
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006 339

Multicluster Tools Scheduling: An Integrated Event
Graph and Network Model Approach

Shengwei Ding, Jingang Yi, Member, IEEE, and Mike Tao Zhang, Senior Member, IEEE

Abstract—Steady-state throughput and scheduling of a multi-
cluster tool become complex as the number of modules and clusters
grows. We propose a new methodology integrating event graph
and network models to study the scheduling and throughput of
multicluster tools. A symbolic decision-move-done graph modeling
is developed to simplify discrete-event dynamics for the multi-
cluster tool. This event graph is further used for searching feasible
action sequences of the cluster tool. By representing sequences
with networks, an extended critical path method is applied to
calculate the corresponding cycle time. Grouping methods that
are based on network are also introduced to reduce the searching
complexity. Compared with optimization-based scheduling ap-
proaches, the proposed methodology can directly capture the
cyclic characteristic of cluster tool schedules and be applied to
analyze the impact of process and wafer flow variations on cycle
time and robot schedules. We have successfully applied this new
methodoloy to dozens of cluster tools at Intel Corporation. A
chemical–mechanical planarization polisher is employed as an
example to illustrate and validate the proposed methodology.

Index Terms—Cluster tool, event graph, network, scheduling,
semiconductor manufacturing.

I. INTRODUCTION

MODELING and scheduling are critical to improving
the production throughput and enhancing the design of

cluster tools in semiconductor manufacturing. A cluster tool
consists of three types of modules: process modules (PM),
transfer modules (TM), and cassette modules (CM) [Fig. 1(a)].
Process modules execute the semiconductor manufacturing pro-
cesses, cassette modules store wafers for load and unload, and
transfer modules (such as single-blade or double-blade robots)
move the wafers among process modules as well as between
process and cassette modules. In general, a single-cluster tool
consists of one transfer module and a few cassette and process
modules [Fig. 1(a)], and a multicluster tool consists of several
single-clusters that are interconnected via buffer modules.

Scheduling of a single-cluster tool depends greatly on the
cluster tool configurations and wafer flows. For example, if there
are two wafers to be picked and placed by a single-blade transfer
robot, the moving sequence can only be sequential pick/place
pairs. In contrast, a double-blade robot can use the second blade

Manuscript received May 17, 2005; revised April 17, 2006.
S. Ding is with the Department of Industrial Engineering and Opera-

tions Research, University of California, Berkeley, CA 94720 USA (e-mail:
dingsw@cal.berkeley.edu).

J. Yi is with the Department of Mechanical Engineering, Texas A&M Uni-
versity, College Station, TX 77843 USA (e-mail: jgyi@tamu.edu).

M. T. Zhang is with AzFSM Industrial Engineering, Intel Corporation, Chan-
dler, AZ 85248 USA (e-mail: mike.zhang@intel.com).

Digital Object Identifier 10.1109/TSM.2006.879414

(or arm) as a buffer; therefore, various pick/place sequences
exist. Consequently, the analysis of double-blade robot sched-
ules could become complicated even for a single wafer flow [1],
[2]. For multicluster tools, steady-state throughput depends on
the multiple robot coordinations, and robot scheduling is much
more complicated.

When cluster tools run at the steady state, robots and process
modules repeat their movements periodically. One-unit cycle
production is widely considered. One-unit cycle means that
within one cyclic period, each robot and process action has
taken place exactly once, and only one wafer has been finished
processing during this time period [1]. For cluster tools, we call
the minimal one-unit cyclic period a fundamental period, de-
noted as . It is easily observed that achieving a fundamental
period of a cluster tool is equivalent to maximizing the tool
throughput. The robot and process schedules that achieve the
fundamental period are called optimal schedules. For a cluster
tool, there could exist multiple optimal schedules that lead to
the same fundamental period [3].

In [4] and [5], analytical models at steady state throughput
are discussed for a single-cluster tool equipped with single-
blade and double-blade robots, respectively. For a single-cluster
tool with a single-blade robot, an optimal schedule in [4] is a
“pull” strategy. For a double-blade robot, Venkatesh et al. [5]
propose the optimal schedule by a “swap” action. In [1] and
[2], some general results of throughput and scheduling analysis
for single-grip robotic cells are discussed. It has been proven
that for the single-blade cluster tool the “pull” strategy is one
optimal schedule. The results presented in [3] for double-grip
robotic cells show that the “swap” schedule is one of the op-
timal strategies. Moreover, it has been shown that finding all
optimal schedules for a single-cluster tool with a double-blade
robot is NP-hard [3]. Perkinson et al. [6] present the impact of
parallel (redundant) process modules and revisiting wafer flows
on steady-state throughput.

To model the cluster tool process flows, Srinivasan [7] and
Zuberek [8] use Petri nets to study the performance of the cluster
tool processes. Rostami et al. [9] and Rostami and Hamidzadeh
[10] have used linear programming and heuristic methods to
study the optimal schedules for a single-cluster tool with res-
idency constraints on transfer and process modules. Simula-
tion of cluster tools also plays an important role in studying the
throughput and in optimizing the process and design. LeBaron
and Hendrickson [11] and LeBaron and Pool [12] discuss the
use of AutoSched AP (ASAP) to simulate the cluster perfor-
mance by emulating the real-time cluster tool scheduler. In [13],
genetic algorithms are utilized to improve cluster tool perfor-
mance based on the simulation study. Recently, event graph

0894-6507/$20.00 © 2006 IEEE

340 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

Fig. 1. Layout schematic of cluster tools: (a) a single-cluster tool and (b) an interconnected multicluster tool.

modeling of cluster tools has been studied to accurately cal-
culate the throughput and to identify bottlenecks for various
configurations [14]–[16]. Herrmann et al. [17] modeled some
simple cluster tools into a network and applied the critical path
method (CPM) to study the impact of processing time varia-
tions on steady-state throughput and robot scheduling for single-
cluster tools.

