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Abstract

The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and
antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization
state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the
previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The
resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to
devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring
function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence.
Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original
Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of
2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the
literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-
validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal
sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download
from http://multicoil2.csail.mit.edu.
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Introduction

The coiled coil is a protein motif characterized by superhelical

twisting of two or more alpha helices around one another. The

structure of the coiled coil includes a regular, repeating backbone

geometry and side-chain interactions termed knobs-into-holes

packing. Coiled coils are remarkably prevalent in protein

structures, and they adopt a wide range of structural topologies

with variations in helix orientation and oligomerization state.

Structurally characterized examples of native and designed coiled

coils range from two to seven helices, with dimers and trimers most

common [1]. Knowledge of coiled-coil architecture is important

for understanding the overall structure and function of coiled-coil-

containing proteins, e.g. for inferring oligomerization stoichiom-

etries [2], for determining whether attendant domains are close or

distant in space [3], and for reasoning about mechanism in

molecular machines, signaling cascades and motors [4].

Coiled-coil structures are encoded by a seven-residue heptad

pattern of the form (HPPHPPP)n, where H positions are

predominantly hydrophobic and P positions are predominantly

polar. The positions in the repeat are denoted by the letters a-g,

with a and d hydrophobic. The repeating sequence motif makes

the coiled-coil structure amenable to prediction, and several

algorithms have been developed to detect the presence of coiled-

coil-forming segments in protein sequence [5]. More complete

annotation of structure, however, requires predicting the number

of helices participating in a coiled-coil bundle, as well as the axial

alignment and orientation of all helices. Among these aspects of

coiled-coil structure, the prediction of oligomerization state has so

far received the most attention, although work on other aspects of

structural specificity is becoming tractable as the number of solved

coiled-coil structures grows [6].

In 1997, the Multicoil algorithm was introduced for predicting

coiled-coil dimer vs. trimer propensities [7]. It showed outstand-

ing performance at the time, and after 13 years remains the only

widely used method for predicting coiled-coil oligomerization

state. The algorithm has been used extensively and successfully to

predict the propensity of coiled-coil sequences to form dimers or

trimers and has been cited over 400 times. Multicoil is based on

the Paircoil algorithm [8,9], which uses a probabilistic framework

to detect coiled-coil-forming segments in proteins, based on

residue-pair frequencies in known coiled coils. Multicoil uses a
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pair of sequence databases constructed from both authentic

dimers and trimers to derive pairwise residue frequency tables,

which are then used to derive both dimer and trimer propensities.

However, both of these approaches are limited by the use of a

fixed window for coiled-coil scoring (usually 21 or 28 residues)

[10]. Coiled-coil dimer versus trimer prediction has recently been

studied by Rackham et al [11]. In their program SpiriCoil, a

profile Hidden Markov Model (HMM) is constructed for each of

the existing coiled-coil protein families with known structures.

The HMMs in this approach describe the entire protein domain,

not just the coiled-coil region, which improves annotation

accuracy. The many profile HMMs are then used to match a

target sequence to its most likely family, with the oligomerization

state of the family assigned to the target. Although powerful for

some applications, a limitation is that these methods cannot

predict structures for novel families with limited sequence

similarity to known families.

Although not yet applied for direct prediction of oligomerization

states, HMMs have been applied directly to predict coiled-coil

propensity. For example, Marcoil [12,13] uses explicit knowledge

of coiled coils to train a single HMM to efficiently search for a

variable-length subsequence with a large value for a coiled-coil

propensity statistic. However, while such methods have the

advantage of searching through the sequence for a variable-length

subsequence, they compromise by searching for a simpler statistic

than the Paircoil and Multicoil methods. For example, Paircoil

includes correlation terms to improve predictive power, and the

HMM methods neglect these interaction effects.

In this paper, we introduce Multicoil2, a program for predicting

coiled-coil oligomerization state that combines the strengths of the

window-based-probabilistic methods and HMM approaches in a

Markov Random Field. From a set of training families, we

compute various sequence features for each amino-acid sequence.

