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Multicomponent blood analysis
by near-infrared Raman spectroscopy

Andrew J. Berger, Tae-Woong Koo, Irving Itzkan, Gary Horowitz, and Michael S. Feld

We demonstrate the use of Raman spectroscopy to measure the concentration of many important
constituents ~analytes! in serum and whole blood samples at physiological concentration in vitro across
a multipatient data set. A near-infrared ~830-nm! diode laser generates Raman spectra that contain
superpositions of Raman signals from different analytes. Calibrations for glucose, cholesterol, urea, and
other analytes are developed by use of partial least-squares cross validation. We predict six analytes in
serum with significant accuracy in a 66-patient data set, using 60-s spectra. The calibrations are shown
to be fairly robust against system drift over the span of seven weeks. In whole blood, a preliminary
analysis yields accurate predictions of some of the same analytes and also hematocrit. The results hold
promise for potential medical applications. © 1999 Optical Society of America

OCIS codes: 170.1470, 170.5660.
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1. Introduction

Many researchers have investigated methods of mea-
suring blood constituents ~analytes! optically.
These approaches include absorption ~both mid-
nfrared1–7 and near-infrared8–17!, polarization,18–20

elastic scattering,21–23 photoacoustic,24 and various
types of Raman ~spontaneous Stokes25–30 and anti-
Stokes,31 and stimulated Stokes32,33!. In many
cases, the underlying goal is to develop a noninvasive
technique for monitoring one or more analytes; in
other situations, simpler or more accurate off-line, in
vitro measurements are sought. Interest in this
field is strong, particularly within the community of
diabetic patients for whom glucose monitoring is a
critical application.

In previous research we used near-infrared Raman
spectroscopy and multivariate calibration methods to
extract analyte concentrations from aqueous sam-
ples34 and single-donor doped whole blood,35 in both
cases at high concentrations. Here we extend the
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Raman approach to demonstrate in vitro measure-
ent of analytes in serum and whole blood samples

rom a large ~69 samples!, multipatient data base.
he samples are obtained directly from a local hos-
ital and contain analytes at physiological concentra-
ions. Using integration times of 1 min or less, we
redict multiple analytes’ concentrations in the se-
um samples with significant accuracy. A prelimi-
ary analysis of the whole blood data, without
orrection for the turbidity of the samples, shows that
nalyte detection is possible even in the absence of
uch correction. The results indicate the potential
alue of Raman spectroscopy for applications in blood
nalyte monitoring.

2. Experimental Methods

A. Blood Samples

Blood samples were obtained from 69 patients at
Beth Israel Deaconess Medical Center. Part of each
sample was allowed to clot and then centrifuged,
thereby removing all cellular components and clot-
ting proteins. Each of the resulting serum samples
was then analyzed on the hospital’s commercial in-
strument to yield concentrations of a set of analytical
quantities, and the remainder was refrigerated at
4 °C. Another portion of the blood was mixed with
an anticlotting agent ~EDTA! and analyzed for he-

atocrit ~red blood cell volume fraction!. As with
erum, the remainder of the whole blood sample was
efrigerated at 4 °C as soon as possible; however, hos-
ital protocol did not permit good control over this
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step, so a variable delay of as much as 3 h of the
samples’ sitting at room temperature was introduced.
During this time, the glucose level could decay sig-
nificantly, and other analyte levels might also
change.36,37 In an effort to obtain a more relevant
lucose reading, a portion of each refrigerated whole
lood sample was removed, centrifuged, and ana-
yzed for plasma glucose concentration on the morn-
ng of the day on which Raman spectra were
cquired. It was this reading that was used as the
eference concentration. From each of 69 patients,
herefore, we obtained two samples ~serum and whole

blood! and three printouts listing serum analyte lev-
els, the whole blood hematocrit, and the corrected
plasma glucose level for the whole blood sample.

Samples were obtained over a span of seven weeks.
Each week, samples from 8 to 11 patients were re-
ceived, for a total of 69 samples each of serum and
whole blood. To perform the spectral measure-
ments, we transported the refrigerated samples from
the Beth Israel Deaconess Medical Center to the MIT
laboratory, which was approximately 15 min away by
car.