Most of the previously mentioned works discuss the single-
cluster tool. The geometry of the single-cluster tool is compact,
and analysis and scheduling for such a tool is relatively straight-
forward. For a multicluster tool, it is challenging to analyze
the throughput and robot schedules due to the fact that mul-
tiple robots could run independently and coordinately. Using
a decomposition method approach, Yi et al. [18] first formally
discuss the throughput analysis and robot scheduling of a gen-
eral multicluster tool. In [19], a similar decomposition idea is
also discussed for one cluster tool with three transfer robots and
parallel process modules. Simulation study has been applied to
verify that a “pull” strategy for a single-blade robot could result
in the maximum tool throughput most of the time.

In this paper, we propose an integrated event graph and
network model to optimize the robot scheduling of multicluster
tools. Scheduling a cluster tool is proposed as a two-step
process: in the first step, a set of feasible sequences of robot
movements and process module actions are determined. In the
second step, the relative action timings of feasible sequences
found in the first step are calculated. Finally, the optimal
schedule(s) can be determined by comparison among all fea-
sible sequences that give the shortest cycle time. We utilize
the event graph [20], a discrete-event modeling method, as a
vehicle to facilitate the first step. In the second step, feasible
action sequences are modeled as a network and the critical path
method (CPM) [21] is then applied to calculate the shortest
time span. The minimim cycle time and the corresponding
optimal schedules can thus be found by comparing the cycle
time for all networks. Compared with the methods in [17], the
proposed approach considers a more complex multicluster tool
and can handle more general cluster tool configurations.

The remainder of the paper is organized as follows. In
Section II, the event graph modeling of cluster tools is dis-
cussed. Section III presents the sequence search using event
graph modeling. Section IV discusses the construction of
networks from action sequences and the CPM to calculate the
fundamental period (cycle time). Sensitivity analysis using net-
work and computational reduction schemes using the grouping
method are also discussed in this section. An example of the
modeling and scheduling analysis of a CMP polisher is illus-
trated in Section V. The concluding remarks are presented in
Section VI.

II. MULTICLUSTER TOOLS AND EVENT GRAPH MODELING

A. Multicluster Tools

A multicluster tool is defined as a combination of several
single-robot clusters that are interconnected through buffer
modules. In general, an interconnected -cluster tool as
shown in Fig. 2 is considered. The th cluster is denoted as

and the buffer module between and is denoted
as . We assume that each cluster connects to at least one
other cluster and that the interconnections among clusters do
not form a loop. Moreover, we only consider the case that all
wafers follow the same identical visit flow and that the wafer
flow visits each process module only once, e.g., no re-entrant
visit or parallel processing modules. It is also assumed that:
1) the cassette modules always have wafers/spaces for transfer
modules (robots) to pick/place at any time; 2) all robots take
deterministic times to pick and place wafers; and 3) all pro-
cessing times are deterministic. We also assume that no failure
is considered for any components in the cluster tool.

B. Event Graph Modeling

Due to the characteristics of the cluster tool operations, it is
natural to use a discrete-event dynamic model to study such a
system. In this paper, we use event graph modeling to capture
the dynamics of cluster tools. In the following, an example of a

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 341

Fig. 2. Layout schematic of interconnectedM -cluster tools.

Fig. 3. Event graph-based modeling: (a) event graph for the example cluster tool shown in Fig. 1(a) and (b) decision-move-done event graph model.

single-cluster tool is used to illustrate how to construct an event
graph model.

We consider the example of a single-cluster tool with two
process modules, and , and a single-blade transfer robot ,
as shown in Fig. 1(a) (, denote the cassette modules,
and , denote the process modules in a single
cluster tool). Wafer flow is denoted as ,
where the arrow stands for wafer transfer by robot . Fig. 3(a)
shows the event graph built for such a single-cluster tool, in
which each solid circle represents one event where the state of
the tool is changed. An action can be represented by two ver-
tices, one for action start (e.g., “ proc.”) and another for action
finish (e.g., “ done”). A connecting arrow represents transi-
tion from one state to another with a specific time. For example,
the connection from event “ ” to event “ proc.” rep-
resents that the robot spends time to take one wafer
from and places it into . A “ ” sign on a connection arrow
represents the required condition (CND CND as listed in
Table I) to proceed to the action.

As the number of modules or clusters increases, the layout of
such an event graph becomes very large. Such complexity can
be avoided by introducing a symbolic representation of the event
graph as shown in Fig. 3(b). With this symbolic approach, all
time-consuming actions are categorized into three vertices: de-
cision, move (or action), and done. An action index, denoted as
ACT , is further defined for all such actions as shown in Table II.
A state variable vector is also needed to track
each transfer and process module operation status at time . For

TABLE I
CAUSALITY CONDITIONS FOR THE EXAMPLE TOOL

example, for the single-cluster tool in Fig. 1(a), indicates
the status of robot , and and indicate the status
of process modules and at time , respectively. Tables III
and IV show the assigned values of state variables to completely
capture the status of , , and , respectively. In the deci-
sion-move-done model, action ACT is triggered by the deci-
sion vertex if the corresponding condition is satisfied. The move
vertex executes the action by changing the state variables and
setting the action status. After the time specified by , the
done vertex marks the action as finished and updates the state
variables.

With state variable and action index variable ACT, the fol-
lowing steps can be employed to automatically simplify the
event graph model in Fig. 3(a) into a decision-move-done cycle

342 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

TABLE II
ACTION LABELS FOR THE EXAMPLE TOOL

TABLE III
STATE VARIABLE S FOR ROBOT ACTION IN THE EXAMPLE TOOL

TABLE IV
STATE VARIABLE S FOR PROCESS MODULE ACTION IN THE EXAMPLE TOOL

in Fig. 3(b). Such a construction process is described in Algo-
rithm 1. In Algorithm 1, decision logic mapping determines
the state values at which the action ACT can execute (as shown
in Table V, “ ” stands for any arbitrary values). The decision
logic can be represented by the node “decision” in event graph.
State updating variable ACT is defined as the state change
due to ACT (as shown in Table V). The mapping determines
the state status change after ACT finishes (as shown in Table V,
“ ” stands for no change in update.)