Multinomial logistic regression combines these features into two

predictors of dimer and trimer propensity. These predictors are

used to generate the potentials for the Markov Random Field,

which processes amino-acid sequences to return residue-by-residue

oligomer state probabilities. Multicoil2 substantially improves on

the performance of Multicoil, retrained on a newly generated,

expanded coiled-coil database in strict leave-family-out cross-

validation tests. In addition to improved oligomerization state

prediction, Multicoil2 demonstrates significantly improved coiled-

coil detection over Paircoil2 and newly trained Multicoil.

Here we also provide a new coiled-coil database of dimers and

trimers. At the time of initial development, relatively few

sequences were available to train the Multicoil program. With

only 6,300 coiled-coil-trimer residues in the original training

database [7], it is unclear whether enough data were available to

adequately describe sequence features that determine oligomeri-

zation states for coiled coils broadly. In addition, the limited

amount of data also restricted the types of validation tests that

could be run. However, significant numbers of new sequences are

now available. Genome databases have grown larger, with 780%

growth from 1997–2009 [14]. Many more protein structures are

available, and the SOCKET algorithm [15] can now be used to

automatically detect coiled-coil sub-structures in the Protein Data

Bank (PDB) [16]. Finally, many new coiled-coil-containing protein

families have been experimentally characterized and described in

the literature. This has increased the number as well as the

diversity of known coiled coils. The availability of new data

motivated us to construct a database of coiled-coil sequences useful

for training as well as testing coiled-coil structure prediction

methods. We are releasing the executables for Multicoil2 and

retrained Multicoil, as well as the database, at http://multicoil2.

csail.mit.edu. Source code is available from the authors upon

request.

Results

We construct a new database of structurally annotated coiled

coils and use it to test Multicoil2 for its ability to predict coiled-coil

oligomerization states in leave-family-out cross-validation, as well

as to distinguish coiled coils from non-coiled coils.

The NPS coiled-coil database
A new coiled-coil database of 1279 dimers and 333 trimers is

derived from three sources: the Paircoil2 training set [9], coiled

coils detected in the PDB using SOCKET, and new coiled-coil

families described in the literature. Structure-derived sequences

are grouped into families using information from the SCOP

database [17] by pooling sequences sharing the same SCOP

superfamily. The complete database is named NPS (for New

families, Paircoil2, SOCKET). Entries in the database are

annotated based on oligomerization state (dimer, trimer or

tetramer; no other oligomerization states were represented) and

helix orientation (parallel vs. antiparallel).

Multicoil2 algorithm
We develop Multicoil2, which uses a Markov Random Field

(MRF) model to effectively search through variable-sized windows

while taking advantage of features that include residue-pair

frequencies. We optimize the MRF parameters for predictive

performance using logistic regression. See Figure 1 for an overview

of the algorithm and Methods for details.

Features. The regression relies on eight sequence features to

predict coiled coils or their oligomerization states. The features

that we find most useful are: dimer probability; trimer probability;

the non-coiled probability; the dimer correlations at distances 1–7;

trimer correlations at distances 1–7; non-coiled correlations at

distances 1–7; the hydrophobicity of residues at the a position and

hydrophobicity at the d position. These are defined in Methods.

Leaving out any of these features leads to decreased performance

(data not shown).

Other features, including the length of the coil, dummy

variables for the charge of the amino acid at different heptad

positions, the size of the amino acid at different heptad positions,

and some considerations of the amino acid frequencies immedi-

ately before and after the coiled coil do not significantly increase

the model’s ability to predict coiled-coil state.

Oligomerization state prediction. We treat oligomeri-

zation state prediction as a binary test: positive examples of

coiled-coil dimer or trimers in NPS are predicted as dimer vs.

trimer, depending on the ratio of their dimer to trimer

propensities. In stringent leave-family-out cross-validation, we

find that the new Multicoil2 algorithm performs significantly

better than retrained Multicoil. Curves that illustrate the trade-off

in dimer-vs-trimer classification as the cutoff value is changed are

shown in Figure 2 for both per-sequence and per-residue

prediction modes. When retrained on our new database of

coiled coils, the retrained Multicoil method at default settings

produces 64.3% recognition of trimer sequences and 88.1% of

dimer sequences. In contrast, at a similar level of dimer

recognition, 87.2%, Multicoil2 correctly detects 82.5% of trimer

sequences. We set the default state of the Multicoil2 algorithm to

operate at this point on the ROC curve, which minimizes error

cost given equal prior probabilities of dimers and trimers and

equal cost of misclassifying each oligomerization state. The family-

by-family performance of Multicoil2 on the training set is given in

Predicting Coiled Coils and Oligomerization States
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Table 1, and differences in performance between families are

addressed in Discussion.