All the blood samples were drawn from patients for

Fig. 1. Experimental setup for acquisition of Raman spectra from
blood samples: BPF, bandpass filter; P, prism; S, blood sample;
L1–L4, lenses; NF, notch filter; FB, fiber bundle. See text for
details.

Fig. 2. Twenty spectra from each of the two data sets, demon
other purposes. Our assisting technicians at-
tempted to find some samples with extreme glucose
concentrations to represent the range of diabetic pa-
tients’ glucose levels; no other selection criterion was
used in choosing samples. The vast majority of the
samples came from relatively stable patients with
mostly normal blood analyte levels.

B. Raman Spectroscopy System

A schematic of the Raman spectroscopy system is
shown in Fig. 1. Near-infrared light at 830 nm is
supplied by a diode laser ~SDL! and filtered by a
holographic grating ~Kaiser!. The laser beam is di-
rected onto the blood samples via a prism mounted in
the umbra of a Cassegrain microscope objective ~Eal-
ing!; this arrangement makes the delivery and col-
ection optics coaxial. Light collected by the

icroscope objective is notch filtered, transformed by
fiber optic bundle into a line, and imaged onto the

lit of an fy1.8 spectrograph ~Kaiser!. The spectro-
graph disperses the image of the slit horizontally
across a two-dimensional CCD array detector, 1152
pixels wide by 770 pixels high. Spectra were created
by binning of the CCD output into tall superpixels,
resulting in an 1152-element spectrum. Overlapped
spectra of 20 representative serum samples, mea-
sured from two different weeks, are shown in Fig.
2~a!; 20 spectra of whole blood samples appear in Fig.
2~b!. The spectral resolution of the data is 6 cm21.

The total spectral acquisition time per sample was
5 min ~an arbitrary time chosen for the convenience of
running multiple samples in an afternoon!, divided
into 30 frames of 10 s each that were first processed
to remove spurious cosmic ray signals ~with a frame-
y-frame comparison to identify outlying spectral
ata points! and then coadded. Methanol spectra
ere measured several times each day to provide

orrections for laser intensity fluctuations. Spectra
orresponding to a range of integration times from
0 s to 5 min could thus be created for a single sam-
le. We exploited this degree of freedom during the
ata analysis, using the full 5 min per spectrum when

ng the typical spread in the data: ~a! serum, ~b! whole blood.
strati
1 May 1999 y Vol. 38, No. 13 y APPLIED OPTICS 2917
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building the concentration prediction algorithms but
using shorter amounts of time when submitting spec-
tra for concentration prediction, for reasons ex-
plained below.

To minimize heating artifacts caused by the high
laser intensity ~250 mW focused into a spot approxi-
mately 50 mm in diameter!, we stirred the blood sam-
ples continuously, using a magnetically driven
cylindrical pellet. As shown in Fig. 1, the pellet sat
at the base of the sample cuvette, below the laser
interaction region. Using this method, we reduced
the heating effects sufficiently to obtain the results
described. However, small time-dependent drifts in
the spectra were still observed, and the samples in
the cuvettes felt warm to the touch after 8 min of
laser exposure ~including the dead time from 30 CCD
readouts!, so heating was not completely eliminated.
Temperature was not explicitly measured in this ini-
tial investigation; in a future experiment we intend to
monitor and control it and determine its significance,
if any.

C. Spectral Background Removal

As Fig. 2 shows, measured blood spectra consist of
multiple sharp Raman peaks, 10 to 50 cm21 in width,
riding atop a background that, while it is fairly flat,
varies considerably from sample to sample. These
fluctuations do not correlate with any analyte’s con-
centration. However, spectra from the same week
tend to bunch together in the plot ~not discernible in
the figure!, suggesting that the background is influ-
enced by changes in system alignment. The back-
ground was removed mathematically by subtraction
of a sloped straight line from each spectrum by least-
squares fitting; this procedure minimally affected the
shape of the Raman peaks. In the resulting
background-subtracted spectra of serum and whole
blood, shown in Fig. 3, the spectra overlap much more
nearly completely than before.

