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Abstract: A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were 

synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between  

N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired 

heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and 

high resolution mass spectrometry. These compounds were investigated as corrosion 

inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy 

(EIS) technique. The results indicate that these heterocyclic compounds are promising 

acidic corrosion inhibitors for steel. 
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1. Introduction 

1,2,3-Triazoles are present in a number of compounds with assorted biological activities such as 

anticancer, antibacterial, antifungal, anti-tubercular, and anti-HIV properties [1,2]. Nowadays, the 

copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC, also known as the copper(I)-catalyzed 

Huisgen-Meldal-Sharpless cycloaddition) is the most widely used method for the synthesis of  

1,4-disubstituted 1,2,3-triazoles from a wide range of organic azides and terminal alkynes [3–7]. 

Moreover, this process allows for the assembly of complex molecules, thus generating new unknown 

structures with an added potential biological and engineering value [8–10]. Monopropargyl pyrimidine 

nucleobases (uracil and thymine) are versatile building blocks for the synthesis of biologically relevant 

1,2,3-triazoles [11]. They are generally used as starting material for the synthesis of triazole 

nucleosides [12–19], triazole nucleotides [20–23], oxiconazole analogues [24], nucleopeptides [25], 

inhibitors of human topoisomerase type II [26], and nucleoamino oxyacids [27]. Further, these propargyl 

nucleobases are also used in the synthesis of organogels [28], and as corrosion inhibitors [29]. In the last 

years, the corrosion inhibition of steel in acid solutions by nitrogen-containing heterocyclic compounds 

has been extensively studied. In this regard, 1,2,4-triazole derivatives are considered to be effective 

acidic corrosion inhibitors [30–34]. Recently, some 1,2,3-triazole derivatives have been reported as a 

new class of corrosion inhibitors in acidic media [35–39]. 

To continue with our project on the synthesis of organic inhibitors for acidic corrosion of steel 

grade API 5L X52 [29], a series of new 1,2,3-triazole derivatives of nucleobases which incorporate the 

known structural features of corrosion inhibitory activity such as pyrimidine nucleobases (uracil and 

thymine) [40], and the 1,2,3-triazole moiety [35–39] were synthesized. This class of nitrogen 

heterocyclic compounds is of particular interest because of their promising corrosion inhibitory activity. 

2. Results and Discussion 

2.1. Synthesis 

Propargyl nucleobases 3–4 are accessible after just one preparation step starting from the corresponding 

uracil and thymine with propargyl bromide under basic conditions (K2CO3 or DBU) [41–43] or employing 

bis(trimethylsilyl)pyrimidine nucleobase [44–46]. Due to the feasibility of performing selective 

alkylation at N-1, the propargylation of bis(trimethylsilyl)pyrimidine method was selected to prepare 

compounds 3–4. Thus, uracil was treated with N,O-bis-(trimethylsilyl)acetamide (BSA) and propargyl 

bromide in dry acetonitrile under different conditions. Stirring the reaction mixture for 11 days at room 

temperature provided the desired product 3 in low yield (20%). When refluxing in dry CH3CN for 3 h 

was attempted, the TLC (CH2Cl2/MeOH, 95:5 v/v) showed a mixture of N-1-propargyluracil 3 and  

1,3-dipropargyluracil. The optimum conditions for the propargylation reaction involved stirring at 45 °C 

for 72 h. Here, the 1,3-dipropargyl uracil was not observed in the reaction (TLC) and the desired 

product 3 was obtained in 64% yield after workup and purification by recrystallization (Scheme 1). 

Similarly to 3, the desired product N-1-propargylthymine 4 was prepared and isolated in 87% yield 

(Scheme 1). 
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Scheme 1. Propargylation of pyrimidine nucleobases 1–2. 

 

With compounds 3–4 in hand, we then performed a one-pot three-component 1,3-dipolar 

cycloaddition reaction [47–50] to generate a series of 1,4-disubstituted 1,2,3-triazole nucleobases. 

Based on our previously reported methodology [29,51], the reaction between monopropargyl 

nucleobases 3–4, sodium azide, and several benzyl halides was carried out in the presence of a 

catalytic amount of Cu(OAc)2·H2O in EtOH-H2O (2:1 v/v) at room temperature for 24 h to give the 

desired products 5–14 in good yields (Table 1). 

Table 1. One-pot three-component click reaction. 

 

Entry Compound R1 R2 X Yield a (%) 

1 5 H H Cl 84 
2 6 H F Cl 90 
3 7 H Cl Cl 80 
4 8 H Br Br 83 
5 9 H I Br 81 
6 10 CH3 H Cl 81 
7 11 CH3 F Cl 90 
8 12 CH3 Cl Cl 87 
9 13 CH3 Br Br 83 
10 14 CH3 I Br 85 

a Isolated yields after purification. 

