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Introduction
Multicollinearity arises when at least two highly correlated 

predictors are assessed simultaneously in a regression model. The 
adverse impact of multicollinearity in regression analysis is very well 
recognized and much attention to its effect is documented in the 
literature [1-11]. The statistical literature emphasizes that the main 
problem associated with multicollinearity includes unstable and biased 
standard errors leading to very unstable p-values for assessing the 
statistical significance of predictors, which could result in unrealistic 
and untenable interpretations [4,7,12,13]. Multicollinearity does not 
affect the overall fit or the predictions of the model [14]. If the purpose 
of the regression model is to investigate associations, multicollinearity 
among the predictor variables can obscure the computation and 
identification of key independent effects of collinear predictor variables 
on the outcome variable because of the overlapping information 
they share. When the predictor variables are highly correlated the 
common interpretation of a regression coefficient of one predictor 
as measuring the change in expected value of the response variable 
due to one unit increase in that predictor variable when holding the 
other predictors constant may be practically impossible [14]. These 
can lead to misleading conclusions for the role of each of the collinear 
predictors in the regression model. For example, using multivariable 
logistic regression to analyze data from a nested case-control study 
revealed that some carotenoids were inversely associated with breast 
cancer suggesting that plasma levels of α- or β-carotene may play a role 
in reducing breast cancer risk [15]. The authors reported that they had 
limited ability to conclude whether the observed association is specific 
for α-carotene due to a high degree of collinearity between the plasma 
carotenoids. As another example, in order to develop efficient public 
health interventions addressing the obesity epidemic, Leal et al. [16] 
had a methodological challenge to disentangle the effects of highly 
correlated neighborhood characteristics and identify exactly which 
aspects of the environments (physical and service) influence obesity 
risk. Individual/neighborhood socioeconomic adjusted physical and 
service-related neighborhood characteristics were inversely associated 
with BMI/waist circumference, but the authors reported that they were 

unable to determine which one of these factors had an independent 
effect on BMI/waist circumference [16]. 

Although conducting a multicollinearity diagnosis does not solve 
nor lead to any specific solution of the problem, realizing its potential 
impact on findings from regression analysis allows a more careful 
interpretation of data. For example, when the purpose of a multivariable 
regression analysis is to explain the individual effects of the predictors 
on an outcome variable, it is important that a potential multicollinearity 
between the predictors be investigated; a potential severity be 
quantified; and potential impact of multicollinearity on the reported 
results are acknowledged and discussed. A recent non-systematic 
review of epidemiological papers listed in PubMed for the period from 
January 2004 to December 2013 by our research team, revealed that in a 
majority of epidemiologic studies that performed regression analysis the 
diagnostic for identifying potential multicollinearity are not performed. 
For example, to investigate the role of the intrauterine environment in 
childhood adiposity, Fleten et al. (2012) [17] considered multivariable 
linear regression analyses of children’s body mass index (BMI) as an 
outcome on several prenatal and postnatal factors, including both 
parental BMIs [17]. The authors noted decrease in both parental-
offspring associations of BMI after adjusting for other factors, but the 
largest decrease in coefficient estimate for a parent’s BMI occurred after 
adjusting for the other parent’s BMI. The parents’ BMI are expected to 
be highly correlated, but no multicollinearity diagnostic was performed 
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to investigate and discuss the potential impact of multicollinearity 
in the instability of the estimated coefficients when BMIs from both 
parents were kept in the regression model. Numerous studies [18-22] 
have shown that BMIs of spouses are correlated possibly due to the 
shared environment and the change in the coefficient estimate may 
be due to collinearity between the BMIs of spouses. Similarly, Desai 
et al. [23] investigated independent effects of selected variables on 
diastolic dysfunction as an outcome variable, defined as severe-diastolic 
dysfunction versus normal diastolic function, using polytomous 
logistic regression analysis [23]. Some of the predictors were BMI, 
waist circumference (WC), triglycerides, total cholesterol, high density 
lipoprotein (HDL), blood glucose, systolic and diastolic blood pressure. 
Multicollinearity diagnostic among the predictors was not discussed 
despite evidence in the literature that significant positive correlation 
among BMI, age, systolic and diastolic blood pressure may exist [24]. 
On the other hand, BMI and WC are some of the widely known risk 
factors for obesity related health outcomes and some studies [25,26] 
reported significant correlation between these two variables that may 
cause multicollinearity when both of these variables are included 
simultaneously in a regression model. Janssen et al. [27] investigated 
whether BMI and WC have independent effects on obesity–related 
health risks using a logistic regression model when adjusting for age, 
gender, smoking, alcohol intake, and poverty ratio [27]. Although, after 
adjusting for confounding variables, WC and BMI individually were 
strong predictors of co-morbidities, when both of these variables were 
included in the model, BMI was no longer a significant predictor. No 
multicollinearity diagnostic was reported in the paper and its potential 
impact on the findings were discussed [27]. Similarly, Feller et al. (2010) 
[26] examined how the risk for type 2 diabetes can be explained by BMI 
and WC. The authors used Cox proportional hazard regression model 
and assessed both variables together including their interaction term. 
The authors reported a high correlation between these variables, but 
they did not conduct multicollinearity diagnostic to determine whether 
reported results for inverse relationship between BMI and diabetes in 
women, or non-significant regression coefficient for BMI, were due to 
multicollinearity [26].

