. The resulting maximum likelihood stationary 

equations are obtained by equating the first order partial derivatives of the augmented 
log likelihood function in (8) to zero: 

O~ K 

Ou 
k = l  

Ak - 1 = 0; (9) 

O ~  " 1 
= )~k( 

OAk ~ ~ Ak~k(" ")-- "=°;  
i = l  

k 

(lo) 

0@ I 1 

Oak Z Z Akfik(" ) 
i = 1  

k 

Akfik(" )(B'~klA~ - B'~klBa~:) = 0; (i1) 
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0B 

1 K 

A k ~ k ( "  ) X k - I ( A i  - -  a k B ' ) ' a  k = 0 ;  

~ ~kf, k(" ) ~= 1 
k 

(12) 

Ot ~ l Akf ik(  " ) 

O~,kl(r, S) -- i~ l  X Akf ik(  ' ) (1 - 6rs/2)[•k(r, S) -- (Air -- akBr)(Ais -- akB~)'] = 0 ;  

k 

of  if all covariance matrices are assumed equal, 

(13) 

O~ t 1 K 

-- ~I E Akfik("  )(1 - -  6rs]2) 
OE-l(r, s) i= X Akf ik("  ) k= 1 

k 

• [E(r, s) - (Air - -  akBr)(Ais - akB~)'] = 0, (14) 

where Ek-l(r, s) denotes the rs  element of  Xk -1 , ~,k(r, s)  denotes the rs  element of  Xk, 

and 6rs is the Kronecker delta. To estimate u, we  multiply both sides of (10) by A k and 

sum over k: 

xkf,'k(" ) 
I 

k 

i=l 
k 

o r  

/ ~ = I .  

To estimate Ak, we multiply both sides of  (10) by Ak and simplify: 

(15) 

1 ) tk f ik( .  ) 
~ ~k~k(') Aku = o, 

i = 1  
k 

(16) 

o r  

I 

E P i k - - A k l = 0 ,  
i = 1  

(17) 

and 

I 

E Pik 
i = 1  

) tk  - m  
I 

(18) 

To estimate a k, we expand (11) and substitute for Pik; 
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I 

i = l  

(19) 

o r  

By expanding and substituting in (13) and (14), analytical expressions for ~,k or ~ can 
be obtained using: 

1 t 

~ k  = ~ t E'=I P i k ( A i  -- ~ k B t ) t ( A i  -- a k B ' ) '  (21) 

o r  

1 1 K 

7 
l = l  k = l  

To estimate B, the following stationary equation is derived from (12): 

I K 

i = l k = l  

(22) 

(23) 

o r  

I K 1 K 

Z Z P,k ,;la; k = Z r',k: ;ItU C'k. 
i = l k = l  i = l k = l  

Taking the transpose of both sides and postmultiplying by I~ k, 

I K 1 K 

i = ' l  k = l  i = l  k = l  

and 

(24) 

(25) 

B ' =  ~-~ Pikh/,hk ~ Pik~[,Ai • (26) 
i = 1  k = l  1 tc=l  

(The unique inverse exists for K --> T with Ak # 0 for all k. Note, since K vectors can 
always be perfectly fitted in a K-dimensional space, solutions with T > K will not 
improve the log-likelihood over corresponding T = K solutions, and thus will be ig- 
nored.) In this formulation, the maximum likelihood equation for estimating Xk (or ~), 
ak, and B are weighted averages of the maximum likelihood equations 0 logfik(')/OM = 

0, where M denotes the parameter of interest, arising from each component separately, 
and the weights are the posterior probabilities of membership of the objects in each 
cluster. This specific structure lends itself to the application of a two-stage E-M algo- 
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rithm (Dempster, Laird, & Rubin, 1977) for the iterative estimation of these parame- 

ters. In the E stage, one estimates h k and Pik by (7) and (18). In the M stage, one 

estimates ak by (20), ~k(]£) by (21)((22)), and B' by (26). For specified initial values of 

these parameters, the expectation (E phase) and maximization (M phase) steps of this 

algorithm are alternated until convergence of a sequence of log-likelihood values is 

obtained. (See Sclove, I977; and Titterington, Smith, and Makov, 1985, for similar 

applications of the E-M procedure for estimating the parameters of finite mixture dis- 

tributions.) 

