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S U M M A R Y

Consideration of azimuthal anisotropy, at least to an orthorhombic symmetry is important in

exploring the naturally fractured and unconventional hydrocarbon reservoirs. Full waveform

inversion of multicomponent seismic data can, in principle, provide more robust estimates of

subsurface elastic parameters and density than the inversion of single component (P wave)

seismic data. In addition, azimuthally dependent anisotropy can only be resolved by carefully

studying the multicomponent seismic displacement data acquired and processed along different

azimuths. Such an analysis needs an inversion algorithm capable of simultaneously optimizing

multiple objectives, one for each data component along each azimuth. These multicomponent

and multi-azimuthal seismic inversions are non-linear with non-unique solutions; it is there-

fore appropriate to treat the objectives as a vector and simultaneously optimize each of its

components such that the optimal set of solutions could be obtained. The fast non-dominated

sorting genetic algorithm (NSGA II) is a robust stochastic global search method capable of

handling multiple objectives, but its computational expense increases with increasing number

of objectives and the number of model parameters to be inverted for. In addition, an accurate

extraction of subsurface azimuthal anisotropy requires multicomponent seismic data acquired

at a fine spatial resolution along many source-to-receiver azimuths. Because routine acquisition

of such data is prohibitively expensive, they are typically available along two or at most three

azimuthal orientations at a spatial resolution where such an inversion could be applied. This

paper proposes a novel multi-objective methodology using a parallelized version of NSGA II

for waveform inversion of multicomponent seismic displacement data along two azimuths.

By scaling the objectives prior to ranking, redefining the crowding distance as functions of

the scaled objective and the model spaces, and varying the crossover and mutation parameters

over generations, the proposed methodology is also an improvement of the original NSGA II

in overall computational efficiency, preservation of population diversity, and rapid sampling of

the model space. By first inverting the near-offset pre-stack data for the background isotropic

properties and obtaining constraints on the vertical velocities, followed by an inversion of the

long-offset data, it is demonstrated that the proposed method can reliably estimate density

and azimuthally anisotropic subsurface properties up to the complexity of an orthorhombic

symmetry on noisy synthetic data computed from a model based on a real well log under

an assumption of 1-D subsurface layers where the ambiguities between lateral heterogeneity

and anisotropy could be ignored. In addition, a practical way to approximately compute the

uncertainty values in the derived parameters using the method is also demonstrated.

Key words: Inverse theory; Seismic anisotropy; Computational seismology.

I N T RO D U C T I O N

Pre-stack waveform inversion (PWI) of seismic reflection data has

been shown to be an effective tool for subsurface characteriza-

tion of hydrocarbon reservoirs (Mallick 1999; Sen & Roy 2003).

Because mode-converted (P–SV) reflections are more sensitive to

the variations in density compared to primary (P–P) reflections

(Aki & Richards 2002), combining P–P with P–SV reflections in

a multicomponent seismic inversion has been shown to estimate

density better than the single component inversion (Mallick 2000;
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Padhi & Mallick 2013a,b). Under an isotropic assumption, such a

multicomponent inversion requires estimation of three parameters,

namely the P- and S-wave velocities and density. When additional

anisotropic parameters are also required to be extracted from mul-

ticomponent seismic data, the inverse problem becomes complex.

PWI using two- (P–P, P–S) and four component (P–P, P–S, S–P,

S–S) surface seismic data for estimating subsurface elastic parame-

ters and density under both isotropic and transversely isotropic with

a vertical symmetry axis (VTI) assumptions has been demonstrated

by Padhi & Mallick (2013a,b). With increasing interests in the nat-

urally fractured and unconventional hydrocarbon reservoirs, it is

however necessary to go past isotropy and VTI, and consider az-

imuthal anisotropy (Chaveste et al. 2013; Gaiser et al. 2013). Most

unconventional reservoirs are inherently VTI and on top of this, in

situ stress fields in conjunction with preferentially oriented natu-

ral fractures make them azimuthally anisotropic with orthorhombic

(ORT) symmetry (Schoenberg & Douma 1988). Most naturally frac-

tured reservoirs are also azimuthally anisotropic with transversely

isotropic with a horizontal/tilted symmetry axis (HTI/TTI) or even

ORT symmetry properties. Consequently, inverting surface seismic

data at least for ORT subsurface properties is important for accu-

rately characterizing these reservoirs.