In order to assess the magnitude of this problem in clinical and 
epidemiological studies we estimated the frequency of not performing 
multicollinearity diagnostic in regression analyses by conducting 
a non-systematic search in PubMed for the period from January 
2004 to December 2013. Because of the difference between the 
terms multivariable or multiple regression and the term multivariate 
regressions [28] we restricted the search only to multivariable 
and multiple regressions, which are often used interchangeably 
in epidemiologic literature. Next, among papers using the terms 
multivariable regression, multiple regression or regression, we searched 
for terms collinearity, multicollinearity, collinear or multicollinear. 
The search result revealed that in PubMed the terms collinearity, 
multicollinearity, collinear or multicollinear were found in only 0.12% 
of the studies that used multivariable regression. Although these 
percentages are subject to limitations as whether the papers searched 
had issues related to multicollinearity, it is clear that a majority of 
these papers did not acknowledge and did not discuss the impact of 
multicollinearity on the their findings. 

The main aim of this study was to demonstrate the effect of different 
degrees of multicollinearity among predictors on their regression 
coefficients and the corresponding standard errors estimates as well 
as the potential impact on the p-values using generated simulated 
datasets with different scenarios for multicollinearity between the 
predictors. Since multicollinearity in a regression can involve more 

than two independent variables, in this simulation study we considered 
three independent variables with varying pairwise Pearson product 
moment correlation coefficients. Furthermore, using data from the 
Cameron County Hispanic Cohort (CCHC), we demonstrated the 
effect of multicollinearity caused by Body Mass Index (BMI) and 
waist circumference (WC) on two outcome variables a) systolic 
blood pressure and b) diastolic blood pressure in two separate linear 
regression analyses.

Materials and Methods
Simulation study for investigating the effect of 
multicollinearity on regression parameters

Dataset Generation

Several datasets of sample size 800 with one response variable y 
and three predictors xi, i=1, 2, 3 were generated from a multivariate 
normal distributions MVN ( ) ( )1 2 3µ,   y, , ,  ~ MVN(( ) ,  ) µx x xΣ Σ
with mean vector ( )1 2 3 4, , ,=µ µ  µ  µ  µ =(116.68, 30.98, 101.7, 45.14) 
that resemble the distributions of systolic blood pressure, BMI, waist 
circumference and age observed in CCHC data. For the purpose of 
these simulations, we considered a 4×4 covariance matrix Σ=DRD 
where R is a pre-specified correlation matrix defined in Table 1 and 
D is a diagonal matrix with elements on the diagonal representing the 
standard deviations 21 3, 4 ( ) , ,σ σ σ σ

 
= (17.32, 6.73, 15.35, 15.42) of the 

observed variables systolic blood pressure, BMI, waist circumference 
and age, respectively. The Covariance matrix Σ was calculated using the 
formula ( )

1, 2 1 21, 2  x x x xcov x x  ρ σ σ= , where ρx1, x2 is correlation of two 
random variables x1 and x2; σx1 and σx2 are the standard deviations of x1 
and x2, respectively.

Since the signs of the correlation coefficients between predictors 
and the correlations between the response variable and the predictors 
can moderate the effect of the collinearity on parameter inference 
[12], for the purpose of this simulation study, all pairwise correlation 
coefficients were positive and the correlations between the response 
variable y and the predictors xi, i=1, 2, 3 were fixed and estimated based 
on data from the CCHC, as shown in Table 1. To simulate predictor 
variables with different degree of collinearity, the Pearson pairwise 
correlation coefficients were varied from a weak correlation (i.e.,0<= 
|r|< 0.3) to a moderate correlation (i.e., 0.3≤|r|<0.7) and a strong 
correlation (i.e., |r|>=7). As shown in Table 1, different degrees of 
correlation coefficients were considered between x1 and x2 only, both 
independent of x3. The generated datasets were replicated 1000 times.

Model Comparisons

Various multivariable linear regression models (1) using least 
squares approach were fitted under each of the scenarios representing 
the correlation matrix and dataset replications using the generated 
datasets with response variable y and predictors x1, x2, and x3:

0 1 1 2 2 3 3y x x xβ β β β= + + + + ε ε……………………...........................(1)

where β0, β1, β2, and β3 are the regression coefficients and the error 
term ε is normally distributed with mean 0 and variance 2 2( N(0, ))∼σ ε σ .

Multicollinearity was assessed using variance inflation factor (VIF) 
[14], which measures the inflation in the variances of the parameter 
estimates due to multicollinearity potentially caused by the correlated 
predictors. In each scenario for correlation matrix the average estimates 
of regression coefficient, standard errors, t-test statistics, p-values, and 
VIF over the 1000 simulations were calculated.
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To illustrate the effects of different degrees of multicollinearity 
on regression estimates, the estimated regression coefficients, their 
standard errors, t-test statistics, p-values and VIFs of the models with 
the larger pairwise correlation coefficients between the predictor 
variables x1, x2, and x3 were compared to the those of the model with 
the smallest pairwise correlation coefficients between x1, x2, and x3 in 
scenario 1.

On the other hand, to demonstrate how the coefficient estimates, their 
standard errors, t-test statistics, ρ-values and VIF change when adding 
a variable in the model with different degrees of correlation with other 
variables in the model we fit the multivariable linear regression model. 