Discriminating coiled coils from non-coiled coils. We

compare the coiled-coil detection performance of Multicoil2 to

that of retrained Multicoil, and to retrained Paircoil2, a recent

update of the Paircoil algorithm [9]. Multicoil and Multicoil2 can

be used to distinguish coiled coils from non-coiled coils by

considering the total coiled-coil probability of each residue

position to be the sum of predicted dimer and trimer

probabilities. For the residue test, we select a threshold value,

predict all residues with total coiled-coil probability greater than

this threshold to be in some coiled-coil state, and predict residues

with probability less than this threshold to be in the non-coiled coil

state. For the sequence test, when testing positive sequences, we

report a true positive if the predicted coiled-coil probability for

every residue in the sequence exceeds a cutoff. When testing

Figure 1. Flow-chart overview of the Multicoil2 method. From the training set of labelled dimer, trimer and negative coiled coil sequences, we
compute the probability of each amino acid at each heptad position in dimer sequences and trimer sequences. Also, we compute the probability of
each amino acid in negative sequences. From the resulting frequency tables shown in the upper left, along with the training sequences shown in the
upper right, we compute sequence features for each training sequence. Running a multinomial logistic regression on these values generates a three-
way classifier which is used in the MRF as described in Methods.
doi:10.1371/journal.pone.0023519.g001

Figure 2. Dimer versus trimer recognition. Multicoil2 and Multicoil ROC curves based on leave-family-out cross validation for per-residue (a) and
per-sequence (b) recognition.
doi:10.1371/journal.pone.0023519.g002

Predicting Coiled Coils and Oligomerization States
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negative sequences, we report a true negative if there is no 28-

residue window for which every residue exceeds the cutoff. This is

a very strict test.

To assess performance in coiled-coil detection, we carried out

leave-family-out testing. Each of the annotated coiled-coil families

in NPS was left out one at a time. To assess sensitivity, we trained

on the remaining NPS families, along with the PDB-minus

database, and predicted the probability of each annotated coiled-

coil sequence (or residue) being in a coiled-coil state. To assess

specificity, we trained on the entire NPS and PDB-minus

databases and predicted each residue/sequence in the PQS-minus

database, a set of non-coiled coil sequences culled from the PQS

database for which no sequence is more than 50% identical to any

sequence in PDB-minus.

The Multicoil2 algorithm outperforms retrained Multicoil and

Paircoil2 on both residue and sequence prediction. We report the

results as a curve showing the sensitivity as a function of false-

positive rate in Figure 3. Multicoil2 operates with 0.30% false

positives and 91.8% detection rate when evaluating our positive

and negative databases residue-by-residue under the stringent

leave-family-out protocol.

Discussion

Predicting the oligomerization state of a coiled coil from its

sequence is a challenging problem that requires discriminating

between closely similar structures. The Multicoil program, first

published over 10 years ago, has proven valuable for this purpose

and remains widely used. However, many more coiled-coil

sequences with known structures have now been annotated than

were previously available, and we have used such examples to

assemble a database of 124,088 structurally annotated coiled-coil

residues. We also report Multicoil2, based on a Markov Random

Field, which does not suffer from the fixed-window size of Paircoil

and Multicoil, is not restricted from using pairwise probabilities

like the HMM methods, and uses optimized statistics. The new

method significantly improves oligomer-state prediction, as well as

coiled-coil detection, over the algorithms Multicoil and Paircoil2,

even when those algorithms are retrained on new data. The

performance of Multicoil2 is especially notable in the twilight zone

of sequence identity, where HMM profile-based methods typically

fail.