The structures of the prepared compounds were confirmed by 1H- and 13C-NMR spectroscopic 

methods, and mass spectra. The 1H and 13C-NMR signals for 1,2,3-triazole nucleobases 5–14 were 

assigned with the help of standard 2D heteronuclear correlation method (Tables 2 and 3). A singlet 
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observed in the 1H-NMR spectrum at δ = 8.10–8.13 ppm confirmed the presence of the triazolyl 

hydrogen, supported by the signals in the 13C-NMR spectrum at δ = 124.1–124.3 ppm. The signals for the 

quaternary carbon of the triazole ring appeared at δ =143.2–143.5 ppm in the 13C-NMR spectrum. These 

chemical shift values are consistent with those reported for 1,4-disubstituted 1,2,3-triazoles [29,51,52]. 

The signals of the aromatic carbons in compounds 6 and 11 can be readily assigned based on their 

JCF coupling constants (Tables 2 and 3). For example, the 13C-NMR spectrum for compound 6 shows 

four doublets at 162.4, 116.1, 130.9, and 132.7 ppm with values of JCF = 244.0 (1J), 21.4 (2J), 8.8 (3J), 

and 2.5 (4J) Hz, respectively. 

Table 2. 1H, and 13C-NMR chemical shifts (ppm) for compounds 5–9 in DMSO-d6. 

HN

N

O

O

N
N

N

R

12

4
3 5

6

7
8
9

10
11
12

12 13

13

14

R = H (5)
F (6)
Cl (7)
Br (8)
I (9)

 

 
 

2-C 

3-H  

4-C 

5-H 

5-C 

6-H 

6-C 

7-H 

7-C 

 

8-C 

9-H 

9-C 

10-H 

10-C 

 

11-C 

12-H 

12C 

13-H 

13-C 

14-H 

14-C 

5 
 

151.3 
11.29 

 

164.3 

[a] 

101.8 

7.71 

146.1 

4.89 

43.0 

 

143.2 

8.10 

124.2 

[a] 

53.4 

 

136.4 

[a] 

128.5 

[a] 

129.3 

[a] 

128.7 

6 
 

151.3 
11.28 

 

164.2 

5.55 

101.8 

7.71 

146.1 

4.89 

43.0 

 

143.3 

8.10 

124.1 

5.53 

52.5 

 

132.7 

7.36 

130.9 

7.17 

116.1 

--- 

162.4 

7 
 

151.3 
11.28 

 

164.2 

5.55 

101.8 

7.71 

146.1 

4.89 

43.0 

 

143.3 

8.11 

124.3 

5.54 

52.5 

 

135.4 

7.30 

130.5 

7.40 

129.3 

--- 

133.4 

8 
 

151.3 
11.29 

 

164.3 

5.55 

101.8 

7.70 

146.1 

4.88 

43.0 

 

143.3 

8.11 

124.3 

5.52 

52.6 

 

135.8 

7.23 

130.8 

7.53 

132.2 

--- 

122.0 

9 
 

151.3 
11.28 

 

164.3 

5.50 

101.8 

7.70 

146.1 

4.88 

43.0 

 

143.2 

8.10 

124.3 

5.50 

52.7 

 

136.2 

7.08 

130.8 

7.70 

138.1 

--- 

95.1 

[a] See Experimental section. 

2.2. Corrosion Inhibition Efficiencies 

The corrosion inhibitive efficiency, IE, of compounds 5–14 was examined by electrochemical 

impedance spectroscopy. The blank’s response is shown in Figure 1(a). Note that its impedance 

spectrum exhibited one single depressed semicircle, which indicates that the steel corrosion is mainly 

controlled by a charge transfer process. In contrast, when compounds 5–14 are present (25 ppm), the 

impedance spectra are characterized, in general, by two time constants (see Figure 1(b) and 1(c)). 
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From these figures it is noted that the spectra obtained after addition of organic molecules to the 

corroding media increased the impedance (Zre) value, and that in most of the cases they are 

characterized by two semicircles or two time constants, one constant at high frequency and the other at 

low frequency, which are generally attributed to the adsorption of the organic molecules onto the metal 

surface. The impedance parameters determined from the corresponding Nyquist diagrams are listed in 

Table 4. Inspection of Table 4 reveals that Rct values increase prominently, while Cdl reduces with 

increasing concentrations of 1,2,3-triazole nucleobases 5–14. A large charge transfer resistance is 

associated with a slower corroding system. Furthermore, the smaller double layer capacitance, the 

better protection provided by an inhibitor. It is important to remark that all these compounds displayed 

corrosion inhibition efficiencies over 90% at rather low concentration values, which resulted even 

better than other types of corrosion inhibitors reported in the literature [30,32–39]. All compounds 

studied in this work showed a corrosion inhibitive activity comparable at least or better than to other 

organic inhibitors derived from purine nucleobases (adenine and guanine) [53–55]. 