The strong peak of phenylalanine near 1000 cm21

was used as an internal wave-number standard. In

Fig. 3. Same data as in Fig. 2 after linear baseline subtraction
emphasizing Raman peaks: ~a! serum, ~b! whole blood.
918 APPLIED OPTICS y Vol. 38, No. 13 y 1 May 1999
the spectra from weeks 5–7 this peak was observed to
have shifted by one CCD pixel element relative to
those from the first four weeks. Therefore, before
data analysis, the spectra from these later weeks
were mathematically shifted to align the peaks with
those of the earlier weeks.

D. Multivariate Data Analysis

If the blood Raman spectra are linear superpositions
of the constituent analytes’ spectra, with each spec-
tral contribution proportional to that analyte’s con-
centration,25,27,34 one can extract concentrations from
the spectral data by using linear multivariate cali-
bration, with the best method of extraction depending
on the breadth of calibration data available. The
method of partial least squares38–40 ~PLS! was chosen
ecause it is designed to predict the concentration of
n analyte even when other analytes are present and
arying in unknown ways, as is the case with blood
amples. Like all other linear methods, PLS pre-
icts a concentration by forming a weighted linear
ombination of the measured spectral intensities.
he weighting coefficients can themselves be plotted
s a spectrum that is sometimes called the regression
ector, or b-vector; various formulas exist for comput-
ng the b-vector from a PLS calibration.38,41 In a

system that contains N constituents, each analtye’s
spectrum can be regarded as the sum of two line
shapes, one of which can be modeled completely by
the other N 2 1 analytes’ spectra and one of which is
orthogonal to their spectra. The second of these two
line shapes is the b vector. As such, the b-vector
represents that which is unique about an analyte’s
spectral signature. It is therefore a useful diagnos-
tic tool for interpreting a PLS calibration. Promi-
nent features of the b-vector indicate spectral regions
that contain information about the concentration of
the target analyte. Different b-vectors can extract
different analytes’ concentrations from the same
spectrum. Another source of valuable qualitative
information is provided by the sets of basis spectra

ich removes the gross fluctuations, creating better overlap and
, wh



w
w

w
r
P
p

g
a
b
t
p

t
s
t
t

a
t
o
s
t
d
t
m
d

Table 1. PLS Prediction Results for Serum Data Set
derived by PLS to model the sample spectra. These
line shapes are called weight and loading vectors, and
the weight vectors in particular often contain spectral
features that are noticeably similar to those of a
known constituent.38 Unlike the b-vector, which re-
flects the overall calibration algorithm, no single
weight vector is guaranteed to contain recognizable
spectral features of the target analyte; however, in-
asmuch as the b-vector inherently contains a mixture
of the target analyte’s spectrum and other analyte’s
spectra,41 peaks from the target analyte can appear
more clearly in weight vectors, without so much in-
terference. The signal-to-noise ratio ~SNR! of peaks
in the first few weight vectors is also usually better
than in the b-vector, which is a weighted sum of many

eight and loading vectors, some of which have much
orse SNR’s.
Background-subtracted spectra of serum and
hole blood were provided, along with the measured

eference concentrations of various analytes, to the
LS algorithm. The spectra were binned over five
ixels to create a pixel spacing of ;8 cm21 ~the wave-

number dispersion of the spectrograph is not con-
stant across the spectrum!; other bin sizes were
tested and led to prediction accuracies similar to
those reported below. The portions of the spectra
below 565 cm21 and above 1746 cm21 were discarded,
the former because of the cutoff limit of the notch
filter to remove the 830-nm laser line, the latter be-
cause of the falloff in sensitivity of the CCD detector.
The PLS algorithm mean-centered the spectra and
the concentrations as its first step.38 Using PLS, we
constructed b-vectors to predict the concentration of
lucose, urea, cholesterol, triglyceride, total protein,
lbumin, and hematocrit in both serum and whole
lood. We assessed the accuracy of the PLS predic-
ions by computing the root-mean-squared error of
rediction ~RMSEP! for each analyte in each of the

two blood media. Once a calibration was estab-
lished, the prediction of a sample’s concentration took
less than a second.