Tests for T and K 

The MULTICLUS method must be performed for various values of the dimen- 

sionality of the underlying space (T) as well as for varying numbers of underlying 

clusters (K). Assuming a concern to examine analyses for T --< K = 1 . . . . .  4, some I0 

analyses must be undertaken. To identify the "bes t"  values for T and K, one obvious 

way is to use the likelihood-ratio test statistic to test for the smallest values of T and K 

compatible with the data. However, according to McLachlan and Basford (1988), reg- 

ularity conditions do not hold for the differences in - 2  In L for nested models to have 

their usual asymptotic null distribution of chi-squared with degrees of freedom equal to 

the difference in the number of model parameters. Here, there is the lack of an obvious 

natural saturated model for use in such a statistical test. Recently, Sclove (1983) and 

Bozdogan and Sclove (1984) have proposed using Akaike's (1974) information criterion 

(AIC) for the choice of the number of groups in mixture clustering models. Accord- 

ingly, in MULTICLUS,  one would select K and T that minimizes: 

AIC(K, T) = - 2  In L + 2N(K, T), (27) 

where N(K, T) is the number of free parameters for the full MULTICLUS model: 

Although we shall adopt this AIC heuristic to select appropriate values of K and T, 

as pointed out by Titterington, Smith, and Makov (1985), Bozdogan (1983), and Sclove 
(1987), this AIC criterion here relies essentially on the same regularity conditions 

needed for differences in - 2  In L to have its usual asymptotic distribution under the null 

hypothesis. In addition, Bozdogan (1987) found that use of the AIC tended to result in 

overfitting the true dimensionality of certain models. As such, we regard such measures 

as "heuristic figures-of-merit." (McLachlan, 1987, has more recently proposed a boot- 
strapping procedure for selecting the number of components in a mixture that indeed 

looks promising for potential application here.) We also recommend the inspection of 

other goodness of fit measures. For example, one should also examine a variance- 

accounted-for (VAF) measure between A i and ~'i Ekk=l ^ ^' = Pik~ik B , across all i, for 

values of T and K, as is done in traditional metric multidimensional scaling and some 

forms of non-hierarchical cluster analysis. 

Program Options 

A number of options have been programmed in MULTICLUS.  There are a number 

of  preprocessing options (e.g., row/column centering, normalization, standardization, 

etc.) for ~ prior to estimation. However, such preprocessing can have direct impact on 

the ability to estimate model parameters. For example, row centering or standardiza- 
tion for I > J reduces the column rank of A by one and we cannot estimate a nonsingular 
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TABLE 1 

Independent Factors for Monte Carlo Analysis 

,, , , , , ,  ....... , 

Factor Levels 

127 

X 1 : 

x2: 

x3: 

x4: 

xs: 

Number of Rows in A 40 
(I) 60 

Number of Colunms in A 14 

(J) 22 

Number of Clusters 4 
(K) 6 

Number of Dinmnsiom 2 
(T) 4 

Error in A N(0, . l a  2) 
- N(O, .2a z) 

0 ,2 = variance of  A 

X or Xk. There are also implications for (20) where generalized inverses must be 
employed for certain preprocessing options. The user can provide his/her own starting 

values, have them generated randomly, or use a singular value decomposition (SVD) to 

generate B (the default option). Options also exist for external or internal analyses 

where A and/or B can be given and held fixed throughout the analysis. For estimating 

the covariance matrices, one can hold Xk fixed, estimate one common covariance 

matrix X for all groups, constrain Xk to be the identity matrix, or estimate Xk freely. 

Options also exist for estimating diagonal X or Xk. Finally, given the well known scale 

and rotational indeterminacies of such bilinear vector models, a number of orthogonal 

rotations (e.g., simple structure rotations with respect to B) and normalization options 
are available. 