Table 3. 1H, and 13C-NMR chemical shifts (ppm) for compounds 10–14 in DMSO-d6. 

 

 
 

2-C 

3-H  

4-C 

 

5-C 

6-H 

6-C 

7-H 

7-C 

8-H 

8-C 

 

9-C 

10-H 

10-C 

11-H 

11-C 

 

12-C 

13-H 

13-C 

14-H 

14-C 

15-H 

15-C 

10 
 

151.2 
11.28 

 

164.8 

 

109.4 

7.59 

141.8 

4.85 

42.8 

1.71 

12.5 

 

143.4 

8.10 

124.2 

5.54 

53.3 

 

136.5 

[a] 

128.5 

[a] 

129.3 

[a] 

128.7 

11 
 

151.2 
11.27 

 

164.8 

 

109.4 

7.58 

141.7 

4.85 

42.8 

1.71 

12.5 

 

143.4 

8.10 

124.1 

5.53 

52.5 

 

132.7 

7.36 

130.9 

7.17 

116.1 

--- 

162.4 

12 
 

151.2 
11.27 

 

164.8 

 

109.4 

7.59 

141.7 

4.85 

42.8 

1.71 

12.5 

 

143.4 

8.10 

124.2 

5.54 

52.5 

 

135.5 

7.30 

130.5 

7.40 

129.3 

--- 

133.4 

13 
 

151.3 
11.30 

 

164.8 

 

109.4 

7.61 

141.8 

4.87 

42.8 

1.73 

12.5 

 

143.5 

8.13 

124.3 

5.55 

52.6 

 

135.9 

7.26 

130.8 

7.561

32.2 

--- 

122.0 

14 
 

151.3 
11.29 

 

164.8 

 

109.4 

7.60 

141.7 

4.87 

42.8 

1.74 

12.5 

 

143.4 

8.11 

124.3 

5.53 

52.8 

 

136.2 

7.10 

130.9 

7.72 

138.1 

--- 

95.1 

[a] See Experimental section. 
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Figure 1. Experimental impedance data, Nyquist plots, recorded in the systems (a) API 5L 

X52/1 M HCl, (b) API 5L X52/1 M HCl + 25 ppm of compounds 5-9, and (c) API 5L 

X52/1 M HCl + 25 ppm of compounds 10–14. 

 

 

Table 4. Electrochemical parameters obtained from experimental impedance data, 

including the corrosion inhibition efficiencies (IE) at 25 ppm of the organic inhibitor. 

Compound Rs/Ω cm2 Rct/Ω cm2 Cdl/μF cm2 IE/% 

Blank 0.8 30 310 --- 
5 2.5 435 39 93.1 
6 1.3 681 43 95.6 
7 1.1 725 50 95.9 
8 1.0 770 18 96.1 
9 1.7 425 70 92.9 
10 1.5 306 19 90.2 
11 1.4 600 29 95.0 
12 1.4 599 56 95.0 
13 1.5 600 54 95.0 
14 1.3 588 49 94.9 

(a) 

(b) (c) 
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3. Experimental  

3.1. General 

Commercially available reagents and solvents were used as received. Flash column chromatography 

was performed on Kieselgel silica gel 60 (230–400 mesh). Melting points were determined on a 

Fisher-Johns apparatus and were uncorrected. IR spectra were recorded on a Bruker Alpha FT-IR/ATR 

spectrometer (Leipzig, Germany). NMR spectra were obtained with JEOL ECA-500 (500 MHz) and 

JEOL Eclipse-400 (400 MHz) spectrometers (Tokyo, Japan). Chemical shifts (δ) are given in ppm 

downfield from Me4Si as an internal reference; coupling constants are given in J (Hertz).  

High-resolution mass spectra (HRMS) were recorded on JEOL JMS-SX 102a and Agilent-MSD-TOF-

1069A spectrometers (Tokyo, Japan). Compounds 5 and 10 are known, however their spectroscopic 

data was not reported [56]. The electrochemical impedance study was performed at room temperature 

using the ZENNIUM-ZAHNER electrochemical workstation (ZAHNER-Electrik GmbH & Co.KG, 

Kronach, Germany), applying a sinusoidal ± 10 mV perturbation, within the frequency range of 100 

KHz to 0.1 Hz to an electrochemical cell with a three-electrode setup. A saturated Ag/AgCl mini-electrode 

was used as reference, with a graphite bar as counter electrode, while the working electrode was the 

API 5L X52 steel sample with an exposed area of approximately 1 cm2, which was prepared using 

standard metallographic procedures. The corrosion inhibition efficiency (IE) was evaluated by means 

of electrochemical impedance spectroscopy (EIS) in the API 5L X52/1 M HCl system containing 0 

(blank) or 25 ppm of the organic inhibitor. Simulation of the impedance data recorded was conducted by 

means of electrical equivalent circuits [40] and the electrical parameters: solution resistance (Rs), charge 

transfer resistance (Rct), and double layer capacitance (Cdl) were obtained in this way. 