To test the robustness of the PLS modeling, a
leave-one-week-out cross validation was used. All
calculations were performed in MATLAB with in-house
routines. PLS b-vectors were developed with spec-
ra from six of the weeks and then applied to the
pectra from the seventh week to generate concen-
ration predictions, with each week rotated out in
urn until all samples were predicted. By cycling

Analyte Reference Error RMSEP

Glucose 3 mgydL 26 mgydL
Cholesterol 4 mgydL 12 mgydL
Triglyceride 3 mgydL 29 mgydL
BUN ~urea! 0.9 mgydL 3.8 mgydL
Total protein 0.1 gydL 0.19 gydL
Albumin 0.09 gydL 0.12 gydL
out an entire week’s samples at once, we prevented
any information about their spectral backgrounds
from influencing the b-vector. We chose this
approach specifically to test for robustness against
system fluctuations from week to week; leave-one-
sample-out cross validations can exhibit spurious
ability to correct for such fluctuations.15,42 Although
our observation was that our system background var-
ied randomly from one week’s alignment to the next,
we also performed supplementary leave-half-out val-
idations in which the first four weeks’ data were used
to predict concentrations in the last three weeks’ and
vice versa. These extra validations, in which the
calibration and prediction sets were formed from non-
overlapping time periods, tested for robustness
against time-dependent system drift on the scale of
weeks.

In each case, the full 5 min of spectral data for the
six calibration weeks were used but the time for the
predicted week was systematically reduced until we
began to sacrifice prediction accuracy in the cross
validation. Different time limits were reached for
different analytes, as discussed below. The different
treatment of the integration times for calibration and
prediction reflects the practical constraints on blood
analyzers: Whereas an instrument’s calibration
data can be collected over relatively long times, in
most instances the clinical performance must be as
rapid as possible.

3. Results and Discussion

A. Serum

1. Prediction Accuracy
Table 1 lists, for the serum data set, the parameters
of the PLS cross validation and the resulting RMSEP
values for each of six analytes: glucose, total choles-
terol, triglyceride, urea ~reported in clinicians’ units
of blood urea nitrogen, or BUN!, total protein, and
lbumin. Although similar PLS analyses were at-
empted, no prediction accuracy was observed for the
ther analytes measured by the analyzer ~creatinine,
odium, potassium, chloride, carbon dioxide, alanine
ransaminase, aspartate transaminase, lactate dehy-
rogenase, creatine kinase, alkaline phosphatase, to-
al bilirubin, direct bilirubin, calcium, phosphate,
agnesium, uric acid, and iron!. Some of these ad-

itional analytes are monatomic and are not expected

r2
Integration

Time ~s!

Spectral
Range
~cm21!

PLS
Model
Rank

0.83 60 720–1602 11
0.83 60 565–1746 9
0.88 60 565–1746 10
0.74 60 720–1602 10
0.77 10 565–1746 10
0.86 10 720–1602 4
1 May 1999 y Vol. 38, No. 13 y APPLIED OPTICS 2919
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to generate Raman scattering signals; the remainder
generate sufficiently low signals, because of low con-
centration or low Raman cross section, that they can-
not be detected over the spectral noise in the acquired
data, although longer integration times might have
yielded different results. The corresponding plots of
predicted versus reference concentrations for the six
analytes appear in Fig. 4. All six plots show a visible
correlation between the predicted and the reference
concentrations, with r2 values of 0.74 or higher. Of
the 69 samples, 2 were contaminated by handling
errors and 1 yielded a spectrum with twice the back-
ground of any other as the result of an obvious heat-
ing residue formed on the cuvette’s inner surface
during data acquisition; all the remaining 66 were
included in the cross validation.