	
10 11 1 13 3 1y x xβ β β ε= + + + ……………..(2)

Where β10, β11, and β13 are the regression coefficients and the error 
term ε1 is normally distributed with mean 0 and variance σ1

2 and model 

	  
22 2 23 3 2y x x20β β β ε= + + + ………………..(3)

Where β20, β22, and β23 are the corresponding regression coefficients 
and the error term ε2 is normally distributed with mean 0 and variance 
σ2

2. The averaged parameter estimates for variables x1 and x2 from 
models (2) and (3) are then compared to the corresponding estimates 
from model (1). For simplicity, these comparisons were performed only 
under correlation scenarios 1, 2, 3 and 4 where the correlation between 
x1 and x2 increased from 0.1 to 0.85, while the correlation coefficients 
between x1 and x3, x2 and x3 were held fixed at 0.1. 

Empirical example for multicollinearity based on the analysis 
of Cameron County Hispanic Cohort data

To demonstrate the effect of multicollinearity between predictors in 
regression models in real life epidemiologic studies, in this section we 
present the analyses of empirical data from Cameron County Hispanic 
Cohort (CCHC) using linear regression models. The study population 
is the Brownsville population represented by CCHC initiated in 
Cameron County, Texas in 2004, and currently includes more than 3000 
participants of age 18 years or older. Information regarding sampling 
and eligibility criteria of the cohort participants and data collection has 
been reported previously [29]. 

The response variables of interest were baseline systolic blood 
pressure and diastolic blood pressure as continuous variables. Readings 
of blood pressure were taken following standard protocols. Participants 
sat quietly for 5 minutes and then readings were taken three times 5 

minutes apart using a Hawksley Random Zero sphygmomanometer. 
Diastolic blood pressure was determined at the 5th Korotkoff sound. The 
final pressure was based on the average of the 2nd and 3rd measurements. 

The predictors of interest were Body mass index (BMI) and waist 
circumference (WC), known to be highly correlated obesity related 
risk factors. Other covariates, such as age at initial visit (baseline), 
family history of hypertension, smoking and drinking status, as well as 
education were included in the regression analysis. Waist circumference 
(visceral adiposity) was measured at the level of the umbilicus to 
the nearest 10th cm, with the participant in a standing position and 
breathing normally. Height was measured to the nearest 10th cm using 
a stadiometer. Weight (to the nearest 10th kilogram) was measured on 
a calibrated beam balance. BMI was calculated as weight in kilograms 
divided by height squared in meters (kg/m2).

The Committee for the Protection of Human Subjects at the 
University of Texas Health Science Center at Houston approved the 
study protocol, written consent forms and procedures and free and 
informed consent was obtained from all subjects. The investigators had 
no conflict of interest to disclose at consent.

Data Analysis

Three linear regression models for each of the predictors systolic 
and diastolic blood pressure were fitted using least squares approach: 
(1) models with BMI and waist circumference individually and (2) 
a model including both predictors BMI and waist circumference, all 
controlled for the effect of age, gender, smoking and drinking status, 
family history of hypertension and education level. Multicollinearity 
between BMI and waist circumference was assessed using VIF [14]. 
In order to investigate the potential effect of multicollinearity, based 
on the results from the simulation study, we estimated the regression 
coefficients and their corresponding standard errors and p-values 
of BMI and waist circumference when both variables were included 
in model (2), which was compared to the corresponding regression 
parameters estimates from using model (1). 

All simulations and statistical analyses were performed using SAS 
9.4 [30]. All statistical tests were two-sided and were performed at 5% 
level of significance.

Results
Simulation study

Table 2 provides the averaged estimates of regression coefficient, 
standard errors, t-test statistics, p-values and VIF over the 1000 
simulations under each correlation scenario. The comparisons, 
measured in percent change, of estimates from models with higher 
degree of multicollinearity to estimates from the model with the lowest 
degree of multicollinearity in scenario 1.

Scenarios with two correlated predictors: In correlation matrix 
scenarios 1, 2, 3 and 4 the correlation between x1 and x2 increased 
from 0.1 to 0.85, while the correlations between x1 and x3, x2 and x3 
were held fixed at 0.1. Larger change as well as a switch in the sign and 
the statistical significance of the regression coefficient estimates was 
observed for one of the variables x1 involved in the multicollinearity 
when the correlation between x1 and x2 was 0.5 and 0.85. In the last two 
cases VIF for variable x1 was 1.34 and 3.64, respectively.

Scenarios with three correlated predictors: In correlation matrix 
scenarios 5, 6, and 7 variable x2 had a weak to moderate correlation 
with variable x3 (r=0.25), and at the same time variable x2 had a varying 

Correlation 
Scenario

Corr 
(y, x1)

Corr 
(y, x2)

Corr 
(y, x3)

Corr 
(x1, x2)

Corr 
(x2, x3)

Corr 
(x1, x3)

1 0.17 0.2 0.43 0.1 0.1 0.1
2 0.17 0.2 0.43 0.25 0.1 0.1
3 0.17 0.2 0.43 0.5 0.1 0.1
4 0.17 0.2 0.43 0.85 0.1 0.1
5 0.17 0.2 0.43 0.25 0.25 0.1
6 0.17 0.2 0.43 0.5 0.25 0.1
7 0.17 0.2 0.43 0.85 0.25 0.1
8 0.17 0.2 0.43 0.85 0.5 0.1
9 0.17 0.2 0.43 0.25 0.25 0.25