3.2. Product Synthesis and Characterization 

1-(Prop-2-ynyl)pyrimidine-2,4(1H,3H)-dione (3). In a 50 mL three-necked round-bottomed flask 

equipped with a magnetic stirrer, a thermometer, and a reflux condenser, uracil (1, 1.12 g, 10 mmol) 

was suspended in dry acetonitrile (15 mL), N,O-bis-(trimethylsilyl)acetamide (BSA, 6.12 mL, 25 mmol) 

was added and the mixture stirred for a few minutes until a clear solution was obtained. Subsequently, 

propargyl bromide (80 wt.% in toluene, 1.23 mL, 13.8 mmol) was added and the whole reaction 

mixture was heated at 45 °C for 72 h. The acetonitrile was evaporated under vacuum and the residue 

was treated with aqueous NH4Cl solution (5%, 20 mL) and extracted with CH2Cl2 in a continuous 

liquid-liquid extractor for 12 h. The organic phase was dried with anhydrous Na2SO4 and concentrated 

under vacuum. The crude product was purified by recrystallization from CH2Cl2/hexane (1:2 v/v) to 

afford 0.96 g (64% yield) of 3 as a white solid, mp 164–166 °C [Lit. [43] mp 169–170 °C]. 1H-NMR 

(DMSO-d6, 500 MHz): δ = 3.37 (t, J = 2.4 Hz, 1H, C≡C-H), 4.47 (d, J = 2.5 Hz, 2H, CH2), 5.59 (d,  

J = 7.9 Hz, 1H, CH), 7.65 (d, J = 7.9 Hz, 1H, NCH), 11.33 (br, 1H, NH). 13C-NMR (DMSO-d6,  

125.76 MHz): δ = 37.1 (CH2), 76.4 (≡C-H), 79.0 (C≡), 102.2 (CH), 145.0 (NCH), 150.9 (N2C=O), 

164.1 (NC=O). FT-IR/ATR νmax cm−1: 3240 (≡C-H), 3114, 2990, 2907, 2860, 2806, 2117 (C≡C), 1750 

(C=O), 1682 (C=O), 1617, 1456, 1408, 1380, 1328, 1239, 1174. HRMS (ESI-TOF) calculated for 

C7H6N2O2 + H+: 151.0502; Found: 151.0503. 
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5-Methyl-1-(prop-2-ynyl)pyrimidine-2,4-(1H,3H)-dione (4). The procedure described above was 

followed to obtain compound 4, employing thymine (2, 1.26 g, 10 mmol), BSA (6.12 mL, 25 mmol), 

and propargyl bromide (80 wt.% in toluene, 1.23 mL, 13.8 mmol). The reaction mixture was heated at 

60 °C for 72 h. The crude product was purified by recrystallization from CH2Cl2/hexane (1:2 v/v) to 

afford 1.43 g (87% yield) of 4 as a white solid, mp 155–157 °C [Lit. [45] mp 157–158 °C]. 1H-NMR 

(DMSO-d6, 500 MHz): δ = 1.72 (d, J = 0.9 Hz, 3H, CH3), 3.33 (t, J = 2.4 Hz, 1H, ≡C-H), 4.42 (d,  

J = 2.5 Hz, 2H, CH2), 7.51 (d, J = 1.0 Hz, 1H, NCH), 11.35 (br, 1H, NH). 13C-NMR (CDCl3, 125.76 

MHz): δ = 12.4 (CH3), 36.9 (CH2), 76.1 (≡C-H), 79.2 (C), 110.0 (CCH3), 140.7 (NCH), 150.9 

(N2C=O), 164.7 (NC=O). FT-IR/ATR νmax cm−1: 3250 (≡C-H), 3154, 3088, 3012, 2932, 2892, 2831, 

2123 (C≡C), 1701, 1649 (C=O), 1516, 1472, 1422, 1353, 1340, 1243, 1218, 1135. HRMS (ESI-TOF) 

calculated for C8H8N2O2 + H+: 165.0658; Found: 165.0661. 