The advantages of the decision-move-done event graph model
are twofold. First, all actions are abstracted and represented by
the same motion cycle: decision, move, and done. Thus, the
amount of vertices in the model is significantly reduced to three
and the transition conditions for all actions can be mathemati-
cally modeled into mappings , , and state changes . This
could unify and generalize such an event graph model for all
actions of a cluster tool. Second, we can model the dynamical
systems as a simple graph and the use of the graphic algorithms
could provide advantages for searching and scheduling analysis.

III. SEARCHING FOR FEASIBLE ACTION SEQUENCES

We solve the scheduling problem of an -cluster tool in two
steps. The first step is to determine the sequence of actions, and
the second step is to find the relative starting times of these ac-
tions. In this section, we discuss the first step of searching fea-
sible action sequences.

A. Searching Feasible Action Sequences

Using the decision-move-done event graph model discussed
in the previous section, we can construct a graphic representa-
tion of the dynamical systems and search algorithms can be built
on the event graph models as described in Algorithm 2. Since
searching for action orders is of interest, zero execution time for
all actions can be assumed.1 The conditions and restrictions to
build an initial state will be discussed in Section III-B.

If all possible sequences are visited, it is an NP-hard problem
with computation complexity , where is the total
number of actions. However, if there is an infeasible action in a
sequence, the corresponding sequence will fail. Therefore, the
algorithm does not step into the rest of the actions in this se-
quence. As a result, the total amount of searches is significantly
reduced. Moreover, the nature of a multicluster system enables
the actions to be divided into groups and grouping methods
can be applied to reduce the searching process complexity. The
grouping methods will be further discussed in Section IV-C.

B. Initial State Value

The searching results of Algorithm 2 depend on the choices
of initial state value . Different initial state values may lead
to different feasible action sequences. If an optimal schedule is
expected to be found, initial state value should be one of
the snapshots of such an optimal schedule. Therefore, we have
to choose the initial state value such that optimal schedules
can be found by Algorithm 2. In this section, we discuss how
to choose the initial state value such that Algorithm 2 will
always succeed in finding optimal sequences.

Since the actual processing times are not considered in the
algorithm, we can reduce the variation of the initial state by

1The use of zero action time could result in a larger set of feasible sequences
during the searching stage. However, the network analysis discussed in the next
section will optimize these feasible sequence sets with action time.

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 343

TABLE V
DECISION LOGIC MAPPING f (“DECISION”), STATE CHANGE�S (“MOVE”), AND STATE UPDATE MAPPING g (“DONE”) FOR THE EXAMPLE TOOL

assuming all actions start in the done state. The done state of
an action includes: 1) the process module finishes the process
and the processed wafer is ready to pick up; 2) the robot finishes
placing a wafer and the blade is ready to pick other wafers; and
3) the robot finishes picking a wafer and the blade is occupied
by a wafer. From such a state, the key configuration that could
lead to an efficient scheduling sequence is the number of the
empty wafer slots within the cluster tool. If is chosen such
that there are a few empty slots, then it could lead to deadlock.
On the other hand, if is chosen in a way that there are plenty
of empty slots, then the resulting searching sequences will not
be optimal since the resources are not fully utilized to process
wafers.

We define “empty slot” for the single cluster as the col-
lection of all empty spaces among process modules , robots

, and buffer modules that can hold wafers within

(1)

where is the set of empty process modules in , is the
set of empty blades of robot , and is the empty buffer
space in . The th process module in is denoted as .
Note that does not include the wafer slots in the buffer
module between clusters and . Denote the wafer
capacity of as . The selection rule of the initial state
condition can be summarized as follows.

Initial state value selection rules

1) .
2) Each process module of cluster should have one

finished wafer, and the wafer is ready for picking up by
robot .

3) If , then one wafer should allocate at one empty
slot of , and this wafer should be ready to be picked up
by . The other slot of should be empty. If ,
then the buffer module must be kept empty.

4) If is double-blade, then one blade should hold one
wafer, and this wafer should be ready to place into . The
other blade of should be empty. If is single-blade,
then it must be allocated empty and ready to pick up a
wafer.

To understand the above selection rules, we first claim the
following fact.

Proposition 1: (if is single-blade) or
(if is double-blade), is a minimum empty

slot requirement for a deadlock-free schedule of an -cluster
tool at steady state.

Proof: See the Appendix.
From Proposition 1, we need to choose the initial state

such that the schedule for each single-robot cluster is always
deadlock free. For cluster , if is single-blade, there must
be at least two empty slots; if is double-blade, one empty slot
is the minimum deadlock-free requirement. Moreover, from the
proof of Proposition 1, if is double-blade, having two empty
slots in cluster yields a shorter or equal cycle
time compared with one empty slot. Therefore, two empty slots
(e.g.,) is the minimum deadlock-free and the most
efficient requirement for cluster .

Proposition 1 implies that if a cluster has more than two
empty slots, it must have deadlock-free schedules. We can ex-
tend the results to show that could lead to the shortest
cycle time. To prove this fact, we consider whether more than
two empty slots can yield a shorter cycle time.
Denote the cycle time of cluster under as
and the cycle time under as . We can observe
that , namely, the cycle time under is at
most equal to or longer than that under . This fact can
be obtained from the same idea as in the proof of Proposition
1. In fact, more than two empty slots within a cluster will not
yield the optimal schedules and the maximum throughput.
For a single cluster, the optimal schedules are achieved with
two empty slots [4], [5]. Having more empty slots may reduce
the cluster tool productivity since it does not fully utilize the
resources.

Next, considerations must be taken as to where to allocate
these two slots within a cluster. Items 2–4 in the selection
rules define one choice. Selection rule 2 implies that one wafer
should always be allocated to each process module. Rules 3 and
4 distribute the empty slot by the configurations of the buffer
module and robot . It is ensured that each cluster has one
empty robot blade and one empty output connector. Thus, each
robot can start at least one action immediately, which avoids
wasting robot transferring time or an immediate deadlock.