10 0.17 0.2 0.43 0.5 0.5 0.5
11 0.17 0.2 0.43 0.85 0.5 0.25
12 0.17 0.2 0.43 0.85 0.85 0.5

Table 1: Correlation matrices R considered in simulating datasets with variables y, 
x1, x2, and x3 with  different degrees of collinearity.
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Correlation 
Scenario 

(Corr(x1, x2), 
Corr(x2, x3), 
Corr(x1, x3))

Predictor 
Variable

Parameter 
Estimate

Standard 
Error  t Value Pr > |t|  VIF

%Change in 
Coefficient 
Estimate 
based on 

scenario 1*

% Change 
in Standard 
Error based 
on scenario 

1*

% Change 
in t Value 
based on 

scenario 1*

% Change 
in Variance 

Inflation based on 
scenario 1*

1 (.1,.1,.1)

Intercept 70.08 4.34 16.18 <.0001 0 0.00 0.00 0.00 0.00
x1 0.3 0.08 3.65 0.0101 1.02 0.00 0.00 0.00 0.00
x 2 0.17 0.04 4.68 0.0008 1.02 0.00 0.00 0.00 0.00
x 3 0.45 0.04 12.86 <.0001 1.02 0.00 0.00 0.00 0.00

2 (.25,.1,.1)

Intercept 72.93 4.14 17.63 <.0001 0 4.07 -4.61 8.96 0.00
x1 0.24 0.08 2.9 0.0382 1.08 -20.00 0.00 -20.55 5.88
x 2 0.15 0.04 4.21 0.0038 1.08 -11.76 0.00 -10.04 5.88
x 3 0.46 0.04 12.91 <.0001 1.02 2.22 0.00 0.39 0.00

3  (.5,.1,.1)

Intercept 76.11 3.93 19.4 <.0001 0 8.60 -9.45 19.90 0.00
x1 0.17 0.09 1.86 0.1746 1.34 -43.33 12.50 -49.04 31.37
x 2 0.14 0.04 3.46 0.0122 1.34 -17.65 0.00 -26.07 31.37
x 3 0.46 0.04 12.95 <.0001 1.02 2.22 0.00 0.70 0.00

4 (.85,.1,.1)

Intercept 77.08 4.02 19.21 <.0001 0 9.99 -7.37 18.73 0.00
x1 -0.05 0.15 -0.34 0.495 3.64 -116.67 87.50 -109.32 256.86
x 2 0.2 0.07 2.93 0.0359 3.63 17.65 75.00 -37.39 255.88
x 3 0.47 0.04 13.14 <.0001 1.01 4.44 0.00 2.18 -0.98

5 (.25,.25,.1)

Intercept 78.92 4.07 19.43 <.0001 0 12.61 -6.22 20.09 0.00
x1 0.29 0.08 3.48 0.015 1.07 -3.33 0.00 -4.66 4.90
x 2 0.08 0.04 2.2 0.1138 1.13 -52.94 0.00 -52.99 10.78
x 3 0.45 0.04 12.33 <.0001 1.07 0.00 0.00 -4.12 4.90

6 (.5,.25,.1)

Intercept 82.52 3.83 21.56 <.0001 0 17.75 -11.75 33.25 0.00
x1 0.28 0.09 2.95 0.0344 1.34 -6.67 12.50 -19.18 31.37
x 2 0.05 0.04 1.13 0.3327 1.41 -70.59 0.00 -75.85 38.24
x 3 0.46 0.04 12.55 <.0001 1.07 2.22 0.00 -2.41 4.90

7 (.85,.25,.1)

Intercept 87.48 3.86 22.71 <.0001 0 24.83 -11.06 40.36 0.00
x1 0.44 0.16 2.77 0.0455 3.81 46.67 100.00 -24.11 273.53
x 2 -0.06 0.07 -0.82 0.4069 4.02 -135.29 75.00 -117.52 294.12
x 3 0.48 0.04 12.68 <.0001 1.12 6.67 0.00 -1.40 9.80

8 (.85,.5,.1)

Intercept 118.26 3.74 31.68 <.0001 0 68.75 -13.82 95.80 0.00
x1 2.69 0.2 13.39 <.0001 7.33 796.67 150.00 266.85 618.63
x 2 -1.28 0.1 -12.63 <.0001 9.69 -852.94 150.00 -369.87 850.00
x 3 1 0.05 18.74 <.0001 2.72 122.22 25.00 45.72 166.67

9 (.25,.25,.25)

Intercept 82.52 4.06 20.33 <.0001 0 17.75 -6.45 25.65 0.00
x1 0.13 0.09 1.46 0.268 1.12 -56.67 12.50 -60.00 9.80
x 2 0.1 0.04 2.66 0.0594 1.11 -41.18 0.00 -43.16 8.82
x 3 0.44 0.04 11.84 <.0001 1.12 -2.22 0.00 -7.93 9.80

10 (.5,.5,.5)

Intercept 97.9 3.84 25.5 <.0001 0 40.10 -11.52 58.34 0.00
x1 -0.15 0.1 -1.49 0.249 1.5 -150.00 25.00 -141.10 47.06
x 2 0 0.04 0.03 0.5073 1.5 -100.00 0.00 -100.43 47.06
x 3 0.51 0.04 11.7 <.0001 1.5 15.56 0.00 -8.71 47.06

11 (.85,.5,.25)