3. MULTICLUS Monte Carlo Analysis 

To examine the performance of the MULTICLUS methodology, a Monte Carlo 

analysis was performed. The objective was to investigate the performance of the MUL- 

TICLUS algorithm as a number of data, parameter, and error factors were experimen- 
tally manipulated. Table 1 presents a list of the five independent factors utilized in this 

Monte Carlo analysis. In addition to factors manipulating the size of the input data A 

(e.g., I and J),  factors influencing the number of parameters to estimate (T and K, 
where K - T), and error levels were also specified. Table 1 also provides labels 

X1 . . . . .  X5 for these five independent factors. Some eleven dependent variables were 
collected to measure performance in terms of overall solution quality, parameter re- 
covery, and computational effort: the number of major iterations required for conver- 

gence (NI), an overall variance-accounted-for statistic (VAF), an adjusted VAF statis- 
tic (ADJ) (adjusted for degrees of freedom), a root-mean-square between P and 
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(RMS(P)) after appropriate column permutation, an overall correlation coefficient be- 

tween P and P (COR(P)) after appropriate column permutation, a root-mean-square 

between 2t and ~ (RMS(k)) after appropriate permutation, a correlation coefficient 

computed between ~ and ~(COR(k)) after appropriate permutation, a sums-of-squares- 

accounted-for statistic between B and 1~ after Procrustean transformation to 

13(SSAF(B)) (and corresponding adjustment made to A), a variance-accounted-for sta- 

tistic between B and i~(VAF(B)) after Procrustean transformation to l~ (and correspond- 

ing adjustments made to A), a sum-of-squares-accounted-for statistic between A and 

~i,(SSAF(A)), and a variance-accounted-for statistic between A and .~ (VAF(A)). Thus, 
measures were used to measure computational effort (NI), overall data recovery (VAF, 

ADJ), P recovery (RMS(P), COR(P)), k recovery (RMS(k), COR(~,)), B recovery 

(SSAF(B), VAF(B)), and A recovery (SSAF(A), VAF(A)). 

A full factorial design was utilized with two replications per cell. An analysis of 

variance was performed for each of the I 1 dependent measures. Note, four covariates 

were also identified and utilized in the analysis relating to estimates of the separation of 

the randomly generated cluster vectors (ak): the minimum angle between vectors 

(MIN(A)), the maximum angle between vectors (MAX(A)), the median angle between 

vectors (MED(A)), and the standard deviation of the angles between the vectors 

(SD(A)). These four variables were used as covariates in each analysis to control for the 

distribution of the randomly generated ak vectors since, for example, if the K vectors 

in A were generated very close to each other, MULTICLUS performance could pos- 

sibly suffer. Future Monte Carlo work on this may consider making such covariates 

actual factors in the design. Prior to discussing the results, two issues are noted. First, 

arcsine (of square roots) transformations were performed and ANOVA analyses done 

on those dependent measures ranging between 0-1 with somewhat similar results, and 

are thus not reported for sake of brevity. Finally, for discussing interaction effects, 

corresponding tables of means were calculated to examine crossover interactions, but 

are also not displayed. A verbal summary of the results follows. 
For computational effort, the size of A (I in particular) significantly affects the 

number of iterations required for convergence (i.e., larger I significantly increases NI). 

Concerning overall data recovery, both VAF and adjusted VAF measures are signifi- 

cantly affected by the error factor (Xs), where the higher error level leads to poorer 

recovery in each case. Recovery of both P and k appears to be reasonably robust to 

these five independent factors, with only one interaction (X1X3Xs) affecting one of 
these four dependent measures--RMS(k). Here, the mean RMS(k) is slightly higher 

across all levels of X1 and X3 for the lower error condition, except for the (X1 = 1, 

X3 = 0) case where the RMS(k) mean for the higher error level is nearly three times that 

for the lower error level. The recovery of the stimulus points (B) is only significantly 

affected by the XzX3X4 interaction in both dependent measures here. Upon inspection 
of the tables of means, it appears that in both B recovery measures, recovery is nearly 
twice as high in the low T level versus high T level for the (X2 = X3 = 0) and (X2 = 
X 3 = 1) cells, although they are about the same magnitude in the remaining Xz and X 3 
cells. Finally, with respect to A recovery, one sees the first evidence of  a significant 
covariate, MIN(A), which indicates that recovery of A is in general better as the 

minimum angle among all the ak vectors gets larger (i.e., they are spread further apart). 