Overall prediction performance is good, but varies among

different coiled-coil families when assessed using stringent leave-

family-out cross validation (Tables 1,2). Each family has

differences in the number of sequences and residues, as well as

in residue composition and identity to other families in the training

set. This makes it difficult to determine why certain families

perform better or worse than others. However, we can eliminate

some potential problems as unlikely. The training database was

carefully prepared and thoroughly checked against available

structural information and the literature; therefore, we expect

that incorrect predictions are not due to errors in the training or

test set annotations. For example, the cAMP binding domain,

which is predicted uniformly as trimer, is observed to form dimers

according to crystal structures [18]. Also, the CC2 domain of

Table 1. Multicoil2 performance on trimer families in leave-
family-out cross-validation.

Trimer Families
Seqs
Correct Incorrect

Residues
Correct Incorrect

Trimer miscellaneous 21 2 815 86

Fibrinogen 24 0 811 0

Fibritin 5 0 165 0

Viral Coat 68 0 2517 0

Fer 14 10 529 406

Hemaglutanin 16 0 471 0

Hsfbp 7 0 210 0

HSF 9 20 291 674

l1orf1 11 3 340 82

laminin 60 10 3192 712

nemo 0 13 0 377

scav_receptor 6 0 312 0

snv 7 0 210 0

tenascin 7 0 212 4

tsp1 19 0 588 0

Total 274 58 10663 2345

doi:10.1371/journal.pone.0023519.t001

Figure 3. Coiled coil detection. Multicoil2, retrained Multicoil and Paircoil2 ROC curves based on leave-family-out cross validation for per-residue
(a) and per-sequence (b) detection. Note the very small values on x-axis for false positive rate.
doi:10.1371/journal.pone.0023519.g003
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Nemo, which is predicted to be a dimer, has been confirmed

through a variety of experiments to form coiled-coil trimers in

solution [19].

Poorly predicted families could have unique sequence features,

not shared by other families, that determine their oligomerization

state. In addition, some families may have sequence features

typical of both training databases. This could happen, e.g., if a

sequence can form both a dimeric and a trimeric coiled coil. In

such cases, the ‘‘incorrect’’ database may provide stronger scores

than the ‘‘correct’’ database. This may be true for Nemo, where it

is predicted that the LZ domain packs against the trimeric CC2

domain in an antiparallel fashion [19]. This complex structure

may impact the residue distribution of the family, causing it to be

poorly predicted.

We expect that the most straightforward route to improving the

performance of Multicoil2 will be to continue to increase the size

of the training databases. We have strongly considered the use of

homology-search methods to increase the membership of the

known families; however, we must express caution, given that

sequence homology does not always imply structure conservation

[20], particularly in the case of coiled coils, where point mutations

have been observed to significantly change structural preferences

[21]. Also, the greatest improvement in leave-family-out perfor-

mance will result from discovering new families that share

sequence features with known families that now perform poorly;

simply adding homologous sequence to existing families will likely

not make significant improvements. Finally, the development of

structure-based methods, which rely less on sequence-based

training sets, provides an alternative route forward [6,22], that

has not yet been extensively tested.

Methods

Database construction
Entries in the NPS coiled-coil database are derived from three

sources: the Paircoil2 training set (P), coiled coils detected in the

PDB using SOCKET (S), and new coiled-coil families described in

the literature (N). The database is organized by coiled-coil

structure and by protein family. Conservative criteria are applied

to identify authentic coiled-coil regions and their appropriate

heptad-register assignments. The Paircoil2 training database

consists primarily of manually annotated sequences from long

coiled coils (i.e. myosins, tropomyosin, intermediate filaments,

viral coat proteins, cortexillin, SNAREs) as well as examples of

shorter coiled coils (e.g. bZIPs, flagellin, hemagglutinin) [9].

To ensure quality of the considered sequences, sequences from

the Paircoil2 database are aligned and compared to seed

alignments constructed manually for each family. Seed alignments

are built from high-confidence examples of coiled-coil family

members; heptad-register assignments for the seed alignments are

inspected and assigned such that they are consistent for all

members. Paircoil2 training set sequences are included only if they

were at least 45% identical to a sequence within the seed

alignment and show no heptad disagreement to the seed

alignments. This step removes approximately 6% of residues from

the Paircoil2 training set. Finally, sequences are eliminated if they

score extremely poorly using the original Paircoil (http://groups.

csail.mit.edu/cb/paircoil/cgi-bin/paircoil.cgi) [8] (raw score

v27.7, likelihood v1%).