Intercept 103.2 3.88 26.66 <.0001 0 46.59 -10.60 63.91 0.00
x1 0.85 0.17 5.08 0.0003 4.23 180.00 112.50 37.26 315.69
x 2 -0.38 0.08 -4.69 0.0006 5.29 -317.65 100.00 -197.86 419.61
x 3 0.58 0.04 13.15 <.0001 1.57 28.89 0.00 1.48 53.92

12 (.85,.85,.85)

Intercept 254 4.27 59.59 <.0001 0 262.84 -1.61 268.85 0.00
x1 5.41 0.15 35.53 <.0001 10.1 1706.67 87.50 875.07 889.22
x 2 -4.31 0.11 -39.22 <.0001 27.4 -2635.29 175.00 -939.53 2574.51
x 3 2.95 0.07 44.27 <.0001 10.1 555.56 75.00 244.87 890.20

Table 2:  Results from multivariable linear regression models fitted using simulated data under different scenarios for pairwise correlations between the predictors. 
*Comparison of estimates of models with higher degree of multicollinearity to estimates of the model with the lowest degree of multicollinearity in scenario 1.

correlation from 0.1 to 0.85 with variable x1, while the correlation 
between x1 and x3 were held fixed at 0.1. As the correlation between the 
two variables x1 and x2 increased, the results showed changes in estimates 

and values of test statistics for all variables when compared to the model 
in scenario 1. Larger changes were observed for variables x1 and x2, in 
particular for variable x2, which altered the statistical significance of the 
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regression coefficient estimates when the correlation between x1 and x2 
became 0.25, and altered its sign when the correlation between x1 and 
x2 was 0.85. Similar were the results in correlation scenario 8 when the 
correlation between x2 and x3 was increased to 0.5.

Interesting were the results in correlation scenarios 5, 9 and 10. In 
the correlation scenario 5 the correlation in two pairs was set to 0.25 
and in the correlation scenario 9 the pairwise correlation between all 
three variables was set to 0.25. Larger changes in regression coefficient 
estimates, standard errors, values of test statistics, and switch in the 
statistical significance to non-significance were observed for two of the 
predictors (x1 and x2), while the change in VIF was only 9.8 % (from 
VIF=1.02 to VIF=1.12). The results were similar to correlation scenario 
10 where the pairwise correlation between all three variables was set 
to 0.5. The only difference was that with the increase of the pairwise 
correlation between all variables from 0.25 (scenario 9) to 0.5, regression 
coefficient estimate of one of the variables (x2) changed its sign.

Finally, in the last two scenarios the correlation between x1 and 
x2 was set to 0.85. All variables were involved in multicollinearity of 
different degrees by varying the pairwise correlations between x1 and 
x3 and x2 and x3 from 0.25 to 0.85. The percent change in the coefficient 
estimates, standard errors, values of test statistics and VIF was very 
large and switching in signs was observed for coefficient estimate of 
variable x2.

Table 3 presents how the coefficient estimates, their standard 
errors, values of test statistics, p-values and VIF changed when adding 
variable x1 (or x2) in the model with variable x2 (or x1) and x3, and 
the correlation between x1 and x2 increased from 0.1 to 0.85, while 
the correlations between x1 and x3 (Model (2)), x2 and x3 (Model (3)) 
was fixed at 0.1. Models (2) and (3), respectively, with two predictors 
with fixed correlation resulted in identical regression coefficients and 
corresponding standard errors estimates across the four correlations 
scenarios. When variable x2, was added to model (2) with predictors 
x1 and x3 and the correlation between x1 and x2 was 0.5 and 0.85 
increasing in standard error estimates (12.5% and 87.5%), decrease 
in the magnitude of the regression coefficient estimates (-48.5% and 
-115.2%), and switching in the sign and the statistical significance was 
observed for variable. In contrast, the inclusion of variable x2 in model 
(2) with predictors x1 and x3 when the correlation between x1 and x2 
was 0.1 or 0.25 did not impact as high the magnitude of the regression 
coefficient estimates of variable x1 (9.1% and 27.3%); its standard error 
remained unchanged (0.0% and 0.0%) and therefore it did not alter its 
significance.

Results from the analysis of CCHC data

BMI and WC were highly correlated with correlation coefficient of 
0.86 (p-value<0.0001). The correlation coefficients between BMI and 
WC and the rest of the covariates included in the models were less than 
0.2. Table 4 presents the results from multivariable linear regression 
models of systolic and diastolic blood pressure on BMI (model 1), waist 
circumference (model 2) and BMI and waist circumference (model 3) 
when covariates age, gender, smoking and drinking status, family history 
of hypertension and education level were added of these models. When 
BMI and waist circumference were assessed individually, they were 
significantly associated with systolic blood pressure, controlling for the 
other covariates. When both variables BMI and waist circumference 
were assessed together in a model, BMI was still significantly associated 
with systolic blood pressure (p-value<0.0001) but the association 
of waist circumference with systolic blood pressure was no longer 
significant (p-value=0.0526). The changes in BMI coefficient estimate 

and its standard error in the last model were 33% and 125%, respectively; 
and for waist circumference -162% and 100%, respectively. In addition, 
when BMI and waist circumference were assessed in separate models, 
while other covariates kept in the model, their VIFs were 1.01 and 
1.06, respectively. When BMI and waist circumference were assessed 
together, while other covariates kept in the model, their VIFs increased 
to 4.48 and 4.46, respectively, indicating potential for multicollinearity. 