Propagation of elastic waves in an ORT medium can be de-

scribed by using nine independent elastic constants, density and

the azimuthal direction of the vertical symmetry plane. These nine

elastic constants could be given as the elastic (stiffness) coefficients

namely C11, C12, C13, C22, C23, C33, C44, C55 and C66 describ-

ing the constitutive law which linearly relates six components of

the stress tensor with six components of the strain (deformation)

tensor (Auld 1973). Alternatively, they could also be given as the

Thomsen–Tsvankin parameters (Thomsen 1986; Tsvankin 1997)

as the vertical P- and S-wave velocities (VP, VS), ε1, ε2, γ 1, γ 2,

δ1, δ2 and δ3 (see Appendix A for details). Inverting surface seis-

mic data for ORT media properties thus requires extraction of 11

independent parameters—nine elastic constants, density and the di-

rection of the symmetry plane. Using a multicomponent waveform

inversion, Chang & McMechan (2009) demonstrated that such a

method is capable of extracting subsurface anisotropic parameters

and density for a simple three-layer case where the middle layer

was anisotropic. Padhi & Mallick (2013a) have also successfully

inverted multicomponent seismic waveform data for elastic model

parameters and density under both isotropic and VTI assumptions

for simple models. Padhi & Mallick (2013b) extended the VTI

inversion problem to include complex models. To extend VTI in-

version further to azimuthal anisotropy, two major challenges need

to be overcome:

(1) Multicomponent seismic data requires simultaneous opti-

mizations of multiple objectives, one for each data component.

These optimizations are non-linear and non-unique with multiple

optimal solutions known as the Pareto-optimal solutions defined as

the set of solutions, none of which could be considered better than

the other in terms of satisfying all the objectives (Deb et al. 2002;

Padhi & Mallick 2013a,b). A traditional inversion that defines a

single objective as a weighted sum of different objectives and then

optimizes it provides only one out of the entire Pareto-optimal set

and is generally biased by the choice of the individual weights.

For multi-objective inverse problems, it is desirable to treat the en-

tire set of objectives as a vector, simultaneously optimize all its

components to estimate the Pareto-optimal set, and then interpret

it to obtain the solution that is geologically meaningful. Padhi &

Mallick (2013a,b) demonstrated that non-dominated sorting genetic

algorithm (NSGA II) is able to estimate such a Pareto-optimal set

and achieve a robust estimation of the subsurface properties up to

a complexity of VTI anisotropy. For inversion to a complexity of

ORT anisotropy is however a challenge because the computational

expense of NSGA II increases exponentially with increasing number

of objectives and the number of model parameters to be estimated

for; requiring the need for the development of a computationally

efficient NSGA II.

(2) If multicomponent and multi-azimuthal seismic data are

recorded with a very fine grid spacing so that the subsurface reflec-

tion records from all possible azimuthal orientations and incidence

(polar) angles between the source and receivers are available, they

can be used in an inversion scheme and the exact anisotropic prop-

erties could be extracted (Dewangan & Grechka 2003). Acquisition

of such multicomponent 3-D seismic data in such a fine grid spacing

is however expensive, and in practice they are acquired such that

data are predominantly oriented along two or at most three source-

to-receiver azimuths. Therefore, inversion of multi-azimuth surface

seismic data is restricted by the acquisition conditions, in reality ap-

plying inversion using the approach of Dewangan & Grechka (2003)

is severely limited, and developing an inversion methodology keep-

ing the practical limitations of surface seismic data acquisitions in

mind is essential.