Structure-derived training examples resulted from application of

SOCKET [15] to a version of the PQS database [23] downloaded

on September 3, 2008. SOCKET was run with a distance cutoff of

7.0 to reduce the number of structures with knobs-into-holes

packing but not other features typical of extended coiled coils.

Skips and stutters were eliminated by removing 10 residues on

either side of any heptad discontinuity. Sequences shorter than 21

residues were discarded, and the remaining sequences were filtered

for coiled-coil sequence identity no greater than 90%. Sequence-

identity filtering was performed using BLAST-discovered align-

ments between coiled-coil regions only. Contiguous clusters of

sequences linked by edges representing w90% identity were

replaced with the single longest constituent coiled-coil domain.

Structure-derived sequences were grouped into families using

information from the SCOP database [17] by pooling sequences

sharing the same SCOP superfamily.

Coiled-coil families designated as new were not present in either

the Paircoil2 or SOCKET-derived sets of sequences. These

families (astrin [24,25], fer [2], hsfbp1 [26], l1orf1 [27], matrilin

[28], nemo [19], numa [29], snv_n [30], spc110p [3,31], tenascin

[32], tpr [33] and tsp1 [34]) have no representation in the

structural database, but have strong experimental evidence to

support the formation of either a parallel dimeric or parallel

trimeric coiled coil. Seed sequences were downloaded from the

NCBI and the heptad register was assigned using Paircoil2. These

full-length sequences were then used as BLAST [35] queries

against the UniRef100 protein sequence database [36]. BLAST

results were filtered to exclude hits with E-value greater than

1|10{15. Hits were also excluded if the BLAST-provided

alignment did not fully align the coiled-coil region from the query

to the subject. Heptad assignment for hit sequences was copied

from the query, based on the BLAST alignment, and was accepted

if the Paircoil2 P-score of the given heptad was v0.20. The

resulting sequence set was subsequently filtered for coiled-coil

sequence identity no greater than 90%.

The complete database was named NPS (for New families,

Paircoil2, SOCKET). To construct it, sequences from the three

sources were pooled and filtered for coiled-coil sequence identity

no greater than 90%. Entries in the database were annotated

based on oligomerization state (dimer, trimer or tetramer; no other

oligomerization states were represented) and orientation (parallel

vs. antiparallel). Orientation was defined as parallel if all helices

were oriented the same direction, and antiparallel otherwise.

Finally, within each annotation group, families originating from

different primary sources were combined using family information

from the SYSTERS database [37]. Family identification was

Table 2. Multicoil2 performance on dimer families in leave-
family-out cross-validation.

Dimer Families
Seqs
Correct Incorrect

Residues
Correct Incorrect

Dimer miscellaneous 24 28 1127 796

Astrin 27 0 1483 0

IF 233 85 16044 4068

Kinesin 29 2 1832 58

myc 92 23 4165 693

Myosin 209 5 32807 214

cAMP 0 5 0 113

Tropomyosin 77 4 7766 269

Numa 84 3 3596 104

spc 8 0 453 0

tpr 332 8 16940 210

Total 1115 163 86213 6525

doi:10.1371/journal.pone.0023519.t002

Predicting Coiled Coils and Oligomerization States

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23519



determined by using BLAST to compare individual protein

sequences to the SYSTERS non-redundant database, which is

annotated with SYSTERS family IDs. Clusters of families sharing

a common SYSTERS family assignment were combined into a

single family. In particular, TPR (from the new-family source)

clustered together with myosin-like protein (MLP) from the

Paircoil2 database, which has been previously discussed [38].

Database format
The database is organized hierarchically according to oligo-

merization state, helix orientation, protein family and sequence.