Similar results were observed in the models for diastolic blood 
pressure when the effects of BMI and waist circumference assessed 
individually or both in the model simultaneously. When assessed 
individually, BMI and waist circumference were significantly associated 
with diastolic blood pressure (both p-values<0.0001), controlling 
for the other covariates. When both variables BMI and waist 
circumference were included together in a model and controlled for the 
other covariates., BMI was still significantly associated with diastolic 
blood pressure (p-value<0.0001), but the association between waist 
circumference and diastolic blood pressure was no longer significant 
(p-value=0.0679). In the models with BMI and WC, coefficient estimate 
for BMI increased by at least 30% and the standard error of coefficient 
estimate for BMI increased by more than 100%. Changes were observed 
in the coefficient estimate and its standard error for WC, by more than 
140% and a reduction of 100%, respectively. VIF of BMI and waist 
circumference in the three models changed as well. When BMI and 
waist circumference were assessed in separate models, while controlling 
for the other covariates, their VIFs were 1.01 and 1.06, respectively. 
When BMI and waist circumference were included together in a model, 
while controlling for the other covariates, their VIFs changed to 4.48 
and 4.46, respectively.

Discussion
Using simulated data we demonstrated how different degrees 

of multicollinearity between independent variables in multivariable 
regression models affected the parameter estimates of the collinear 
variables in the model and their standard errors. According to the Gauss-
Markov Theorem if all the underlying assumptions of the regression 
models are met (e.g., correctly specified with no assumptions violated), 
then the least square regression coefficient estimates are unbiased 
and have minimum variance among all unbiased linear estimators 
[14]. This is true even in the presence of high collinearity between 
the regression predictors as long as they are estimable. Although the 
parameter estimates are unbiased in the correctly specified model (1) 
in all different correlation scenarios, the comparisons across scenarios 
showed that even small increase in the pairwise correlation from 
0.1 (correlation scenario 1) to 0.25 (correlation scenario 2) caused 
changes in the magnitude of the regression coefficient estimates and 
their standard errors for the collinear variables. The magnitude of the 
changes in the regression slopes estimates and their variances were 
related to the degree of collinearity between the predictors in the model. 
Mathematically, the regression coefficient estimates and their variances 
can be expressed as functions of the correlations of each predictor with 
all of the other predictors [14,31]. The greater the correlation between 
the predictors in the model the greater the change in the slopes estimates 
and their standard errors. 

When only two of the predictors in model (1) were correlated 
with correlation coefficient of 0.5 and there were no other correlations 
among the predictors in the models the statistical significance of one 
of the correlated variables diminished due to the change in regression 
coefficient and standard error estimate. The variables involved in this 
multicollinearity had VIFs of 1.34. When the correlation between the 
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Models
  Model (2) Model (3) Model (1)

Model (2) compared 
to Model (1)

 

Model (3) compared 
to Model (1)

 

Correlation 
Scenario 
(Corr(x1, x2), 
Corr(x2, x3), 
Corr(x1, x3))

Variable Parameter 
Estimate SE Pr > |t| VIF Parameter 

Estimate SE Pr > |t| VIF Parameter 
Estimate SE Pr > |t| VIF

%Change 
in 
Parameter 
Estimates

%Change 
in SE

%Change 
in 
Parameter 
Estimates

%Change 
in SE

1 (.1,.1,.1) Intercept 85.24 2.92 <0.0001 0 77.5 3.86 <0.0001 0 70.08 4.34 <0.0001 0 -17.79 48.63 -9.57 12.44

  x1 0.33 0.08 0.005 1         0.3 0.08 0.01 1 -9.09 0    

  x 2         0.18 0.04 4.00E-
04 1 0.17 0.04 8.00E-

04 1     -5.56 0

  x 3 0.47 0.04 <0.0001 1 0.47 0.04 <0.0001 1 0.45 0.04 <0.0001 1 -4.26 0 -4.26 0

2 (.25,.1,.1) Intercept 85.42 2.92 <0.0001 0 77.45 3.85 <0.0001 0 72.93 4.14 <0.0001 0 -14.62 41.78 -5.84 7.53

  x1 0.33 0.08 0.005 1         0.24 0.08 0.038 1.1 -27.27 0    

  x 2         0.18 0.04 6.00E-
04 1 0.15 0.04 0.004 1.1     -16.67 0

  x 3 0.47 0.04 <0.0001 1 0.46 0.04 <0.0001 1 0.46 0.04 <0.0001 1 -2.13 0 0 0

3 (.5,.1,.1) Intercept 85.27 2.92 <0.0001 0 77.48 3.86 <0.0001 0 76.11 3.93 <0.0001 0 -10.74 34.59 -1.77 1.81

  x1 0.33 0.08 0.004 1         0.17 0.09 0.175 1.3 -48.48 12.5    

  x 2         0.18 0.04 1.00E-
04 1 0.14 0.04 0.012 1.3     -22.22 0

  x 3 0.47 0.04 <0.0001 1 0.46 0.04 <0.0001 1 0.46 0.04 <0.0001 1 -2.13 0 0 0

4(.85,.1,.1) Intercept 85.21 2.92 <0.0001 0 77.46 3.86 <0.0001 0 77.08 4.02 <0.0001 0 -9.54 37.67 -0.49 4.15

  x1 0.33 0.08 0.004 1         -0.05 0.15 0.495 3.6 -115.15 87.5    

  x 2         0.18 0.04 3.00E-
04 1 0.2 0.07 0.036 3.6     11.11 75

  x 3 0.47 0.04 <.0001 1 0.47 0.04 <0.0001 1 0.47 0.04 <0.0001 1 0 0 0 0

Table 3: Comparison of estimates between multivariable linear regressions nested models fitted using simulated data under scenarios from 1 to 4 for pairwise correlation 
between the predictors. 

same variables increased to 0.85 (e.g., highly positively correlated) the 
regression coefficient of the same correlated variable changed its sign 
from positive to negative (e.g., the regression coefficient estimates of the 
correlated variable had opposite signs). The variables involved in this 
multicollinearity had VIFs of 3.64 and 3.63, respectively.