Spectral bin size, spectral range, and model rank
~number of iterations of the PLS modeling loop! are
ll free parameters in a PLS model. Excessive vari-
tion of their values in a cross-validation study can
ead to spurious minimization of the RMSEP. The
pectral bin size and range were chosen based on
hysical considerations ~the natural linewidth of typ-

ical biological Raman bands and the detection win-
dow of our spectrometer–CCD system, respectively!.
All analytes reported here were predicted accurately
by use of these parameters, with RMSEP values that
were insensitive to small changes in the spectral
range end points. A second, smaller spectral range
~720–1602 cm21! was also explored and yielded

Fig. 4. PLS predictions of analyte concentrations in serum data
rotein, ~f ! albumin.
920 APPLIED OPTICS y Vol. 38, No. 13 y 1 May 1999
slightly better results for three of the six analytes.
Model rank was chosen to minimize the RMSEP, but
the dependence on rank was always weak in the vi-
cinity of the minimum, as expected for robust predic-
tions.38,39

All the analytes were predicted just as accurately
with 60-s spectra as with the full 5-min spectra.
When the time was reduced still further, predictions
of four of the analytes began to degrade, implying
that the shrinking spectral SNR was now the limiting
source of prediction error.41 However, albumin and
total protein accuracy remained unchanged, even at
10 s. Two observations help to explain this result.
First, proteins are the dominant constituents of se-
rum, and many of the dominant peaks in the serum
Raman spectra can be assigned to proteins,43,44 so the
spectral SNR for proteins is higher than for other
analytes. In addition, note from Table 1 that the
hospital reference analyzer’s precision, determined
by the running of quality control standards, is nearly
the same as the RMSEP for these two analytes. Un-
der such conditions, the analyzer’s own uncertainty
becomes a limiting source of prediction error. In the
case of albumin, it is even likely that the PLS cali-
bration would prove to be more accurate than the
hospital analyzer if it were tested against a more-
accurate standard.45 Taken together, these obser-
vations suggest an explanation for the stability of the
protein predictions: The spectral SNR may be suf-
ficiently high that it does not affect the prediction

glucose, ~b! cholesterol, ~c! triglyceride, ~d! urea ~BUN!, ~e! total
: ~a!
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Table 2. Comparison of Healthy Adult Ranges of Serum Analyte
uncertainty, which instead is limited by the error in
the reference analyzer, even for the lowest integra-
tion time explored.

2. Comparison of Observed RMSEP and Clinical
Parameters
This work is intended as a feasibility study and is not
a measure of the ultimate accuracy that can be
achieved by the Raman technique. Nevertheless, a
short mention of some typical medical parameters is
useful for placing the current results in a clinical
context and for estimating the extent of necessary
future improvements. Because glucose is of such
importance to the community of diabetic patients, a
special chart, called the Clarke error grid,46 has been
developed for plotting glucose predictions versus a
reference technique. Simply reporting a percent er-
ror or an absolute error is not useful for a clinician
facing a treatment decision. The grid method pro-
vides a qualitative sense of how useful or harmful the
glucose predictions would be to a diabetic patient in
various stages of hyper-glycemia or hypoglycemia;
boundary lines are not to be regarded as absolute.
Region A corresponds to a correct clinical decision
based on the Raman-predicted value; region B, an
acceptable clinical error in either direction; regions C
through E, increasingly harmful incorrect decisions.
For a method to be useful, most predictions should
fall in the regions labeled A and B. Our serum glu-
cose predictions are plotted on this chart in Fig. 5.
In reporting the results of this initial study, we in-
corporate the error grid plot simply to provide a
graphic sense that a RMSEP of 26 mgydL begins to
approach the level of clinical usefulness. The figure
also reveals that none of our samples fell in the hy-
poglycemic region near 70 mgydL, where prediction
accuracy is most crucial; this was so because such
samples were not readily available from our patient
population. In a future study we hope to obtain or

Fig. 5. Clarke error grid plot of glucose concentration predictions
in serum. The predictions are all in the A and B regions, which
are the desirable regions for clinical accuracy. See text for details.
create samples that span this region. The inclusion
of hypoglycemic samples should not present any fun-
damentally new challenges; as long as the basic as-
sumptions of linear superposition are still met, the
RMSEP for such samples will be the same as for any
others.