The SSAF(A) dependent measure is significantly affected only by an X3X4X5 interac- 

tion where only for the X3 = X4 = 1 cell does the higher error condition produce a 
slightly higher mean SSAF(A). An Xl XzX5 interaction is the only significant effect on 

VAF(A) where only for the (X1 = 1, X2 = 0) cell does the higher error level condition 

produce a slightly higher mean VAF(A). 
In summary, the Monte Carlo analysis has provided some preliminary evidence 
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concerning the somewhat robust performance of the MULTICLUS methodology over 
data, parameter, and error related independent factors. All else considered, larger data 

sets with more parameters to estimate involve higher computational effort. Higher 

levels of error added to ~ will significantly detract from overall data recovery, although 

no main effects for error were observed with any of the parameter recovery measures. 

A few scattered significant higher order interaction terms occurred in the A and B 

recovery measures. Certainly such results must be deemed as preliminary given the 

modest scope of this endeavor. Future work in this area should involve additional 

complexities such as incorporating additional factors (e.g., type of start, internal versus 

external analysis, separation of ak), specifying more levels per factor (especially con- 

cerning the error factor), having more replications per cell, and so forth. 

4. MULTICLUS Application 

Study Background 

Currently, one of the most active areas of research in consumer psychology con- 

cerns the influence of prior knowledge on differential evaluations of product charac- 

teristics. Alba and Hutchinson (1987), in a recent review, propose that a consumer's 

ability to differentiate relevant from irrelevant information about a product improves as 

prior knowledge about the product increases. This is often reflected in less knowledge- 

able consumers utilizing peripheral product information in formulating evaluative judg- 

ments, although those who are more knowledgeable focus on functional product char- 

acteristics (also, see Park & Lessig, 1981). Consumers with different knowledge bases 
may also utilize essentially the same product information when forming evaluations, 

but weigh that information differently with respect to its relative importance in any 

given task. Because they lack the ability to comprehend the nature and importance of  
the information with which they are confronted, less knowledgeable consumers often 

give disproportionately higher weight to product characteristics that are easily under- 

stood and/or frequently emphasized in promotional campaigns (also, see Bettman & 
Park, 1980; Sujan, 1985). 

Our study will examine how different levels of consumer knowledge systematically 

affect the types of information that consumers judge to be important in evaluating 

microcomputers. Consistent with the above noted literature, we hypothesized that 

persons with high levels of prior knowledge with microcomputers would weigh func- 

tional attributes as more important, whereas those with low levels of prior knowledge 
would weigh attributes that are simple, more superficial, and easier to understand as 

more important in a purchase decision. In this study, we operationalized prior knowl- 

edge as a function of product usage experience and self-perceived familiarity/expertise. 
Measures of prior knowledge that reflect respondents' perceptions of their famil- 

iarity and/or expertise in a domain have been frequently used in previous studies (see 
Alba & Marmorstein, 1987; Alba, 1983; Bettman & Sujan, 1987; Brucks, 1985; Hutchin- 
son & Brady, 1982). Product usage experience has also been frequently used as an 
indicator of prior knowledge, most typically operationalized as extent of prior product 

usage and product ownership (see Bettman & Park, 1980; Jacoby, Chestnumt, & 
Fisher, 1978; Newman & Staelin, 1972; Park & Lessig, 1981). In our study, product 

ownership will be used as an indicator of prior knowledge. Alba and Hutchinson (1987) 
note that the experience of making a purchase decision for products that are relatively 
high in cost (e.g., microcomputers) is likely to be an effective means of bringing some- 
one to differentiate between relevant and irrelevant product attributes. Extent of prod- 

uct usage will also be used as an indicator of prior knowledge and defined in terms of 
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variability in usage experience. Alba and Hutchinson further note that experts are more 

likely than novices to search for and acquire new information in a domain. Thus, it 

seems reasonable to infer that higher levels of product knowledge will be associated 

with a more elaborate array of product usage experiences. 