Further, we demonstrated how multicollinearity involved more than 
two variables with weak pairwise correlation coefficients and impacted 
the coefficient estimates and their standard errors. Reduction in the 
statistical significance was observed when more than two predictors in 
the model had the pairwise correlation increased to 0.25. VIF for the 
variable that changed the statistical significance was 1.13. 

We compared the estimates from a model with two predictors 
with pairwise correlation of 0.1 to the corresponding estimates from 
the models after adding a third variable with different degrees of 
correlation with one of the variables already in the model. Based on 
the current simulation study the models with two predictors were 
miss-specified models and the models with three predictors were the 
correctly specified models. In this case the changes in the regression 
estimates and their standard errors when adding a third variable in 
the model were result of adding an incorrectly omitted variable in the 

model. However, increase in changes in the regression slope and its 
standard error were only observed for the predictor with the increased 
degree of pairwise correlation from 0.1 to 0.85 with the added variable 
in the model, controlling for the other covariates. The change in the 
slope for the second variable in the model with two predictors, which 
had a very small pairwise correlation of 0.1 with the added predictor, 
was smaller and no change in the standard error was observed. 

Using CCHC data we found that, when assessed individually in two 
separate linear regression models, the two highly correlated variables 
BMI and waist circumference were significantly an directly associated 
with systolic and diastolic blood pressure after controlling for age, 
gender, smoking and drinking status, family history of hypertension and 
education level. Given that the correlation between BMI and WC was 
very high (r=0.86), we expected a significant impact on magnitude and 
direction of regression parameter estimates and their standard errors. 
This effect was observed when analyzing data from the CCHC study 
when both variables BMI and WC were assessed together. Specifically, 
when evaluated together, only BMI was significantly associated 
with systolic and diastolic blood pressure, while the estimate of WC 
coefficient was no longer significant and with a negative coefficient. 
Similar effect was also demonstrated with the simulation studies when 
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Variables
 

Estimates
 

Models* for Systolic Blood Pressure Models* for Diastolic Blood Pressure

Model 1† Model 2‡ Model 3^ Model 1† Model 2‡ Model 3^

BMI

Coefficient estimate 0.4   0.53 0.34   0.43

SE 0.04   0.09 0.03   0.06

p-value <0.0001   <0.0001 <0.0001   <0.0001

VIF 1.01   4.48 1.01   4.48

Waist circumference

Coefficient estimate   0.13 -0.08   0.12 -0.05

SE   0.02 0.04   0.01 0.03

p-value   <0.0001 0.0526   <0.0001 0.0679

VIF   1.06 4.67   1.06 4.67

† Model 1 includes BMI; ‡ Model 2 includes waist circumference; ^Model 3 includes BMI and waist circumference. *All models are adjusted for age, gender, smoking 
and drinking status, family history of hypertension and education level.

Table 4: Results from multivariable linear regression models of systolic and diastolic blood pressure fitted using Cameron County Hispanic Cohort data, 2003-2014. 

a third predictor was added to the model with two predictors. In reality 
the researcher does not know what the true model is and larger changes 
in slope estimates and variances when adding (or removing) a variable 
in a model may indicate a potential for multicollinearity. Lastly, the 
indication for potential multicollineaity issue - the VIFs for BMI and 
WC increased from 1.01 and 1.08 to 4.48 and 4.67, respectively, when 
evaluated together in a regression model.

Since this study focused on recognition of multicollinearity in 
regression analysis, in this paper we do not fully discus the findings 
from the CCHC data. The results from the individual analysis of BMI 
and WC were in agreement with the direction of results reported from 
other studies that increased BMI and WC were associated with elevated 
blood pressure [32-34]. When BMI and WC were entered together in 
a linear regression model for systolic and diastolic blood pressure, WC 
was no longer significantly associated with systolic and diastolic blood 
pressure. Similarly, in another study conducted by Song et al. (2014) 
[35] only BMI was associated with blood pressure and high blood 
pressure when evaluated together with WC in a logistic regression [35].