Each family is contained within one text file, with each sequence

represented by a four-line record. The first line contains the

protein name or PDB-id and BLAST E-value to the query (plus

query name), where appropriate. The second line contains

structural descriptors drawn from a standardized vocabulary,

such as long parallel homo dimer. In the last two lines, each

sequence is annotated with its coiled-coil domain using heptad-

register notation (a–g). Flanking un-annotated sequence is also

included, although this may not span the entire protein, e.g. when

entries were taken from the PDB or from the Paircoil2 (PC2)

training set. The flanking sequence may or may not form a coiled-

coil structure, and our database is not authoritative for coiled-coil

domain boundaries. The NPS database is available on our website.

Retrained Multicoil
Multicoil was rewritten in Java using the BioJava libraries [39].

The algorithm remains the same as previously published [7]. The

archive containing executable and source code is available upon

request. Re-training Multicoil under cross-validation required two

steps. First, residue frequencies were tallied. Second, three

Gaussian functions are fit to the distributions of dimer, trimer

and non-coiled-coil raw scores. Raw scores and Gaussian fits are

derived under the appropriate validation protocol. For example,

under leave-family-out validation, the raw scores used to fit the

Gaussians are generated through a leave-family-out protocol. A

flow chart describing this process is shown in Figure 4a. This is

different from the testing protocol in the previous version of

Multicoil, where Gaussians were fit to the average of raw scores

from leave-sequence-out and leave-family-out tests, due to the

much smaller amount of available sequence data.

Markov Random Field structure
We model the coiled-coil structure as a series of unobserved

states x1,:::,xn representing coiled-coil heptad states (or the state

corresponding to non-coiled-coil structure), along with the

corresponding observed amino acids y1,:::,yn. In light of the

findings [7] that correlations between nearby residues can help in

coiled-coil prediction, we model the joint probability of all heptad

states and observed amino acids as a product of Markov Random

Field potentials:

p(x1,:::,xn,y1,:::,yn)~

1

Z
P
n

i~1
w1(xi,yi,yi{1,yi{2,:::,yi{7) P

n

i~2
w2(xi{1,xi)

ð1Þ

Here Z is a normalization factor. w1, which represents the

likelihood of a state given nearby amino acids, is a learned

regression over sequence features, defined in Training. w2 defines

state transitions; we set w2 to 1 for valid transitions from state xi{1

to state xi, and 0 otherwise. The valid transitions are shown in

Figure 5. The permissible transitions allowed by w2 enforce several

constraints about the series of states xi. For example, a state in the

coiled coil heptad a position must be followed by a state in the b

position (unless it is the end of the coiled coil). Additionally, any

predicted coiled coils must have length at least 9. There is one

non-coiled coil state, 7 � 9~63 dimer states and 7 � 9~63 trimer

states. The dimer and trimer states are labelled by heptad position

(a–g) and by location within the coiled coil (1–9). The first seven

residues of the coil are labelled 1–7, all the middle residues are

labelled 8, and the last residue is labelled 9. A sample coiled coil

and the corresponding path through states is shown in Figure 6.

Prediction
We seek to assign a probability to each residue in a sequence for

being in a particular coiled-coil dimer or trimer heptad state. The

probability for residue yj depends on the amino-acid sequence:

p(xj jy1,y2,:::,yn). To calculate the probability p(xj jy1,:::,yn), we

follow the forward-backward algorithm [40]. We compute

Z:p(xj ,y1,:::,yn) by summing the right-hand side of equation 1

over all paths through states x1,:::,xj{1,xjz1,:::,xn. This can be

done in linear time using dynamic programming. Then

p(xj jy1,:::,yn)~
Z:p(xj ,y1,:::,yn)P
j Z:p(xj ,y1,:::,yn)

:

The total probability of an oligomerization state at a residue is the

sum over all 63 states for that oligomerization state.