1-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4-(1H,3H)-dione (5). In a 50 mL round-bottomed 

flask equipped with a magnetic stirrer, were added Cu(OAc)2·H2O (3.6 mg, 0.02 mmol, 5 mol%),  

1,10-phenanthroline monohydrate (4 mg, 0.02 mmol, 5 mol%), and sodium L-ascorbate (59 mg, 0.3 mmol) 

in EtOH/H2O (2:1 v/v, 3 mL), followed by stirring for five minutes at room temperature. Subsequently, 

3 (60 mg, 0.4 mmol), sodium azide (29 mg, 0.44 mmol), and benzyl chloride (51 μL, 0.44 mmol) were 

added to the reaction mixture which was stirred during 24 h at room temperature. Afterwards, H2O (10 mL) 

was added to reaction mixture to induce precipitation of the product, which was filtered off, washed 

with H2O, then with hexane and dried under vacuum. The crude product was purified by column 

chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 

95 mg (84% yield) of 5 as a white solid, mp 215–217 °C. 1H-NMR (DMSO-d6, 500 MHz): δ = 4.89 (s, 

2H, CH2NC=O), 5.53–5.57 (m, 3H, NCH2Ph, CH), 7.27–7.36 (m, 5H, ArH), 7.71 (d, J = 7.9 Hz, 1H, 

NCH), 8.10 (s, 1H, ArH, triazole), 11.29 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 43.0 

(CH2NC=O), 53.4 (NCH2Ph), 101.8 (CH), 124.2 (ArCH, triazole), 128.5 (2×ArCH), 128.7 (ArCH), 

129.3 (2×ArCH), 136.4 (Cipso), 143.2 (Cipso, triazole), 146.1 (NCH), 151.3 (N2C=O), 164.3 (NC=O). 

FT-IR/ATR νmax cm−1: 3156, 3106, 3056, 2953, 2871, 2814, 1754, 1721, 1674, 1630, 1454, 1422. 

HRMS (ESI-TOF) calculated for C14H13N5O2 + H+: 284.1142; Found: 284.1145. 

1-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (6). The procedure 

described above (using the same quantities of Cu(OAc)2·H2O, 1,10-phenanthroline monohydrate, 

sodium L-ascorbate) was followed to obtain compound 6, employing 3 (60 mg, 0.4 mmol), NaN3  

(29 mg, 0.44 mmol), and 4-fluorobenzyl chloride (53 μL, 0.44 mmol). The crude product was purified 

by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from CH2Cl2/hexane (1:1 v/v) 

to afford 108 mg (90% yield) of the desired product 6 as a white solid, mp 225–227 °C. 1H-NMR 

(DMSO-d6, 500 MHz): δ = 4.89 (s, 2H, CH2NC=O), 5.53 (s, 2H, NCH2Ph), 5.55 (d, J = 7.9 Hz, 1H, 

CH), 7.17 (t, J = 8.8 Hz, 2H, ArH), 7.36 (dd, J = 5.6, 8.5 Hz, 2H, ArH), 7.71 (d, J = 7.9 Hz, 1H, NCH), 

8.10 (s, 1H, ArH, triazole), 11.28 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 43.0 

(CH2NC=O), 52.5 (NCH2Ph), 101.8 (CH), 116.1 (d, 2JCF = 21.4 Hz, 2×ArCH), 124.1 (ArCH, triazole), 

130.9 (d, 3JCF = 8.8 Hz, 2×ArCH), 132.7 (d, 4JCF = 2.5 Hz, Cipso), 143.3 (Cipso, triazole), 146.1 (NCH), 

151.3 (N2C=O), 162.4 (d, JCF = 244.0 Hz, F-Cipso), 164.2 (NC=O). FT-IR/ATR νmax cm−1: 3156, 3106, 
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3057, 2954, 2871, 2812, 1761, 1721, 1673, 1630, 1606, 1510, 1453. HRMS (ESI-TOF) calculated for 

C14H12F1N5O2 + H+: 302.1048; Found: 302.1048. 

1-((1-(4-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (7). The procedure 

described above (using the same quantities of Cu(OAc)2·H2O, 1,10-phenanthroline monohydrate, 

sodium L-ascorbate) was followed to obtain compound 7, employing 3 (60 mg, 0.4 mmol), NaN3  

(29 mg, 0.44 mmol), and 4-chlorobenzyl chloride (74 mg, 0.46 mmol). The crude product was purified 

by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from CH2Cl2/hexane (1:1 v/v) 

to afford 102 mg (80% yield) of the desired product 7 as a white solid, mp 222–224 °C. 1H-NMR 

(DMSO-d6, 500 MHz): δ = 4.89 (s, 2H, CH2NC=O), 5.54 (s, 2H, NCH2Ph), 5.55 (d, J = 7.8 Hz, 1H, 

CH), 7.30 (d, J = 8.7 Hz, 2H, ArH), 7.40 (d, J = 8.6 Hz, 2H, ArH), 7.71 (d, J = 7.9 Hz, 1H, NCH), 8.11 

(s, 1H, ArH, triazole), 11.28 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 43.0 (CH2NC=O), 

52.5 (NCH2Ph), 101.8 (CH), 124.3 (ArCH, triazole), 129.3 (2×ArCH), 130.5 (2×ArCH), 133.4  

(Cl-Cipso), 135.4 (Cipso), 143.3 (Cipso, triazole), 146.1 (NCH), 151.3 (N2C=O), 164.2 (NC=O).  