Considering the practical aspects outlined as above, here we

formulated the inversion of multicomponent pre-stack seismic

waveform data recorded along two azimuthal directions as a multi-

objective optimization problem. We developed a parallel and com-

putationally efficient version of NSGA II. We then generated

multicomponent synthetic data (vertical and horizontal inline and

crossline components, that is, the components parallel and per-

pendicular to the source–receiver directions) of particle displace-

ment from an explosive point source using a multilayer model with

isotropic, VTI, HTI and ORT properties based on a real well log

from the Rock Springs Uplift, WY, USA. Finally, we jointly inverted

these multicomponent data using our methodology.

M E T H O D O L O G Y

Forward modelling

Restricting to 1-D earth model, the forward computation of synthetic

seismograms could be efficiently performed using the reflectivity

method (Fuchs & Müller 1971; Kennett 1983; Fryer & Frazer 1984;

Mallick & Frazer 1987, 1988, 1990, 1991; Sen & Roy 2003). Al-

though the method is well documented in all these references, it is

necessary to briefly outline its details in connection with the de-

velopment of a computationally efficient NSGA II for anisotropic

inversion.

If we assume that the elastic properties vary as a function

of depth (z) only, the dependence of the displacement vec-

tor u = [ux , u y, uz]
T and the components of the stress tensor

τ i j (i, j = {x, y, z}) that represent normal traction on the vertical

(x–z and y–z) planes can be transformed out using the Fourier trans-

forms to get a resulting system of equations in frequency-slowness

domain in the form (Woodhouse 1974; Fryer & Frazer 1984)

∂z b = iωA · b + F, (1)

where ∂z = ∂

∂z
is the derivative with respect to the vertical or

z coordinate axis, and b = [ux , u y, uz,
1

iω
τzx ,

1

iω
τzy,

1

iω
τzz]

T is the

displacement–stress vector with the elements being the scalar com-

ponents of the particle displacement and the vertical traction. The
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1136 T. Li and S. Mallick

matrix A in eq. (1), known as the elastic system matrix, is a func-

tion of the elastic stiffness coefficients, the x and y components of

horizontal slowness (px and py), angular frequency ω and density

ρ. Finally, F in eq. (1) is the body force (source) term. The sys-

tem of equations given by (1) could be solved using the reflection

matrix approach (Kennett 1983), extended for anisotropic medium

by Fryer & Frazer (1984) and Mallick & Frazer (1990, 1991). In

this approach, seismic waves are decomposed into multiple plane

waves, each of which is represented by constant angular frequency

(ω) and horizontal slowness (px and py). First, the reflection and

transmission coefficient matrices for the entire stack of layers are

computed, which is called the reflection matrix and is denoted as

R =

[

T u Rd

Ru T d

]

6×6

, (2)

where T u and T d denote the 3 × 3 transmission coefficient matrices

for upgoing and downgoing waves, and Ru and Rd denote the

3 × 3 reflection coefficient matrices for upgoing and downgoing

waves. By setting the boundary condition for the reflection matrix

at the top as:

R =

⎡

⎣

I 0

R f
u I

⎤

⎦

6×6

, (3)

where I is the 3 × 3 identity matrix and R f
u is the 3 × 3 reflec-

tion coefficient matrix at the free surface, and then calculating the

reflection and transmission coefficient matrices of each layer inter-

face, the entire reflection matrix of the stratified medium can be

recursively computed from the shallowest to the deepest layer by

the following set of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(T u)new = T u(I − r d Ru)−1 tu,

(Rd)new = Rd + T u r d(I − Ru r d)−1T d,

(Ru)new = ru + t d Ru(I − r d Ru)−1 tu,

(T d)new = t d(I − Ru r d)−1T d,

(4)

where tu and td are the 3 × 3 transmission coefficient matrices for

upgoing and downgoing waves, and ru and rd are the 3 × 3 reflection

coefficient matrices for upgoing and downgoing waves at a given

layer interface in the subsurface up to which the reflection matrix is

calculated. Once the reflection matrices are obtained, the x, y and z

components of the displacement response (ux, uy and uz) could be

computed by multiplying the reflection and transmission matrices

with the source and the receiver terms (for details, see Kennett 1983;

Fryer & Frazer 1984; Mallick & Frazer 1990). From the equation

set (4), we can note down the following important facts:

(1) They provide a complete response, including all mode con-

versions and interbed reverberations.