344 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

Fig. 4. Network for the example tool shown in Fig. 1(a).

IV. SCHEDULING ANALYSIS

The feasible action sequences can be modeled into an unidi-
rected network with actions as nodes and action relationships as
edges. The network can further be applied to calculate the cycle
time attached to the sequence. A similar approach has been dis-
cussed in [17] for a specific simple single-cluster tool. Here, we
conduct a comprehensive discussion about network modeling
and sensitivity analysis to handle more general and complex
multicluster tools.

A. Network Representation of Sequence

Given a feasible sequence, we design the network diagram in
a way that each horizontal line (called group) represents actions
in one robot or one process module (as shown in Fig. 4). For an

-cluster tool with total process modules (including buffer
modules), there are groups, , ,
each of which is constructed by associated actions in the order
as they appear in the feasible sequence. Different representa-
tions of the same action (e.g., ACT , ACT , ACT , and ACT)
can appear in different groups but are restricted to be verti-
cally aligned (as shown by dotted lines). At steady state, the
network group is arranged so that each group is repeated with
unchanged action orders and relative timings. For example,
Fig. 4 is the network diagram (we focus on th network
cycle) for the example of the single-cluster tool discussed in
Section II at steady state. There are three groups within such
a cluster tool: robot (as) and those (and) for the
action sequences of process modules and , respectively.
The action sequence that we use to build such a diagram is
ACT ACT ACT ACT ACT ACT ACT ACT .

In a network, the actions in one group follow the same order
as they show up in the feasible sequence. However, actions
belonging to different groups do not necessarily have to follow
the order of the feasible sequence. For example, ACT and
ACT are two actions without direct relationship. If swapping
them in a feasible sequence makes an other feasible sequence,
the new sequence will lead to the same network. For example,
action sequences

ACT ACT ACT ACT ACT ACT ACT ACT

or

ACT ACT ACT ACT ACT ACT ACT ACT

or

ACT ACT ACT ACT ACT ACT ACT ACT

could lead to the same network. Therefore, multiple feasible
sequences could result in the same network.

For each action ACT , , we can define the direct
preceding actions as a set of actions that are directly
connected with and precede ACT in the network, and the direct
subsequent actions as a set of actions that are directly
connected with and follow ACT in the network. For example,
for ACT in the example cluster tool, the preceding action set
is ACT ACT and the subsequent action set
is ACT ACT (Fig. 4). If an action is in the
front of all groups that it belongs to within one network cycle, its
preceding action set is defined as an empty set , e.g., ACT in
the example. Similarly, an action at the end of all groups within
one network cycle will have the empty direct subsequent set,
e.g., ACT and ACT in Fig. 4.

B. Scheduling Using Extended CPM

Given a network, the critical path method (CPM) [21] can
be utilized to calculate the fundamental period . In the fol-
lowing, we first describe how the basic CPM idea can be applied
to calculate the minimum cycle time of an isolated (or static)
network cycle (e.g., only th cycle in Fig. 4). Then, we extend
the basic CPM to compute of the connected (or dynamic)
networks (e.g., combined th network cycle with neighboring
cycles such as th and th cycles in Fig. 4).

In one isolated cycle period, every action runs exactly once in
the order as in the network (e.g., th cycle in Fig. 4). If the first
action starts at time zero and the last action ends at time ,
then the cycle time of the isolated network cycle is . For
ACT in the network, denote the earliest starting time as
and the latest starting time as .

Given that all action starts no earlier than time zero, we can
first set for any action ACT such that .
By iteratively going forward along the network, we can calculate

in a forward calculation as

Forward calculation

for all (2)

where is the processing time of action ACT . Once this
forward calculation reaches the end of the network, we obtain

for all ACT . Then, the cycle time can be obtained as

(3)

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 345

Next, we can then set for any action ACT
such that . Then, for all actions ACT can
be obtained using the following backward calculation:

Backward calculation

for all (4)

With and , we can define the slack value for
action ACT as

(5)

It is easy to observe that the slack value implies the flex-
ibility of action time of ACT within . Namely, the
processing time of ACT can be prolonged to without
increasing the cycle time . If an action has a zero slack
value, then a small increase in the action time may cause a com-
parable time increase on cycle time. By [21], there exists a con-
nected path in the network that all actions in the path have zero
slack values. Such a path is called the critical path of the net-
work. The method to identify the critical path (e.g., forward and
backward calculations) is called critical path method.

The calculation described above only applies on the isolated
network cycle case. At steady state when cycles are repeated
continuously, the above calculated cycle time might not be the
minimal since actions from different groups and different cy-
cles could run parallelly. For example, for the network shown
in Fig. 4, action ACT in one cycle could start at the same mo-
ment when ACT of the next cycle starts. Then, the steady state

might be smaller than . To overcome such a problem
caused by multigroup structures in a network, we could ex-
tend the basic CPM. For each group , we calculate minimal
cycle time . Then, the maximum of should be the
steady-state cycle time of the connected network.

The basic idea of the extended CPM is to find a steady-state
cycle in which each group reaches the minimum time span

. Assume in such a cycle, actions in group start as early
as and end as late as . Then, is calculated as

(6)

In each group , denote the first action and the last action
as ACT and ACT , respectively. To find and

, we need to calculate and using the CPM
concept.

It is noted that if all are known, then a unique set
of , , can be determined. To implement
it, we can find all with and then set

. Applying one forward calculation with an
additional condition2 that any action in cannot start earlier
than , we can calculate all . Similarly, if
are all known, we can find a unique set of . With such
observations, we can summarize the calculation as in
Algorithm 3. The algorithm is also based on the results given

2This constraint is needed to restrict the starting time calculation for actions
that belong to several different groups, such as ACT (in both G and G) in
the example shown in Fig. 4.

in Proposition 2. Since the groups within a network are con-
nected (due to the network construction), the algorithm could
terminate eventually within at most iterations.3

Proposition 2: The fundamental period of an -cluster
tool system can be calculated as

and the bottlenecks of the system are groups with ,
where can be calculated by (6).