To provide clinical context for the other five ana-
lytes, we list in Table 2 the RMSEP values obtained
for all six along with their associated concentration
ranges for healthy adults.47 The rightmost column
provides a normalized index for the approximate
number of resolvable concentration bins into which
the RMSEP divides the healthy range. The larger
this number, the more clinical resolution is provided
by the RMSEP. As the table shows, the Raman pre-
dictions of albumin, total protein, and cholesterol
have the highest values, from 8 to 11, and glucose, at
1.5, has the lowest clinical resolution. Although tar-
get accuracies depend on the particular application,
this rough index correctly shows that the Raman glu-
cose prediction accuracy would need to be improved
to be clinically useful, whereas the Raman protein
and lipid predictions in this study already achieve or
closely approach clinically significant accuracy.
Some specific threshold values for increases in ana-
lyte concentrations, taken from a 1978 survey of doc-
tors’ opinions on medical decision making,48 are the
following: BUN, 6 mgydL ~patient on daily dosage of
gentamicin sulfate!; cholesterol, 20 mgydL ~routine
physical!; and triglyceride, 20 mgydL ~routine phys-
ical!. In the first two cases, the current Raman RM-
SEP is lower than the threshold value for clinical
action; in the third case it is 50% higher.

3. Calibration Checks
As was mentioned above, a simple wave-number cal-
ibration, with a peak near 1000 cm21 used as an
internal standard, was performed; however, this cal-
ibration did not totally remove the effects of drift.
Leave-half-out cross validations ~weeks 1–4 and

eeks 5–7 predicting each other! were performed to
easure the robustness of the leave-one-week-out

rocedure against system drift. To correct for the
ffect of having smaller calibration sets than in the
eave-one-week-out analysis, odd–even cross valida-

Concentrationsa and RMSEP Values from PLS Concentration
Predictionsb

Analyte Healthy Range Dconc RMSEP DconcyRMSEP

Glucose 70–110 mgydL 40 26 1.5
Cholesterol 150–250 mgydL 100 12 8.3
Triglyceride 10–190 mgydL 180 29 6.2
BUN ~urea! 8–23 mgydL 15 3.8 3.9
Total protein 6.0–7.8 gyL 1.8 0.19 9.5
Albumin 3.2–4.5 gyL 1.3 0.12 10.8

aRef. 47.
bThe final column lists the ratio of the concentration range to the

RMSEP, providing a roughly normalized index of the clinical rel-
evance of the RMSEP. A higher ratio indicates finer resolution
and therefore higher clinical relevance.
1 May 1999 y Vol. 38, No. 13 y APPLIED OPTICS 2921



p
h
b
t
i
p
o
a
l
c
f
T
a
t
e
b
i
w

o
l
w
n
c
g
g
o
d
c
t

t
t
s
n
d
i
t

p
~

Table 3. Comparison of RMSEP Values for Odd–Even and

2

tions ~the odd-numbered and even-numbered weeks
redicting each other! were also performed; these too
ad smaller calibration sets but permitted overlap
etween the dates on which calibration and valida-
ion data were gathered. Results of these cross val-
dations, performed with 300-s data to yield the best
ossible results, are listed in Table 3, with leave-half-
ut plots for three analytes ~glucose, cholesterol, and
lbumin! shown in Fig. 6. As Table 3 reveals, the
eave-half-out RMSEP values are higher than the
orresponding odd–even values by factors that range
rom 0 to 25%, with only glucose higher than 15%.
he calibrations therefore do have some instability
gainst system drift, which should be studied further
o correct more carefully for its effects. However,
ven with the modest amount of wave-number cali-
ration performed in this study, the extent of the
nstability is relatively minor over the scale of seven
eeks, especially for analytes other than glucose.
Although a prediction plot demonstrates the ability

f PLS to extract concentration predictions, it is the
ine shapes from the calibration process, namely, the
eight vectors and the overall b-vector, that illumi-
ate the underlying physical correlation. Figure 7
ompares the second glucose weight vector and the
lucose b-vector with a spectrum of pure aqueous
lucose that was acquired independently and binned
ver five pixels in the same way as the PLS-analyzed
ata. From all the weight vectors, the second was
hosen because the glucose peaks are most evident
here; there is no particular significance to its being