(2) Because the reflection matrix R is built from the shallowest

to the deepest layer, it could be used to our advantage. For most in-

version problems, the shallow part is the overburden and is given as

prior information. Therefore, the reflection matrix for the overbur-

den needs to be computed only once to which the reflection matrix

computed over the inversion window could just be added using the

equation set (4). As will be discussed later, a major improvement

in the computational efficiency of our proposed method could be

achieved by inverting the entire time window with several short and

overlapping time windows, starting from the shallow to the deep

part of the data. In such sliding window inversion, once the upper

part is inverted, their reflection matrix response could just be com-

puted only once and be added to the lower part that is being inverted

for, leading to a fast and computationally efficient algorithm.

(3) The equation set (4) is for each plane wave and they are

independent of one another. Consequently, they could all be si-

multaneously computed by different compute nodes in a parallel

computing environment which can lead to a very fast computation

of the synthetic responses.

If the properties of the layers are physically meaningful, which, in

mathematical terms, means that the elastic coefficient matrix [Cij]

is positive definite, then the elastic system matrix A in eq. (1) will

have three pairs of eigenvalues denoting the vertical slowness of

upgoing and downgoing P, S1 and S2 waves, and the reflection

matrix R in eq. (2) is unconditionally stable (Fryer & Frazer 1984).

The conditions for the positive definiteness for [Cij] for different

anisotropic systems, is discussed in further detail in Appendix A.

The 6 × 6 system of equations given by eq. (1) decouples into a

4 × 4 P–SV system and a 2 × 2 SH system for the isotropic and

VTI case, and the P–SV system could be considered independently

of the SH (Padhi & Mallick 2013b). For the azimuthally anisotropic

case however, the P, S1 and S2 waves are always coupled, except

along some specific directions (Auld 1973).

Multi-objective inversion

A multi-objective optimization problem involves finding solutions

that simultaneously maximize or minimize more than one goal or

objective while satisfying some constraints in the decision or model

space. Without any loss of generality, all PWI problems could be

written in the form

X k = f −1(Di j ). (5)

In eq. (5), Di j = [d
(1)

i j , d
(2)

i j , . . . , d
(m)

i j ] is the data matrix, denoting

the processed pre-stack seismic data of the jth component along

the ith azimuth. In this study, i = {1, 2} since we apply our in-

version along two azimuths; j = {1, 2, 3} since the data have

three components (vertical, and the horizontal inline and crossline

components of the displacement response); and m is the number

of seismic data traces. Now consider X k = [x
(1)

k , x
(2)

k , . . . , x
(n)

k ]T

is the model or the decision vector in the model/decision space.

In above, the parameter n is the number of subsurface layers, and

k = {1, 2, . . . , K }, with K being the number of possible models.

For all isotropic layers where the wave propagation is described by

two elastic constants and density per layer, each model vector x
(i)

k

will consist of three components. For all VTI layers x
(i)

k will contain

six components denoting the five elastic constants and density. For

all HTI layers x
(i)

k will contain seven components representing the

five elastic constants, density and azimuthal direction of vertical

symmetry plane. Finally, for all ORT layers x
(i)

k will contain eleven

components with the nine elastic constants, density and azimuthal

direction of vertical symmetry plane. For our inverse problem, it

is not possible to know beforehand the exact anisotropic symme-

try for each layer. However, considering the fact that we apply our

inversion along two azimuths, what we can find out is whether or

not the reflection from a given layer is azimuthally independent,

based on which we parametrize them either as a VTI or an ORT

medium. We note here that it was possible to parametrize the entire

subsurface as ORT for inversion. However, parametrizing them ei-

ther as VTI or ORT based on azimuthally independent/dependent

seismic responses improved overall computational efficiency. Addi-

tionally, note that we could parametrize the subsurface either as VTI
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Multicomponent anisotropic seismic inversion 1137

Figure 1. A parallel NSGA II workflow.