Proof: It is first proven that for any group
. Then, we show that there exists a feasible schedule such

that .
In the steady state, the network cycle repeats (Fig. 4). As-

sume that the cycles are indexed by . For the th network
cycle, denote the th action within the network as ACT . For
network cycle , let action ACT end at time . The

earliest time ACT can start is also . On the other

hand, the latest time ACT can start is . Therefore,

the minimum time difference between ACT and ACT
is then . So, .

Given , denote the following
schedule as . Let ACT , , start at
time . Schedule is feasible since no action
overlap exists inside or between cycles by such a construction.
The steady-state cycle time of is because, for any action,
the difference of starting times of a same action in any two con-
secutive cycles is .

C. Methods to Reduce Complexity of Searching Algorithm 2

As noted in Section IV-A, the network, instead of the se-
quences, determines the scheduling and fundamental period of

3Since each iteration runs one forward and one backward calculations, one
iteration will expand two groups and the total number of iterations is only a half
of the total group numbers.

346 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

the cluster tool. In Algorithm 2, once a sequence of a network
is found, other sequences that lead to the same network are con-
sidered redundant from the viewpoint of network. Therefore, it
is desirable to skip searching these redundant sequences. The
grouping method presented in this section can be utilized to take
advantage of the network features and to reduce the searching
complexity.

Since the network topology is constructed by an interaction
of groups, the network is determined once internal action se-
quences of all groups are known. We can thus reduce the com-
plexity of the searching algorithm in such a way that it only
seeks for possible action permutations that belong to the same
network group and ignore the action order between different
groups. For example, in the cluster example in Section IV-A,
the order between ACT and ACT is important because it af-
fects the robot operation. However, the order between ACT and
ACT is not important in the search algorithm since they belong
to different groups (and , respectively).

Search Algorithm 2 builds a recursion tree [22]. In one iter-
ation of the th level of the recursive tree, the algorithm first
seeks for all independently executable actions. Assuming the
set of such actions as , each action in corresponds to one
subtree in the way that the algorithm steps into the th
level of search iteration immediately after executing the action.
Since one search iteration only executes one action, the algo-
rithm needs to step into the th level of the recursion tree to ob-
tain a feasible sequence. The following two grouping methods
allow one subtree to include several actions such that one itera-
tion step can simultaneously execute a few actions before step-
ping into the next searching iteration. Since the total amount of
actions is fixed, the levels required for the recursion tree will be
reduced and therefore the algorithm complexity is reduced.

The first grouping method is to continuously find several ac-
tions from one robot action group and execute these actions in
one search iteration. Once the algorithm steps into the th search
iteration, actions in can be picked one by one to start the sub-
tree. If ACT is chosen and ACT , a robot action
group, denoting , where is a set of actions not
in , we do the following recursive steps. In those steps, all
actions assigned to ACT are executed in the search iteration.
For the example in Section IV-A, ACT and ACT are actions
that can be executed consecutively.

The second grouping method is to run several actions simul-
taneously from various groups in one search iteration. In one

th level search iteration, we first find the set of independently
executable actions . We then find all subsets that
meet the following conditions: 1) each action in belongs to
a unique group; 2) all actions in can be executed at the same
moment; and 3) once all actions in are executed, no other
action in is still executable. We then execute all actions in
each and step into the next level search iterations. By doing
so, the recursion tree has one subtree corresponding to each .
As the example in Section IV-A, if ACT is executed in the pre-
vious search iteration and only ACT , ACT , ACT , ACT are
left to be scheduled, ACT ACT because conditions
1)–3) are satisfied for those two actions. Then, ACT and ACT
will be executed together in the current search iteration by this
grouping strategy.

Although based on different features of the network topology,
the previous two grouping methods can be integrated in Al-
gorithm 2 simultaneously. Using the grouping method, the
amount of redundant searches can be reduced significantly.
By the example in Section V, we further notice that once the
integrated network grouping method is applied, the recursive
search method returns the same amount of sequences as that
of the amount of derived networks, which implies that the
algorithm reaches 100% efficiency in eliminating redundant
sequences.

D. Sensitivity Analysis

The sensitivity analysis of cluster tools is to study the
variations due to changes of processing time of an action. This
is important in practice because: 1) processing time sometimes
is not constant (we will show such an example in Section V)
and 2) there exist random process variations which could lead
to processing time changes. The sensitivity analysis could guide
us to choose a robust schedule under such variations.

Recall that the slack value for ACT is the difference between
and [see (5)]. At steady state, the actual earliest start

time or latest end time of an action is much more flexible since
there is no fixed earliest start time or latest end time within one
cycle. We consider the following methodology to handle such a
potential issue.

Denote the feasible schedule that results in in Proposi-
tion 2 and Algorithm 3 as . Without loss of generality, we con-
sider network cycle of . It can find at least one group
that . Constrained by the preceeding network

cycle , the earliest start time for ACT is the earliest
time that ACT is finished, which is equal to .
On the other hand, by the construction of , the latest start time
for ACT is . Thus, we find a temporary slack value
for ACT as . We denote the slack
value constrained by the preceeding network cycle as
for action ACT . To calculate such a slack value for other ac-
tions, we let for each group ,

. We can then do one forward calculation
based on and find the earliest start times as .
Thus

(7)

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 347

Fig. 5. Simplified layout schematic of the CMP multicluster polisher.

Similarly, the slack value could also be constrained by the suc-
ceeding cycle and we denote such a slack time as
for action ACT . For group , we can obtain

. One backward calculation can be carried out to
find the latest start time for action ACT as . Then, we
have

(8)

The slack values and can be viewed as
indications of the geometric ACT location within the group.
If action ACT has , it is most
likely that ACT is located close to the end of . When ac-
tion ACT takes a long time to finish, there is more flexiblity
in to move later compared with moving earlier
without changing . If ACT is the only action with varying
processing time, we can calculate its overall slack value as

(9)

It is common that actions in different optimal scheduling se-
quences may have totally different slack values. If there exists
one action ACT with random processing time within a cluster
tool, we can find the optimal schedules using the mean value

of ACT . Then, among these optimal sequences, the se-
quence with the largest slack value of action ACT could
reach the best optimality because this optimal sequence could
result the minimal variation. Similarly, can also be
considered the maximum residency time that an action could
encounter without increasing . For example, if ACT is a
chamber process, then the wafer could stay in the chamber as
long as after the process finishes without increasing .