FT-IR/ATR νmax cm−1: 3152, 3100, 3055, 2950, 2869, 2815, 1720, 1675, 1630, 1491, 1452, 831, 788. 

HRMS (ESI-TOF) calculated for C14H12Cl1N5O2 + H+: 318.0752; Found: 318.0757. 

1-((1-4-Bromobenzyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (8). The procedure 

described above (using the same quantities of Cu(OAc)2·H2O, 1,10-phenanthroline monohydrate, 

sodium L-ascorbate) was followed to obtain compound 8, employing 3 (60 mg, 0.4 mmol), NaN3  

(29 mg, 0.44 mmol), and 4-bromobenzyl bromide (110 mg, 0.44 mmol). The crude product was 

purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from CH2Cl2-Hexane 

(1:1 v/v) to afford 120 mg (83% yield) of the desired product 8 as a white solid, mp 241–243 °C. 1H-NMR 

(DMSO-d6, 500 MHz): δ = 4.88 (s, 2H, CH2NC=O), 5.52 (s, 2H, NCH2Ph), 5.55 (d, J = 7.9 Hz, 1H, 

CH), 7.23 (d, J = 8.2 Hz, 2H, ArH), 7.53 (d, J = 8.2 Hz, 2H, ArH), 7.70 (d, J = 7.9 Hz, 1H, NCH), 8.11 

(s, 1H, ArH, triazole), 11.29 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 43.0 (CH2NC=O), 

52.6 (NCH2Ph), 101.8 (CH), 122.0 (Br-Cipso), 124.3 (ArCH, triazole), 130.8 (2×ArCH), 132.2 

(2×ArCH), 135.8 (Cipso), 143.3 (Cipso, triazole), 146.1 (NCH), 151.3 (N2C=O), 164.3 (NC=O).  

FT-IR/ATR νmax cm−1: 3151, 3098, 3054, 2949, 2871, 2815, 1721, 1675, 1630, 1488, 1453, 1422, 831, 

787. HRMS (ESI-TOF) calculated for C14H12Br1N5O2 + H+: 362.0247; Found: 362.0247. 

1-((1-(4-Iodobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4-(1H,3H)-dione (9). The procedure 

described above was followed to obtain compound 9, employing Cu(OAc)2·H2O (3.0 mg, 0.017 mmol), 

1,10-phenanthroline monohydrate (3.4 mg, 0.025 mmol), sodium L-ascorbate (52 mg, 0.26 mmol), 3 

(50 mg, 0.33 mmol), NaN3 (23 mg, 0.36 mmol), and 4-iodobenzyl bromide (113 mg, 0.38 mmol). The 

crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized 

from CH2Cl2/Hexane (1:1 v/v) to afford 110 mg (81% yield) of the desired product 9 as a white solid, 

mp 259–261 °C. 1H-NMR (DMSO-d6, 500 MHz): δ = 4.88 (s, 2H, CH2NC=O), 5.50 (s, 2H, NCH2Ph), 

5.55 (d, J = 7.9 Hz, 1H, CH), 7.08 (d, J = 8.2 Hz, 2H, ArH), 7.70 (d, J = 8.2 Hz, 3H, NCH, ArH), 8.10 

(s, 1H, ArH, triazole), 11.28 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 43.0 (CH2NC=O), 

52.7 (NCH2Ph), 95.1 (I-Cipso), 101.8 (CH), 124.3 (ArCH, triazole), 130.8 (2×ArCH), 136.2 (Cipso), 

138.1 (2×ArCH), 143.2 (Cipso, triazole), 146.1 (NCH), 151.3 (N2C=O), 164.3 (NC=O). FT-IR/ATR 
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νmax cm−1: 3100, 3055, 2950, 2868, 2810, 1719, 1675, 1630, 1484, 1453, 1392, 831, 786. HRMS (ESI-

TOF) calculated for C14H12I1N5O2 + H+: 410.0108; Found: 410.0108. 