Training
To develop an effective sequence feature, we seek to express the

probability p(x1,::,xn,y1,:::,yn) as a function of different properties

of the amino-acid sequence and coiled-coil state assignment, i.e.

using terms Fj(x1:::xn,y1:::yn). Features Fj can be generated that

describe many different features of a sequence, e.g. the coiled-coil

dimer or trimer propensities of residues, chemical properties of the

residues, and even correlations between residues, as described

below. During the training procedure, such predictors are selected

and weighted to optimize the prediction of oligomerization state

for a set of annotated coiled coils. In defining the probability

p(x1:::xn,y1:::yn), we focus on w1, because, as noted above,

P w2~1 for sequences of states in accordance with Figure 5, and

0 otherwise. For a given set of features Fj , we carefully pick w1 to

satisfy:

Piw1(xi,yi:::yi{7)~exp
XN

j~1

ajFj

 !
for xi dimer states

~exp
XN

j~1

bjFj

 !
for xi trimer states

~1 for non{coiled{coil states

ð2Þ

We optimize the parameters aj and bj for predictive performance

using logistic regression (see Regression).

We consider some features Fj of an amino acid sequence that

may be indicative of coiled-coil propensity. For example,

F1~
P

i log D(i), where D(i) is the empirical probability of

amino acid yi in dimeric coiled-coil state xi. Another is

F2~
P

i log N(i), where N(i) is the empirical probability of

amino acid yi in non-coiled-coil sequence positions.

F3~
P

i Ha(i), the sum of hydrophobicities of the residues yi

over i such that xi has heptad position a. Then we can satisfy the

equations in (2) by setting:
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w1(xi,yi,:::,yi{7)~exp(a1 log D(i)za2 log N(i)za3Ha(i))

~exp(b1 log D(i)zb2 log N(i)zb3Ha(i))~1

for dimer, trimer and non-coiled-coil states, respectively. For other

sequence features, we set w1 such that Pi w1 generates those

features.

Including correlations. We include correlation terms, which

were the main advantage of the Paircoil method, in the potential

function.

Fdimercorr,k~
X

i

log
D(i,i{k)

D(i)D(i{k)

� �

where D(i,izk) is the joint probability of amino acids yi and yizk

occurring distance k apart at the dimer heptad positions of xi and

xizk, respectively. To include Fdimercorr,k and satisfy the equations in

(2), for 1ƒkƒ7, we multiply w1(xi,yi,::yi{7) by an additional factor

if the position of xi§kz1:

exp log
D(i,i{k)

D(i)D(i{k)

� �

Regression
For a good selection of aj and bj , when y1,:::,yn correspond to a

dimeric coiled coil, w1~exp(
P

j ajFj) should be the largest of the

Figure 4. Overview of training of the Multicoil and Multicoil2 algorithms. (a) The raw scores used to generate the Multicoil gaussians for
each of n-1 families are computed based on frequency tables generated from the other n-2 families. (b) The Multicoil2 sequence features for each of
n-1 families are computed based on frequency tables generated from the other n-2 families. Those features are used to find the regression
coefficients, which determine the MRF.
doi:10.1371/journal.pone.0023519.g004
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three predictors. Likewise, when y1,:::yn correspond to a trimeric

coiled coil, w1~exp(
P

j bjFj) should be largest, and w1~1 for

y1:::yn a non-coiled coil sequence. This is exactly the purpose of

multinomial logistic regression. From a labelled training set of

dimer, trimer and negative coils, we compute each of the

predictors Fj . Given the values of each predictor over each coil,

and the correct labelling of each sequence (dimer, trimer, or none),

the multinomial regression returns the desired coefficients aj and

bj .

For training dimer and trimer sequences we use the coiled-coil

database (Database construction). For negative sequences, we must

compute all the candidate predictors on the sequences. However,

these predictors are dependent on heptad alignment, so we

generate sample coiled coils with random heptad alignments from

the negative PDB-minus database, a database of non-coiled coils

in the PDB [9]. For each sequence in the PDB-minus negative

database, we pick a random integer i uniformly in the range 0–

249, choose a random starting heptad h (a–g) and take as our non-

coiled coil the first i residues of the negative sequence (or the entire

sequence if i was at least the length of the sequence). The coiled

coil is assumed to begin at heptad h and continue without any

skips.

The training set included more distinct trimers than dimers, and

many more negative coils than either. The regression was

conducted in STATA [41], and we used the pweight option to

weight the importance of each element in the training set,

normalizing the weight of each sequence in the regression such

that the total weight over all dimers and over all trimers were each

1. The total weight over the non-coiled coils is 1000. The value

1000 is arbitrary but reflects the fact that non-coiled coils are

much more common in sequences than coiled coils, and so our

priors should strongly prefer predicting non-coiled-coil outcomes.