V. EXPERIMENTS

We have successfully applied the proposed methodology to
dozens of tools at Intel Corporation. Some examples are shown
in [25]. The benefits include better throughput estimation, faster
what-if analysis, and optimal scheduling solutions with varying
processing times and cluster tool configurations. In this section,
we give a case study on how to apply the methododogy, de-
scribed in this paper, to a chemical–mechanical planarization
polisher.

A. Chemical–Mechanical Planarization (CMP) Polisher

Fig. 5 shows a schematic of a CMP polisher used in semi-
conductor manufacturing. The chemical–mechanical planariza-
tion process is widely used to planarize the wafer surface and
to enhance the photolithograph process performance. The CMP
polisher can be modeled as a four-cluster tool. There are two
single-blade robots and , a double-blade robot , and an
indexer . The indexer moves wafers simultaneously from
process modules to , to , to , and to

, respectively. The wafers pass through the cluster tool as in
the following flow chart:

B. Experiment Results

Event graph modeling of the CMP tool can be handled as
follows. First, we define the state variable and action indexes.
The decision-move-done event graph can be constructed for the
whole cluster tool. In total, there are 15 state variables (total
number of cassette, process, buffer, and transfer modules) and

348 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

TABLE VI
ACTIONS OF THE CMP POLISHER

20 actions (as shown in Table VI) for the event graph model. In-
dexer cannot hold wafers independently and thus is not con-
sidered as an independent decision state. The initial state values
are chosen according to the rules discussed in Section III-B:
each process module (, , , , or ,)
has one finished wafer, has one wafer on one of its blades,

and are empty, and the buffer module is empty. We
created the event graph using simulation package SIGMA [23]
and the model is automatically exported into C language for
searching and network analysis.

1) Throughput Calculation: The event graph-based mod-
eling and algorithms in Sections III and IV are utilized and im-
plemented in C language to find the optimal schedules. The ex-
periments are carried out on a computer with Intel Centrino 1.3
GHz CPU and 256 M RAM. Table VII summarizes the compu-
tational results.

We first search all sequences for the given wafer flow without
network analysis. Such a search algorithm takes about 219 063 s
to finish. This search generates more than 1.86 billion feasible
sequences (out of a total 20 2.4 10 billion sequences).
Among these feasible sequences, about 1.25 billion sequences
give s, which is the minimal cycle time. Then,
we apply the network model-based grouping methods. In about
0.1 s of computing time, the network-based search algorithm
generates 58 possible networks. Among them, 17 networks give
the fundamental period s. The resulting

s/wafer (namely the steady-state throughput is 26.5 wafers
per hour) fits very well with the maximum throughput, 26 wafers

Fig. 6. Sensitivity comparison results of two optimal schedule sequences
Seq and Seq .

per hour, of such a CMP polisher in an R&D fab using one of
the resulting action sequences.

2) Sensitivity Analysis: To illustrate the sensitivity analysis,
we choose two different sequences and , which
both produce the s. Table VIII shows all ordered
actions in every group of and . Here, we use table,
instead of network, as shown in Fig. 4, to simplify the network
presentation. From Table VIII, we find that the two networks are
different in (robot of Cluster 1) and (robot of Cluster 2),
while other groups are the same. Using the slack time calcula-
tion in Section IV-D, we calculate the slack time for each action
based on the nominal processing time given by Table VI. Fig. 6
shows the slack time for both sequences and . In
the following, we show two case studies of the impact of the
processing time variations on the fundamental period.

Due to the incoming film thickness variations, the polishing
processing time could vary to achieve a predefined target film
thickness. The mechanism to automatically determine when to
stop polishing is called end-point detection [24]. It is appropriate
to assume that the processing time of the last polishing module

ACT has a large variation if the end-point detection de-
vice is used. As shown in Fig. 6, the slack values for ACT
in both action sequences are equal to 71 s. This calculation im-
plies that we can increase the processing time of from 60 to
131 s without changing the fundamental period of the system.
Since this slack value is the same for the two sequences, the pro-
cessing time variation has the same effect for both and

.
However, for other processing time variations, the impact on

the cluster throughput is different. For example, the slack times
of ACT is 13 s in and 33 s in . Assume that
the processing time is uniformly distributed in [5, 55] s (av-
erage of 30 s) and all other actions have deterministic processing
time as those in Table VI. For , the fundamental period can
be maintained at 136 s all the time since the slack time for
allows 33-s variation. For , the 136-s fundamental period
cannot sustain when s. For example, if s, the

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 349

TABLE VII
TESTING RESULTS OF THE CMP POLISHER WITH REAL THROUGHPUT 26 WAFERS PER HOUR BY A PRIORITY-BASED SCHEDULER

TABLE VIII
TWO SEQUENCES Seq AND Seq IN NETWORK

TABLE IX
IMPACT OF PROCESSING TIME t VARIATION OF P (ACT) ON FP (MEAN AND STANDARD DERIVATION) FOR SCHEDULES Seq AND Seq

corresponding fundamental period is s. If pro-
cessing time instead satisfies a normal distribution with mean

s and standard deviation s, for , the
s can be maintained at 95.54% of the time while

for at 99.99% of the time. The impact under such a vari-
ation can be clearly seen from the mean and standard deviation
calculations given in Table IX. Obviously, is better than

in this case. A similar study can be found in [25].