In summary, it was expected that an individual's level of prior knowledge con- 

cerning microcomputers will influence his/her evaluation of the attributes of a micro- 
computer. Specifically, those with higher levels of prior knowledge (as defined by 

ownership, variability in usage experience, and self-perceived familiarity/expertise) will 

weigh functional attributes (as discussed below) as more important in purchasing a 

microcomputer, and those with lower levels of prior knowledge will weigh attributes 

that are easy to understand, or allow simple quality inferences to be made, as more 

important in purchasing a microcomputer. 

Study Description 

Sixty-nine graduate and undergraduate students enrolled in the business school of  

a large Southwestern university were administered a survey instrument to measure 

their evaluations of the importance of various attributes/features of microcomputers. 

Based on the prior responses of a team of microcomputer experts (owners and heavy 

users) and novices (nonowners and nonusers), a list of 15 microcomputer product 

attributes were utilized summarizing the most important aspects of a microcomputer. 

This pretest group was also asked for judgments on whether the attributes were easy to 

understand and utilize as simple inferential cues concerning product quality, or whether 

they were characteristics one would come to appreciate/understand through extensive 

usage and the experiences associated with purchase/leasing decision making. Seven 

attributes were judged to be best described by the first classification and were expected 

to be weighted higher in importance by persons with low prior knowledge: (a) ease of 
use; (b) total package purchase/lease price; (c) length of warranty; (d) compatibility 

with IBM products/software; (e) the particular brand name or manufacturer; (f) phys- 

ical styling of the computer; and (g) portability. Hereafter, these seven attributes will be 

referred to as "heuristic" product attributes. Eight additional attributes were judged to 
be best described by the alternative criterion noted above: (a) the type (PC, XT, AT) of 
computer; (b) the amount of internal RAM; (c) whether there is a hard disk; (d) size of 

the hard disk; (e) type of monitor/screen (e.g., monochrome, color, EGA); (f) number 

of floppy disk drives; (g) processing speed; and (h) software availability. Hereafter, 
these eight attributes will be referred to as "focal"  product attributes. All I5 attributes 

were presented to the respondents in this study who were asked "regardless of whether 
you currently own/lease a microcomputer, indicate the relative importance of the below 

listed features to you ~n your purchasing a microcomputer." All items were scored on 

seven point scales (not at all important--very important). 

MULTICLUS Analysis 

Table 2 presents the statistical summary of the results of MULTICLUS analyses 
on the row standardized data (with the ~Ek = I restriction since Zk ¢ I is not compatible 

with this preprocessing selection as previously discussed) for T ----- K = 1 . . . . .  4. As 
can be seen, the minimum AIC statistic occurs for T = K = 2 (VAF = 0.426), whose 

solution we will present below. The lower portion of Table 2 also provides some 
justification for this solution based on the variance-accounted-for measure, where a 

noticeable jump is seen in going from T = 1 to T = 2 and from K = 1 to K = 2, As noted 

earlier, the likeiihood and VAF goodness of fit indicies do not improve for solutions 
with T > K; both the log likelihood and VAF goodness-of-fit measures for solutions 
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TABLE 2 

MULTICLUS Statistical Results for the Microcomputer Evaluations Data 

, ,  ,,,, , , , , ,  t t t  

Number of 
T Iterations In L N(K,T) 
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AIC 