Figure 2. A schematic diagram of the synthetic model used to test the inver-

sion methodology. Note that the surface seismic data along two lines, denoted

as Line 1 and Line 2 with known azimuthal orientations are necessary to

invert the subsurface for the azimuthally anisotropic elastic properties.

or ORT in our specific application because our model was isotropic

and/or VTI in the shallow part and in the deep parts it is azimuthally

anisotropic (HTI/ORT). This allowed us to compare the azimuthal

seismic responses and parametrize our model as VTI up shallow and

ORT down deep. However if there are isotropic/VTI layers deeper

than the first azimuthally anisotropic layer in the model, they must

be parametrized as ORT. The operator f in eq. (5) is the physical

law or the forward computation operator described previously that

links observed seismic data with subsurface elastic properties. Any

model vector X could be used in this forward computation operator

to generate the synthetic data matrix Si j = [s
(1)

i j , s
(2)

i j , . . . , s
(m)

i j ] ex-

actly at the same points as for the data matrix Dij. We can then use

the cross-correlation function to define a misfit or objective function

in the objective space Y given as

Y i j = 1 −
Si j .Di j

√

Si j .Si j ·
√

Di j .Di j

. (6)

An inversion starts with a set of models in the model or decision

space, and is iteratively modified until the objective defined by

eq. (6) is minimized.

Parallel NSGA II

NSGA II is an elitist multi-objective evolutionary algorithm

(MOEA) with a fast non-dominated sorting and diversity preser-

vation mechanism. Key concepts of MOEA are explained in Ap-

pendix B. The purpose of MOEA is to find a set of solutions as

close as possible to the true Pareto-optimal front while maintaining

diversity in the obtained solutions, and NSGA II has been shown to

be capable of achieving both (Deb et al. 2002). In any evolutionary

algorithm (EA), elitism refers to the condition where both parent

and child populations are considered in selecting members for the

consecutive generation. This has been shown to improve conver-

gence properties of these algorithms (Stoffa & Sen 1991; Sen &

Stoffa 1992; Rudolph 1993; Mallick 1995, 1999).

The main challenge with any stochastic optimization algorithm

is its computational complexity. The NSGA II for example has a

computational complexity of O (MN2), where M is the number of

objectives and N is the population size (Deb et al. 2002). This makes

NSGA II computationally expensive for large population sizes. For

an azimuthally anisotropic seismic inversion problem, maintaining

a large population size is however necessary. One primary reason for

this computational complexity is due to the non-dominated sorting

procedure of NSGA II in defining ranks of the individual members
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1138 T. Li and S. Mallick

Figure 3. (a), (b) RSU-1 well data and the blocked model that were used to generate the synthetic data for inversion. (c) Thomsen–Tsvankin parameters: ε1,

ε2, γ 1, γ 2, δ1, δ2 and δ3 used to introduce VTI anisotropy in the Baxter shale region, HTI anisotropy in the Frontier region and ORT anisotropy for all the

formations beneath the Frontier formation.

Figure 4. Synthetic displacement responses of the vertical component in τ−p domain. The angles indicated above are azimuthal angles clockwise from north.

Each plot is normalized independently.