VI. CONCLUSION

This paper presents an integrated event graph and network ap-
proach to model and analyze the scheduling and throughput of
multicluster tools for semiconductor manufacturing. First, a de-
cision-move-done event graph is built to model the multicluster
tools so that all actions can be captured as a simple graph and a
set of mappings. The use of the event graph model can simplify
the tree search methods to find all feasible action sequences and
to facilitate the network construction. Network model-based al-
gorithms are then proposed to calculate the minimal cycle time
and scheduling of the cluster tools through computing the min-
imum time span of the network using the critical path method.
Grouping methods are employed to reduce the complexity of

the network model-based searching process. Furthermore, the
slack property of actions can be used for sensitivity analysis
to calculate the impact of the processing time variations on the
throughput and to compare various schedules. The sensitivity
analysis could be used as a guidance for a robust schedule when
there exist multiple optimal action sequences that lead to the
same throughput and under process variations. The proposed
methodology has been successfully implemented on dozens of
tools at Intel Corporation. The implementation shows that the
methodology is very efficient in calculating the optimal through-
puts and identifying productivity improvement opportunitites of
the complicated cluster tools. Experimental results of a chem-
ical–mechanical planarization polisher are used as an example
to demonstrate and validate the proposed methodology.

APPENDIX

PROOF OF PROPOSITION 1

Without loss of generality, the case that all robots are of
single blade is considered. For the double-blade robot cases, the
proof is similar.

It must be proven that is the minimum empty slots
for deadlock-free schedules of cluster . This claim is proven
by induction for a -cluster tool.

350 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 19, NO. 3, AUGUST 2006

Fig. 7. Two scenarios of locations in (n+ 1)-cluster tool: (a) at last cluster and (b) in middle of clusters.

1) For , a single-cluster tool is considered. It is easy to
see that if there is only one empty slot within the cluster

, this slot must be the returning cassette module
, and all other modules (including robot) are occupied by

wafers. Then, the single-blade robot cannot move wafers
among process modules and cassette and deadlock is en-
countered. Therefore, is a requirement and the
minimum size of must be 2.

2) Suppose the statement is true for the case such that
for all . It must be proven that the

inequality also holds for . Consider where
the additional th cluster is located when we extend
the clusters to an cluster.

a) If the th cluster is at the end of the cluster
chain, as shown in Fig. 7(a), it is clear that the cluster
is deadlock in steady state if , since
all wafers within have been processed and are
ready to move to next module. However, the single-
blade robot cannot load wafers from after
it moves out the holding wafer to cluster through

. Note that once one wafer moves into the cluster
through the buffer module, one wafer must move out
during the same cycle. Therefore, .

b) If the th cluster is in the middle of the
cluster chain between clusters and ,

, as shown in Fig. 7(b), one
can consider the next action that robots can exe-
cute. All wafers in , , and have been
processed and are ready to move to next station.
Suppose . Notice that
and robot of will move one wafer from
module to . At the same time, robot

has to move the current-holding wafer to buffer
module . Then, the schedule of robot
becomes deadlocked since no wafer can be moved
through the cluster . Therefore, .

Combining the previous analyses, we conclude that ,
, is the minimum empty slot size for a deadlock-

free schedule for an -cluster tool equipped with single-blade
robots.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous re-
viewers for their constructive feedback. They also thank K.
Bryant and R. Akhavan-Tabatabaei at AzFSM (Fab 12/22/32)
Industrial Engineering, Intel Corporation, for help in preparing
the paper.

REFERENCES

[1] Y. Crama and J. van de Klundert, “Cyclic scheduling of identical parts
in a robotic cell,” Oper. Res., vol. 45, no. 6, pp. 952–965, 1997.

[2] M. Dawande, C. Sriskandarajah, and S. Sethi, “On throughtput max-
imization in constant travel-time robotic cells,” Manuf. Service Oper.
Manage., vol. 4, no. 4, pp. 296–312, 2002.

[3] I. Drobouchevitch, S. Sethi, and C. Sriskandarajah, “Scheduling dual
gripper robotic cells: One-unit cycles,” Eur. J. Oper. Res., vol. 171, no.
2, pp. 598–631, 2006.

[4] T. Perkinson, P. McLarty, R. Gyurcsik, and R. Cavin, “Single-wafer
cluster tool performance: An analysis of throughput,” IEEE Trans.
Semiconduct. Manufact., vol. 7, no. 3, pp. 369–373, Aug. 1994.

[5] S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A steady-
state throughput analysis of cluster tools: Dual-blade versus single-
blade robots,” IEEE Trans. Semiconduct. Manufact., vol. 10, no. 4, pp.
418–424, Nov. 1997.

[6] T. Perkinson, R. Gyurcsik, and P. McLarty, “Single-wafer cluster tool
performance: An analysis of the effects of redundant chambers and re-
visitation sequences on throughput,” IEEE Trans. Semiconduct. Man-
ufact., vol. 9, no. 3, pp. 384–400, Aug. 1996.

[7] R. Srinivasan, “Modeling and performance analysis of cluster tools
using Petri nets,” IEEE Trans. Semiconduct. Manufact., vol. 11, no. 3,
pp. 394–403, Aug. 1998.

[8] W. Zuberek, “Timed Petri nets in modeling and analysis of cluster
tools,” IEEE Trans. Robot. Automat., vol. 17, no. 5, pp. 562–575, Oct.
2001.

[9] S. Rostami, B. Hamidzadeh, and D. Camporese, “An optimal peri-
odic scheduler for dual-arm robots in cluster tools with residency con-
straints,” IEEE Trans. Robot. Automat., vol. 17, no. 5, pp. 609–618,
Oct. 2001.

[10] S. Rostami and B. Hamidzadeh, “Optimal scheduling techniques for
cluster tools with process-module and transport-module residency
constraints,” IEEE Trans. Semiconduct. Manufact., vol. 15, no. 3, pp.
341–349, Aug. 2002.

[11] H. T. LeBaron and R. A. Hendrickson, “Using emulation to validate a
cluster tool simulation model,” in Proc. 2000 Winter Simulation Conf.,
Orlando, FL, 2000, pp. 1417–1422.