1-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (10). The procedure 

described above was followed to obtain compound 10, employing Cu(OAc)2·H2O (4.0 mg, 0.022 mmol), 

1,10-phenanthroline monohydrate (4.4 mg, 0.022 mmol), sodium L-ascorbate (65 mg, 0.33 mmol), 4 

(70 mg , 0.43 mmol), NaN3 (31 mg, 0.47 mmol), and benzyl chloride (54 μL, 0.47 mmol). The crude 

product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from 

CH2Cl2/Hexane (1:1 v/v) to afford 103 mg (81% yield) of the desired product 10 as a white solid, mp 

247–249 °C. 1H-NMR (DMSO-d6, 500 MHz): δ = 1.71 (d, J = 1.0 Hz, 3H, CH3), 4.85 (s, 2H, 

CH2NC=O), 5.54 (s, 2H, NCH2Ph), 7.27–7.35 (m, 5H, ArH), 7.59 (d, J = 1.2 Hz, 1H, NCH), 8.10 (s, 

1H, ArH, triazole), 11.28 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz): δ = 12.5 (CH3), 42.8 

(CH2NC=O), 53.3 (NCH2Ph), 109.4 (CCH3), 124.2 (ArCH, triazole), 128.5 (2×ArCH), 128.7 (ArCH), 

129.3 (2×ArCH), 136.5 (Cipso), 141.8 (NCH), 143.4 (Cipso, triazole), 151.2 (N2C=O), 164.8 (NC=O). 

FT-IR/ATR νmax cm−1: 3121, 3078, 3026, 2836, 1685, 1644, 1441, 730, 705. HRMS (ESI-TOF) 

calculated for C15H15N5O2 + H+: 298.1299; Found: 298.1301. 

1-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (11). The 

procedure described above was followed to obtain compound 11, employing Cu(OAc)2·H2O (3.0 mg, 

0.018 mmol), 1,10-phenanthroline monohydrate (3.6 mg, 0.018 mmol), sodium L-ascorbate (53 mg, 

0.27 mmol), 4 (60 mg, 0.37 mmol), NaN3 (27 mg, 0.41 mmol), and 4-fluorobenzyl chloride (49 μL, 

0.41 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2-Hexane (1:1 v/v) to afford 104 mg (90% yield) of the desired product 

11 as a white solid, mp 249–251 °C. 1H-NMR (DMSO-d6, 500 MHz): δ = 1.71 (d, J = 1.2 Hz, 3H, 

CH3), 4.85 (s, 2H, CH2NC=O), 5.53 (s, 2H, NCH2Ph), 7.17 (t, J = 8.9 Hz, 2H, ArH), 7.36 (dd, J = 5.4, 

8.8 Hz, 2H, ArH), 7.58 (d, J = 1.2 Hz, 1H, NCH), 8.10 (s, 1H, ArH, triazole), 11.27 (br, 1H, NH).  
13C-NMR (DMSO-d6, 125.76 MHz): δ = 12.5 (CH3), 42.8 (CH2NC=O), 52.5 (NCH2Ph), 109.4 

(CCH3), 116.1 (d, 2JCF = 22.6 Hz, 2×ArCH), 124.1 (ArCH, triazole), 130.9 (d, 3JCF = 8.8 Hz, 

2×ArCH), 132.7 (d, 4JCF = 3.8 Hz, Cipso), 141.7 (NCH), 143.4 (Cipso, triazole), 151.2 (N2C=O), 162.4 (d, 

JCF = 244.0 Hz, F-Cipso), 164.8 (NC=O). FT-IR/ATR νmax cm−1: 3175, 3110, 3063, 3046, 2811, 1681, 

1644, 1603, 1509, 1462, 1214, 780, 758. HRMS (ESI-TOF) calculated for C15H14F1N5O2 + H+: 

316.1204; Found: 316.1209. 

1-((1-(4-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (12). The 

procedure described above was followed to obtain compound 12, employing Cu(OAc)2·H2O (3.0 mg, 

0.018 mmol), 1,10-phenanthroline monohydrate (3.6 mg, 0.018 mmol), sodium L-ascorbate (53 mg, 

0.27 mmol), 4 (60 mg, 0.37 mmol), NaN3 (27 mg, 0.41 mmol), and 4-chlorobenzyl chloride (69 mg, 

0.43 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2-Hexane (1:1 v/v) to afford 105 mg (87% yield) of the desired product 

12 as a white solid, m.p. 245–247 °C. 1H-NMR (DMSO-d6, 500 MHz): δ = 1.71 (s, 3H, CH3), 4.85 (s, 

2H, CH2NC=O), 5.54 (s, 2H, NCH2Ph), 7.30 (d, J = 8.3 Hz, 2H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 

7.59 (s, 1H, NCH), 8.10 (s, 1H, ArH, triazole), 11.27 (br, 1H, NH). 13C-NMR (DMSO-d6, 125.76 MHz):  
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δ = 12.5 (CH3), 42.8 (CH2NC=O), 52.5 (NCH2Ph), 109.4 (CCH3), 124.2 (ArCH, triazole), 129.3 

(2×ArCH), 130.5 (2×ArCH), 133.4 (Cl-Cipso), 135.5 (Cipso), 141.7 (NCH), 143.4 (Cipso, triazole), 151.2 

(N2C=O), 164.8 (NC=O). FT-IR/ATR νmax cm−1: 3124, 3081, 3032, 2833, 1680, 1645, 1491, 1462, 1212, 

779, 762. HRMS (ESI-TOF) calculated for C15H14Cl1N5O2 + H+: 332.0909; Found: 332.0911. 