1 

2 

2 

3 

3 

3 

4 

4 

4 

4 

1 2 -1341.3 15 

1 8 -1341.3 17 

2 7 -1300.5 31 

1 9 -1341.3 19 

2 16 -1300.5 34 

3 53 -1293.2 47 

1 10 -1341.3 21 

2 15 -1300.5 37 

3 42 -1292.6 51 

4 33 -1287.7 63 

2712.6 

2716.6 

2662.9* 

2720.6 

2668.9 

2680.3 

2724.6 

2674.9 

2687.2 

2701.5 

VAF 

K = I  K = 2  K = 3  K = 4  

T = 1 0.246 0.246 0.246 0.246 

T = 2 0.426 0.426 0.426 

T = 3 0.474 0.490 

T = 4  0.511 

*minimum AIC 

with T > K were identical to corresponding solutions with T = K and thus are not 

reported. Figure 1 presents the MULTICLUS results for this solution (A1 = 0.52, A2 = 

0.48) where the I5 attributes/features are designated by the letters A-O and the two 

cluster vectors by " 1 "  and "2" .  The first dimension appears to separate attributes that 

relate specifically to user operating convenience, where software availability (E), IBM 

compatability (N), and ease of use (A) lie on the extreme left end of the dimension, from 

those attributes which can be easily inferred through visual observation where brand 

name (B), styling (O), and portability (J) lie on the extreme right side. The second 

dimension clearly distinguishes the "focal" attributes such as hard disk (F), its size (G), 

and internal RAM (D) from the "heuristic" attributes such as price (K), warranty 

length (I), ease of use (A), and portability (J). Of interest is the positioning of the two 
vectors for the two groups or clusters, In particular, the focal characteristics such as 

hard disk and size, internal RAM, software availability and processing speed project 

higher on the vector for cluster one, while ease of use, package price and warranty 
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Dim. H 
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Dim. I 

A : e a s e o f u s e  
B : brand name/manufactu~r  
C : type of  computer 
D : amount of  internal RAM 
E : software availability 
F : whether there is a hard disk 
G : size of  hard disk 
H : type o f  monitor 

I : length o f  warranty 
J : portability 

K : total package purchase/lease price 
L : number  of floppy drives 

M : processing speed 
N : compatibility with IBM products/system 
O : styling 

FIGURE 1 
M U L T I C L U S  configuration of  attributes and cluster vectors for the microcomputer  data. 
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TABLE 3 

Mean Attribute Scores by Group Membership 

Group 1 Group 2 
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F 

Ease of use 
Total package purehase/lease price 
Length of warranty 
Compatibility with IBM products/software 
Physical styling of the computer 
Portability 
Particular brand name or manufaeun~r 

Type of computer 
Amount of internal RAM 
Whether there is a hard disk 
Size of  the hard disk 
Type of monitor screen 
Number of floppy disk drives 
Software availability 
Processing speed 

6.08 6.64 7.50 
5.34 6.02 4.29 
4.60 5.70 11.45 
5.15 6.08 5.44 
4.14 4.44 0.86 
3.54 4.97 13.72 
4.48 4.11 1.08 

5.37 4.38 7.73 
5.80 4.12 30.52 
6.28 3.73 58.83 
5.74 3.50 50.46 
5.11 4.76 1.18 
4.51 4.50 0.00 
6.54 5.85 8.21 
5.57 5.17 0.13 

length (heuristic characteristics) project higher on cluster two's vector. Thus, cluster 

one evaluates the more functional and technical (focal) features of microcomputers as 

most important, while cluster two appears to weigh the financial and ease of use (heu- 
ristic) aspects more heavily. Note, we ran the designated T = K = 2 solution in 
MULTICLUS some 100 times with different starts (using the SVD default option for B) 

to examine the potential problems associated with obtaining locally optimum solutions. 

The solution reported above was recovered (up to rotation) in 99 of the 100 computer 
runs (this dropped to 89 out of 100 for pure random starts on all parameters). Twenty 

five such runs were also performed for the other 9 solutions with similar results. Thus, 

there is little variation in the quality of the solution recovered. The next subsection will 

attempt to investigate the basis for the cluster assignment in terms of prior knowledge 
and experience. 