[12] H. T. LeBaron and M. Pool, “The simulation of cluster tools: A new
semiconductor manufacturing technology,” in Proc. 1994 Winter Sim-
ulation Conf., Orlando, FL, 1994, pp. 907–912.

[13] M. A. Dümmler, “Using simulation and genetic algorithms to improve
cluster tool performance,” in Proc. 1999 Winter Simulation Conf.,
Phoenix, AZ, 1999, pp. 875–879.

DING et al.: MULTICLUSTER TOOLS SCHEDULING: INTEGRATED EVENT GRAPH AND NETWORK MODEL APPROACH 351

[14] D. A. Nehme and N. G. Pierce, “Evaluation the throughput of cluster
tools using event-graph simulations,” in Proc. 1994 IEEE/SEMI Adv.
Semiconduct. Manufact. Conf., Cambridge, MA, 1994, pp. 189–192.

[15] D. Pederson and C. Trout, “Demonstrated benefits of cluster tool simu-
lation,” in Proc. 2002 Int. Conf. Modeling Analysis Semiconduct. Man-
ufact., Tempe, AZ, 2002, pp. 84–89.

[16] S. Ding and J. Yi, “An event graph based simulation and scheduling
analysis of multicluster tools,” in Proc. 2004 Winter Simulation Conf.,
Washington, DC, 2004, pp. 1915–1924.

[17] J. Herrmann, N. Chandrasekaran, B. Conaghan, M. Nguyen, G.
Rubloff, and R. Zhi, “Evaluating the impact of process changes on
cluster tool performance,” IEEE Trans. Semiconduct. Manufact., vol.
13, no. 2, pp. 181–192, May 2000.

[18] J. Yi, S. Ding, and D. Song, “Steady-state throughput and scheduling
analysis of multicluster tools for semiconductor manufacturing: A
decomposition approach,” in Proc. IEEE Int. Conf. Robot. Automat.,
Barcelona, Spain, 2005, pp. 293–299.

[19] N. Geismar, C. Sriskandarajah, and N. Ramanan, “Increasing
throughput for robotic cells with parallel machines and multiple
robots,” IEEE Trans. Automat. Sci. Eng., vol. 1, no. 1, pp. 84–89, Jan.
2004.

[20] L. Schruben, “Simulation modeling with event graphs,” Commun.
ACM, vol. 26, no. 11, pp. 957–963, 1983.

[21] J. Kelley, Jr., “Critical-path planning and scheduling: Mathematical
basis,” Oper. Res., vol. 9, no. 3, pp. 296–320, 1961.

[22] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms,
2nd ed. Cambridge, MA: MIT Press, 2001.

[23] L. Schruben, SIGMA User’s Guide, Dept. Industrial Eng. Oper. Res.,
Univ. California, Berkeley, 2000.

[24] D. Hetherington and D. Stein, “Recent advances in endpoint and in-line
monitoring techniques for chemical-mechanical polishing processes,”
in Proc. CMP-MIC Conf., Santa Clara, CA, 2001, pp. 315–323.

[25] S. Ding, J. Yi, M. T. Zhang, and R. Akhavan-Tabatabaei, “Perfor-
mance evaluation and schedule optimization of multicluster tools with
stochastic process times,” in Proc. IEEE Conf. Automat. Sci. Eng.,
Shanghai, China, 2006.

Shengwei Ding received the B.S. and M.S. degrees
in electrical engineering from Zhejiang University,
China, in 1996 and 1999, respectively. He received
the Ph.D. degree in industrial engineering and op-
eration research from the University of California,
Berkeley, in 2004.

He is currently with the Department of Industrial
Engineering and Operations Research, University of
California, Berkeley. His research interests include
simulation, scheduling, queuing models, and produc-
tion management and semiconductor manufacturing.

Dr. Ding is a member of IIE and INFORMS.

Jingang Yi (S’99–M’02) received the B.S. degree
in electrical engineering from the Zhejiang Univer-
sity, China, in 1993, and the M.Eng. degree in pre-
cision instruments from Tsinghua University, China,
in 1996. He also received the M.A. degree in applied
mathematics and Ph.D. degree in mechanical engi-
neering from the University of California, Berkeley,
in 2001 and 2002, respectively.

From May 2002 to January 2005, he was with Lam
Research Corporation, Fremont, CA, as a member
of technical staff. Since January 2005, he has been

with the Department of Mechanical Engineering, Texas A&M University, as a
Visiting Assistant Professor. His research interests include intelligent and au-
tonomous systems, mechatronics, automation science and engineering with ap-
plications to semiconductor manufacturing and intelligent transportation sys-
tems.

Dr. Yi is a member of the American Society of Mechanical Engineering
(ASME). He was the recipient of the Kayamori Best Paper Award of the 2005
IEEE International Conference on Robotics and Automation (ICRA).

Mike Tao Zhang (S’98–M’01–SM’05) received the
M.S. and Ph.D. degrees, from the Department of
Industrial Engineering and Operations Research, in
2000 and 2001, respectively, as well as the Manage-
ment of Technology certificate, in 2000, from the
Haas School of Business, all from the University of
California, Berkeley.

He is currently a Staff Engineer at Intel Corpora-
tion, Chandler, AZ. He has been a Senior Engineer, a
Group Leader, and a Department Manager at various
Intel sites. He was awarded two patents and has pub-

lished about 50 papers and three books/book chapters. His research interests in-
clude industrial automation, manufacturing systems, operations research/man-
agement, and supply chain management.

Dr. Zhang is a Member of the Honor Society of Phi Kappa Phi and also a
Senior Member of the Institute of Industrial Engineers (IIE). He is Co-Chair
of the IEEE Robotics and Automation Society Technical Committee on
Semiconductor Factory Automation. He is an Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING and a Guest
Editor of Assembly Automation, the IEEE Robotics and Automation Magazine,
and the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. He
is the recipient of the Intel ATM Achievement Award and the IIE Outstanding
Young Industrial Engineer Award.