Half-and-Half ~i.e., Leave-Half-Out! Cross Validationsa

Analyte
Odd–Even

RMSEP
Half and Half

RMSEP
Increase

~%!

Glucose 24 mgydL 30 25
Cholesterol 13 mgydL 15 15
Triglyceride 29 mgydL 32 10
BUN 3.3 mgydL 3.5 6
Total protein 0.21 gydL 0.21 0
Albumin 0.14 gydL 0.15 7

aSee text for details. 300-s spectra were used in both cases.

Fig. 6. PLS leave-half-out predictions of analyte concentrations
effects are minor; see also Table 3 and the discussion in text. ~a
922 APPLIED OPTICS y Vol. 38, No. 13 y 1 May 1999
he second one derived. The prominent spectral fea-
ures in the weight vector and the b-vector have the
ame shape as the spectrum of glucose at those wave
umbers, showing that the PLS predictions are in-
eed based on the Raman signature of glucose. Sim-
lar verifications for other analytes will performed in
he future, as discussed below.

Another important check on the significance of PLS
redictions is a table of the correlation coefficient
sij

2ysisj! among different analytes’ reference con-
centrations; this information is provided in Table 4.
If two analytes in a training set have highly corre-
lated concentrations, then PLS can predict both by
using the signal from only one; if the correlation is not
valid for the entire population from which the train-
ing set is drawn, then the accuracy of the cross-
validation results can be spurious. From the table,
however, we can see that the only large correlation,
between albumin and total protein, is an expected
one, because albumin is the main protein in serum.

rum. The accuracy of the predictions implies that system drift
cose, ~b! cholesterol, ~c! albumin.

Fig. 7. Comparison of pure glucose Raman spectrum in saline
~top!, second PLS weight vector for glucose in serum ~middle!, and
PLS b-vector for glucose prediction in serum ~bottom!. The ap-
pearance of glucose features in the weight vector and the b-vector
demonstrate that the multivariate analysis has extracted the Ra-
man signature of glucose.
in se
! Glu



Table 4. Correlation Coefficient Between Different Analytes’
The remaining low correlation coefficients in Table 4
indicate that the calibrations for other analytes are
based on separate spectral signatures and contain no
spurious results.

Concentrations in the Serum Analysis Studya

G C Tr B Tp A

G 1 20.06 0.06 0.25 20.09 20.14
C 1 0.18 20.09 0.11 0.19

Tr 1 0.01 20.02 20.03
B 1 20.14 20.17

Tp 1 0.62
A 1

aG, glucose; C, cholesterol; Tr, triglyceride; B, BUN; Tp, total
protein; A, albumin. See text for details.

Table 5. PLS Prediction Results for Whole Blood Data Set

Analyte
Reference

Error RMSEP r2
PLS Model

Rank

Glucose 3 mgydL 79 mgydL 0.18 10
Cholesterol 4 mgydL 40 mgydL 0.19 12
Triglyceride 3 mgydL 80 mgydL 0.55 10
BUN ~urea! 0.9 mgydL 5.9 mgydL 0.65 12
Total protein 0.1 gydL 0.35 gydL 0.62 9
Albumin 0.09 gydL 0.27 gydL 0.67 12

Fig. 8. PLS predictions of serum analyte concentrations from who
achieved for serum, four of the plots have visible correlations with
~d! urea ~BUN!, ~e! total protein, ~f ! albumin.
B. Whole Blood