Explaining the Group Structure 

Prior knowledge of microcomputers was operationalized through two indicators of 
product usage experience (microcomputer ownership and variability of usage) and a 

scale measuring self-perceived familiarity/expertise with microcomputers. Microcom- 

puter ownership was measured with an item that asked respondents if they currently 
owned a microcomputer. Twenty-three persons stated " y e s "  and forty-one persons 

stated "no . "  Five persons indicated they currently leased a microcomputer and were 
placed in the ownership category. Variability in usage was measured with an item that 
asked respondents to indicate the typical uses they make of a microcomputer: word 

processing, communication with mainframe computer, spreadsheet/accounting calcu- 
lations, games/hobbies, statistical packages, computer programming, accessing data- 
bases, graphics, other external communications (e.g., electronic mail). A score of 1 was 
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TABLE 4 

Two Group Discriminant Analysis and Indicators of Prior Knowledge 

Function 
Coefficient 

Wilk's 
Lambda 

Product ownership 
Self-reported familiarity/expertise 
Usage variability 

0.38 0.66** 
0.61 0.55** 
0.45 0.51"* 

*p < .05 
**p < .01 

given for each usage indicated and then summed to yield a variability in product usage 

score. Scores ranged from 0 to 9. 

Self-perceived familiarity/expertise was measured through eight items scaled 
strongly agree to strongly disagree using a five point scale: 

1. When it comes to purchasing a microcomputer, I consider myself knowledge- 

able about the microcomputer market. 

2. When it comes to using a microcomputer, I consider myself knowledgeable 

about microcomputers. 

3. I often have anxiety about having to use a computer. 
4. Compared to other students, I probably spend more time than most using a 

microcomputer. 
5. Many fellow students often seek my advice about microcomputers. 
6. I would rather use a microcomputer with fewer options and more simplicity 

than one with more options and more complexity. 

7. I often read the latest computer magazines. 
8. If I can, I prefer to do my work and/or school related assignments on a micro- 

computer. 

As seen, the above items range from requests for respondents' direct impressions of 
their familiarity/expertise (e.g., Item 2) to those that indirectly indicate familiarity/ 

expertise (e.g., Item 3). Cronbach's alpha reliability coefficient for the eight item scale 
was 0.90. Therefore, the eight items were summed to yield a score on self-perceived 
familiarity/expertise, which was used as the final indicator of prior knowledge. In 

summary, three independent variables were employed as indicators of prior knowledge 
(microcomputer ownership, usage variability, and a scale measuring self-perceived 
familiarity/expertise with microcomputers), and were used to explain group structure. 

The criterion variable was dichotomously defined. If the probability (P/l) of Group 1 
membership for any subject was greater than 0.50, the subject was assigned to cluster 

one. If the probability of Group I membership for any subject was less than or equal to 
0.50, the subject was assigned to Cluster 2. Table 3 provides the group means for the 

importance of each product attribute and a (pseudo) F-test (given the clusters were 
initially found on the basis of this data) of the mean difference. Notice how the means 

for the focal attributes are uniformly higher for Group 1 than for Group 2, while the 

opposite is true for the heuristic attributes. 
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A discriminant analysis was performed attempting to predict the dichotomous 

group membership as a function of the three indicators of prior product knowledge. The 

discriminant function was highly significant (X 2 = 43.61; p < 0.001) with each predictor 

significantly explaining variation in group membership (see Table 4). For each predic- 

tor, high product knowledge was found to be predictive of membership in the group 

(Group 1) that tended to judge the focal attributes as more important when purchasing 

a microcomputer. Use of the three indicators of prior knowledge resulted in 85.51% 

(N = 59) of the cases being correctly classified. 

Thus, what we know, or think we know, about a product influences the importance 

that we attribute to different characteristics of that product. Consumer psychologists 

have traditionally considered prior product knowledge as a unidimensional construct 

(Brucks, 1985; Alba & Hutchinson, 1987). This study suggests that different operation- 

alizations of prior knowledge can uniquely contribute to variations in product attribute 

evaluations. Thus, a multidimensional conceptualization of the prior product knowl- 

edge concept may be more appropriate as shown via MULTICLUS. 
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