1-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (13). The 

procedure described above was followed to obtain compound 13, employing Cu(OAc)2·H2O (3.0 mg, 

0.018 mmol), 1,10-phenanthroline monohydrate (3.6 mg, 0.018 mmol), sodium L-ascorbate (53 mg, 

0.27 mmol), 4 (60 mg, 0.37 mmol), NaN3 (27 mg, 0.41 mmol), and 4-bromobenzyl bromide (102 mg, 

0.41 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2-Hexane (1:1 v/v) to afford 115 mg (83% yield) of the desired product 

13 as a white solid, mp 245–247 °C. 1H-NMR (DMSO-d6, 400 MHz): δ = 1.73 (s, 3H, CH3), 4.87 (s, 

2H, CH2NC=O), 5.55 (s, 2H, NCH2Ph), 7.26 (d, J = 7.7 Hz, 2H, ArH), 7.56 (d, J = 7.7 Hz, 2H, ArH), 

7.61 (s, 1H, NCH), 8.13 (s, 1H, ArH, triazole), 11.30 (br, 1H, NH). 13C-NMR (DMSO-d6, 100.5 

MHz): δ = 12.5 (CH3), 42.8 (CH2NC=O), 52.6 (NCH2Ph), 109.4 (CCH3), 122.0 (Br-Cipso), 124.3 

(ArCH, triazole), 130.8 (2×ArCH), 132.2 (2×ArCH), 135.9 (Cipso), 141.8 (NCH), 143.5 (Cipso, 

triazole), 151.3 (N2C=O), 164.8 (NC=O). FT-IR/ATR νmax cm−1: 3123, 3080, 3034, 2835, 1684, 1646, 

1465, 1214, 762. HRMS (ESI-TOF) calculated for C15H14Br1N5O2 + H+: 376.0404; Found: 376.0407. 

1-((1-(4-Iodobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (14). The 

procedure described above was followed to obtain compound 14, employing Cu(OAc)2·H2O (2.7 mg, 

0.015 mmol), 1,10-phenanthroline monohydrate (3.0 mg, 0.015 mmol), sodium L-ascorbate (46 mg, 

0.27 mmol), 4 (50 mg, 0.30 mmol), NaN3 (21 mg, 0.33 mmol), and 4-iodobenzyl bromide (104 mg, 

0.35 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2/Hexane (1:1 v/v) to afford 110 mg (85% yield) of the desired product 

14 as a white solid, mp 238–240 °C. 1H-NMR (DMSO-d6, 400 MHz): δ = 1.74 (s, 3H, CH3), 4.87 (s, 

2H, CH2NC=O), 5.53 (s, 2H, NCH2Ph), 7.10 (d, J = 7.9 Hz, 2H, ArH), 7.60 (s, 1H, NCH), 7.72 (d,  

J = 8.2 Hz, 2H, ArH), 8.11 (s, 1H, ArH, triazole), 11.29 (br, 1H, NH). 13C-NMR (DMSO-d6, 100.5 MHz): 

δ = 12.5 (CH3), 42.8 (CH2NC=O), 52.8 (NCH2Ph), 95.1 (I-Cipso), 109.4 (CCH3), 124.3 (ArCH, 

triazole), 130.9 (2×ArCH), 136.2 (Cipso), 138.1 (2×ArCH), 141.7 (NCH), 143.4 (Cipso, triazole), 151.3 

(N2C=O), 164.8 (NC=O). FT-IR/ATR νmax cm−1: 3161, 3136, 3088, 3040, 2821, 1684, 1648, 1464, 

1216, 777, 759. HRMS (ESI-TOF) calculated for C15H14I1N5O2 + H+: 424.0265; Found: 424.0264. 

4. Conclusions  

The synthetic protocol for the preparation of N-1-propargylpyrimidine nucleobases has been 

optimized, these derivatives are important building blocks for the synthesis of many 1,2,3-triazoles of 

interest. Eight new 1,2,3-triazole derivatives of pyrimidine nucleobases were successfully synthesized 

in good yields through a one-pot three-component click reaction and fully characterized. The 

electrochemical study evidenced that these new class of heterocyclic compounds are promising 

corrosion inhibitors of steel in 1 M hydrochloric acid. 
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