Sequence features
The 8 features used are defined as follows. These are identified

by considering the quality of different regression specifications

through the pseudo r-squared value of the regression.

N dimer probability of residue

X
i

log D(i)

N trimer probability of residue

X
i

log T(i)

N non-coiled-coil probability of residue

X
i

log N(i)

N dimer correlations of distances 1–7

X
k~1{7

X
res

log
D(i,izk)

D(i)D(izk)

 !

Figure 5. Graph of allowed transitions. There are two copies of each state, one for the dimer state and one for the trimer state (the transitions of
the trimer states are omitted - they are identical to the dimer transitions). The ‘‘0’’ nodes at the top and bottom of the figure refer to the same non-
coiled-coil state.
doi:10.1371/journal.pone.0023519.g005

Figure 6. Example of hidden states corresponding to a given
amino acid sequence in the Multicoil2 model.
doi:10.1371/journal.pone.0023519.g006
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N trimer correlations of distances 1–7

X
k~1{7

X
res

log
T(i,izk)

T(i)T(izk)

 !

N non-coiled-coil correlation at distances 1–7

X
k~1{7

X
res

log
N(i,izk)

N(i)N(izk)

 !

N hydrophobicity of residues at the a heptad as measured by the

Eisenberg consensus scale (Eisenberg et al. 1982).

X
heptad~a

Hi

N hydrophobicity of residues at the d heptad as measured by the

Eisenberg consensus scale.

X
heptad~d

Hi

Alpha and beta parameters are estimated for each of these 8

features, for a total of 16 parameters, plus 2 constants. The

constants a0 for dimers and b0 for trimers were included in our

model by multiplying w1(xi,y1,::yi{7) by an additional factor if the

position of xi is 1. For dimer states with position 1, we multiply by

exp(a0) and for trimer position 1 states, exp(b0). We noticed that

these constants cause Multicoil2 to be heavily biased towards

predicting coiled coils. This is likely because for every residue,

there are many potential paths through states that predict the

residue to be in a coiled-coil-conformation, and only one way for

the residue to be in a non-coiled-coil conformation; thus, when we

sum over all paths, we expect a strong bias towards predicting

coiled coils. To compensate for this bias, we subtracted 20 from

both the dimer and trimer constants. This value, while somewhat

arbitrary, sets a reasonable threshold for coiled-coil detection.

Cross-validation
To test the Multicoil2 and Multicoil methods, we use a leave-

family-out testing method to better simulate sequences ‘‘in the

twilight zone.’’ For each family in the coiled-coil-positive NPS

database (Database construction), we leave out that family and

measure performance predicting the sequences from that family

after training on the remaining n-1 families, along with the

negative PDB-minus database. We use family divisions from the

coiled-coil database, except we group all families with four

sequences or fewer into a single miscellaneous family. Multicoil2

returns predictions for each individual residue in the query

sequence, so we turn these residue-by-residue predictions into a

prediction for the overall coiled coil. First we compute, for each

residue in the coiled-coil portion of the sequence, the oligomer-

ization state ratio for that residue. The dimer ratio is given by the

total probability of the residue being in any dimer state, divided by

the total probability that the residue is in a dimer or trimer state.

The trimer ratio is defined analogously. The total dimer score for

the coil is the sum of the dimer oligomerization scores over the

residues corresponding to the coiled coil, and the total trimer score

is the sum of the trimer scores. The ratio of the dimer to trimer

scores gives a statistic for the sequence. We compare the statistic to

a fixed threshold and predict a dimer if it is greater than the

threshold, and trimer if less than the threshold. Varying the

threshold generates predictors with different biases, which are used

to generate the ROC curve (Figure 2).

For optimal results, we train Multicoil2 specially for predicting

families that may be different from any of the training families.

When predicting a sequence from a new family, Multicoil2

features Fj are generated from the frequency tables of the known

families, so when training on n-1 families, we generate the

predictor values for those families based on the frequency

information from the other n-2 families (Figure 4b).
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