Multicollinearity diagnostic

When a multicollinearity diagnostic is considered, pairwise 
correlation coefficients between predictors and VIF are the most 
common tools for inspection used by statisticians and epidemiologists. 
Some investigators use correlation coefficients cutoffs of 0.5 and above 
[36] but most typical cutoff is 0.80 [37]. Although VIF greater than 5 or 
VIF greater than 10 [14] are suggested for detecting multicollinearity, 
there is no universal agreement as what the cut-off based on values of 
VIF should be used to detect multicollinearity. Our study demonstrated 
that even VIF<5 could impact the results from an epidemiologic study. 
Caution for misdiagnosis of multicollinearity using low pairwise 
correlation and low VIF was reported in the literature for collinearity 
diagnostic as well [37-39]. O’Brien (2007) [8] demonstrated that VIF 
rules of thumb should be interpreted with cautions and should be put 
in context of the effects of other factors that influence the stability of 
the specific regression coefficient estimate [8,40] and suggested that 
any VIF cut-off value should be based on practical consideration. 
Freund et al. [40] also suggested VIF to be evaluated against the 
overall fit of the model, using the model R2 statistics. VIF>1/(1-overall 
model R2) indicates that correlation between the predictors is stronger 
than the regression relationship and multicollinearity can affect their 
coefficient estimates [40]. Other commonly used multicollinearity 

diagnostic measures are the condition number (CN), sometimes called 
condition index (CI) assisted by the regression coefficients variance-
decomposition proportion [41]. High variance decomposition-
proportion of two or more regression coefficients associated with a high 
condition index indicates which variables are potentially involved in 
the multicollinearity. 

Coping with multicollinearity

Multicollinearity may result due to population unrepresentative 
sample or insufficient information in the sample. For example, if the 
data do not include relevant variables for the model specification 
or the sample size is small to evaluate the effects. In these situations 
the statistical and epidemiological literature suggest to collect more 
variables, or increase the sample size which theoretically should 
reduce the standard errors of the slopes. The CCHC study for systolic 
and diastolic blood pressure illustrated that the large sample size not 
always result in small standard errors in the presence of a high degree of 
collinearity. When collinear variables are in a perfect or nearly perfect 
linear relationship, another approach which follows from the definition 
of linear dependency1 is to express one of the collinear variables as a 
function of the other collinear variable, knowing prior quantification 
of their relationship, combine them in a new variable and use the new 
variable in the regression model. Other approaches for coping with 
multicollinearity proposed in the literature are principal component 
analysis (PCA) [42,43], partial least squares regression (PLS) [44] as an 
alternative approach to PCA, or ridge regression method [45].

Waist circumference had a non-significant effect on systolic and 
diastolic blood pressure when evaluated together with BMI. This means 
that in the presence of the information provided by BMI, WC does not 
add additional significant information to the prediction of the systolic 
and diastolic blood pressure. Alternatively, since the effect of WC and 
BMI cannot be disentangled, the significance of their joint effect on 
systolic and diastolic blood pressure can be evaluated using two degrees 
of freedom likelihood-ratio test or Wald test. When the direction of the 
association between predictors and outcome variable is not important, 
one can use multivariate General Linear Models (MGLM) [46,47] to 
assess the joint effect of BMI and WC on systolic and diastolic blood 
pressure by switching the correlated independent variables BMI and 
WC with the dependent variable can be used as well. MGLM method 
1 A finite set { }1 2, , ,= … mS x  x   x of vectors in Rn is said to be linearly 
dependent if there exist scalars (real numbers) 1 2, , ,… mc  c   c , not all of which are 0, 
such that c1x11 2 2tc c x 0+ +…+ =m mc x .
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has been shown to be highly efficient in reducing and minimizing 
multicollinearity due to high correlations between independent 
variables when obtaining estimates of the standard error for estimated 
regression parameters [48]. 

Strength and limitations

The simulation study was designed to represent closely the CCHC 
dataset. The variables used in the simulation were generated to be 
similar in distribution to that of the systolic blood pressure, BMI, 
waist circumference, and participant’s age in the CCHC study. Using 
simulation studies, we demonstrated what would be the impact of 
different degrees of multicollinearity on regression estimates and 
statistics in linear regression models. The findings from the analysis 
of the simulated data aided the interpretation of the findings from 
the CCHC study. The CCHC study was performed based on available 
data of 2874 participants which provided adequate power to be able 
to detect significance of a coefficient estimate for a covariate involved 
in multicollinearity in a multivariable linear regression analysis. 
Despite this large sample size, we demonstrated that the effect of the 
multicollinearity between BMI and WC had very high impact on 
the findings from the linear regression analysis. Although the work 
presented here is based on linear regression models, the findings 
from this study are generalizable to other regression models including 
Cox proportional-hazards, logistic, Poisson, and Negative binomial 
regression models. 

Our studies have some limitations. These studies illustrated a 
multicollinearity effect between continuous variables. However in 
practice multicollinearity effect may occur between continuous and 
categorical, or categorical only variables. In addition, since the main 
purpose of the study was to demonstrate the role of multicollinearity 
in regression analysis in the presence of correlated predictors we did 
not use the developed sampling weights from the CCHC which were 
created to account for imbalances in the distribution of sex and age due 
to unequal participation of household members in the census tracts and 
to scale the sample to the population [29].

Conclusions
A majority of researchers do not report multicollinearity diagnostic 

when analyzing data using regression models. Using simulated datasets 
and real life data from the Cameron County Hispanic Cohort, we have 
demonstrated the adverse effects of multicollinearity in the regression 
analysis and encourage researchers to consider the diagnostic for 
multicollinearity as one of the major steps in the regression analysis 
process. Based on our simulation and CCHC study we recommend that 
along with the bivariate correlation coefficients between the predictors 
in the model and the VIFs, researchers should always examine the 
changes in the coefficient estimates along with the changes in their 
standard errors and even the changes in VIF. VIF less than 5 (VIF<5) 
does not always indicate low multicollinearity. A caution must be taken 
when more than two predictors in the model have even weak pairwise 
correlation coefficients (r=0.25) as they can result in a significant 
multicollinearity effect.
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