The prediction parameters and RMSEP values for
the same six analytes are given in Table 5 for the
whole blood data set, and the corresponding predic-
tion plots appear in Fig. 8. There were no obvious
outliers in the data set; therefore spectra of all 69
samples were included in the analysis, with a fixed
spectral range of 720–1602 cm21. For maximum
prediction accuracy, the full 5 min of spectral data
were needed. As anticipated, prediction accuracy
decreased for all six analytes relative to the serum
results. For glucose, in particular, the predictive re-
sult is not significant. However, four of the other
analytes still exhibit significant correlation between
the Raman-derived and reference concentrations.
The additional analytical parameter, hematocrit, was
predicted with high accuracy, as shown in Fig. 9.
We obtained these predictions by processing the data
as if blood were a clear medium, and as such the
results are preliminary. We expect that a model in-
corporating the variable turbidity of blood should
yield improved accuracy; attempts to develop such a
model are under way.

Note that the SNR for signals measured in whole
blood is lower than in serum, as evidenced in Fig. 10.
The figure shows dissolved glucose spectra obtained
in phosphate-buffered saline ~same data as in the top
panel of Fig. 7!, serum, and whole blood, with a spec-

od data. Although the plots are all less accurate than the results
lues greater than 0.5. ~a! Glucose, ~b! cholesterol, ~c! triglyceride,
le blo
r2 va
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trum of the medium alone subtracted in all cases to
remove the effects of the medium and the instrument.
Although the saline and serum signals are nearly
equal, the whole blood signal is approximately four
times weaker. Coupled with the fact that the serum
generates only approximately twice as much spectral
background as whole blood, and therefore only 1.4
times as much shot noise, this means that the SNR in
blood is smaller by a factor of ;3. This reduced SNR
in the whole blood calibration set relative to the se-
rum data set presumably also contributes to the ob-
served decrease in prediction accuracy.

4. Conclusions

We have demonstrated that Raman spectra of serum
and whole blood can be acquired and analyzed by use
of PLS to extract concentration predictions of many
important blood analytes. In serum, the results can

Fig. 9. Hematocrit cross-validation results for whole blood sam-
ples. The RMSEP is 2.7 percentage units, with an r2 of 0.73.

eference analyzer accuracy is 0.4 percentage unit.

Fig. 10. Spectra of glucose obtained in saline ~PBS!, serum, and
hole blood. The signal from blood is seen to be approximately

our times lower than that from the nonturbid media.
924 APPLIED OPTICS y Vol. 38, No. 13 y 1 May 1999
be obtained rapidly ~10–60 s! for six analytes. Ex-
amination of the PLS b-vector for glucose confirms a
spectral correlation with the known Raman line
shape of that analyte. Preliminary processing of
whole blood data, with no correction for the effects of
turbidity, nevertheless yields significant prediction
accuracy for four of six analytes predicted in serum
and additionally for hematocrit. Leave-one-week-
out cross validations, supported by leave-half-out
checks, demonstrate that the PLS calibrations are
fairly robust against fluctuations in the alignment of
the measuring system, although an increase in the
glucose RMSEP suggests that further attempts to
correct for drift are warranted. These results indi-
cate the level of practicality and sensitivity of Raman
spectroscopy for potential blood analysis applica-
tions.

Future research will address concentration calcu-
lations and the effects of turbidity. The concentra-
tion predictions here were generated with PLS and
used the known Raman spectrum of glucose solely to
validate the calibration ~Fig. 10!; however, we re-
cently developed a new calibration technique that
incorporates an analyte’s spectrum directly into the
calibration procedure. This technique, called hybrid
linear analysis, has been shown to generate more-
accurate calibrations than PLS.49,50 For consis-
tency, PLS was used for all results reported here, but
once a more comprehensive set of pure analyte spec-
tra is obtained ~only glucose was measured as of this
writing!, the data will be reanalyzed by hybrid linear
analysis. PLS weight vectors and b-vectors will also
be compared with these pure analyte spectra, as men-
tioned above. In addition, a study is under way to
aid in the understanding of the effects of whole blood
turbidity on Raman signal strength, linearity, and
spatial distribution in an attempt to improve both our
signal collection and our concentration prediction
technique.
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