(see Appendix B). In this work, the original NSGA II was par-

allelized for computational efficiency. Padhi & Mallick (2013a,b)

have outlined NSGA II in detail and here we only outline its parallel

implementation. Fig. 1 is a schematic flow diagram of our parallel

NSGA II. First a random parent population of size N is generated

honouring the constraints in the decision/model space. This popu-

lation is then distributed to K nodes, evaluated on each node, and

sorted into different ranks based on suitably scaled values of all

objective functions. Once the ranks are assigned, one solution is

picked from each Pareto-optimal front (each rank) on each node

as the representative solution. After non-dominated sorting of all

representative solutions, they are sent back to the master node to
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Multicomponent anisotropic seismic inversion 1139

Figure 5. Same as Fig. 4, but for the horizontal inline component.

Figure 6. Same as Fig. 4, but for the horizontal crossline component.

construct the parent population. Ranks of each solution in the parent

population were assigned according to the non-dominated sorting

results of representative solutions. Since the dominances were pre-

checked on each node, they are guaranteed in the parent population,

and the computational complexity is reduced since it is no longer

necessary to check all N solutions. After ranking, the crowding

distances for the members belonging to each rank are then calcu-

lated. The parent population then undergoes the genetic algorithm

(GA) processes of tournament selection (reproduction), crossover

and mutation to generate the child population. We must emphasize

here that the original NSGA II of Deb et al. (2002) proposed the

tournament selection based on ranks computed using only the raw

fitness values (objectives) and the crowding distances measured in

the objective space alone. In our parallel implementation, we how-

ever found that better results are obtained if the raw fitness values are

first linearly scaled (see Appendix B) before ranking and the mem-

bers belonging to a given rank are assigned new measure of the

crowding distance that are computed by combining the normalized

distance measured in this scaled objective space with that measured

in the model space (Appendix B). As can be seen in Fig. 1, following

rank assignments based on the scaled objectives and computing the

new crowding distances, the procedures for tournament selection

and advancement of the population over generations via crossover,

mutation, and elitism in our parallel NSGA II is exactly the same
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1140 T. Li and S. Mallick

Figure 7. Comparison between the true P-wave velocities with the inversion

results and the search window used. Here, the near-offset pre-stack data were

inverted using an isotropic assumption. Normalized PPD of the inverted

results is also plotted in light blue (cyan). The width of each PPD curve

helps to quantify the uncertainties associated with the estimates of each

model parameter for each layer. Solutions with the highest likelihood were

picked as best inversion results from these approximate PPD plots.

as what was explained in detail by Padhi & Mallick (2013a,b). We

would however like to reemphasize here that apart from being a par-

allel algorithm, our implementation of NSGA II differs from that

originally proposed by Deb et al. (2002). Below is a list of how our

implementation is different along with justifications:

(1) We sort our population at different dominance levels or ranks

not based on the raw objectives, but the linearly scaled objectives.

(i) From our previous experience on seismic waveform in-

versions with single objective problems, we found that if the

objectives aren’t scaled they have a tendency to quickly con-

verge to a local optimum (Mallick 1995, 1999). In a previous

work, Stoffa & Sen (1991) also reported the same issue. Scaling

the raw objectives in seismic inverse problems, irrespective of

whether they are single or multi-objective is of crucial impor-

tance. Our preliminary experiments on anisotropic waveform

inversion suggest that linearly scaling each objective prior to

ranking and computing the crowding distances help avoid pre-

mature convergence.

(2) Crowding distances are computed both along the scaled

objective and the model space.

(i) This is also of crucial importance for the anisotropic seis-

mic inversion problems. As will be shown later in our examples,

while our total number of objectives are only six (three com-

ponent seismic data along two azimuths), our total number of

Figure 8. Same as Fig. 7, but for the S-wave velocity.

model parameters is 689. For problems where the number of

model parameters to be solved for is much higher than the num-

ber of objectives such as ours, basing crowding distance only

in the objective space do not necessarily guarantee that the ac-

tual models in the model space are diverse, and we found that

combining the normalized distance measured in the scaled ob-

jective space with that measured in the model space is a better

way to maintain diversity within the generations than using the

objective space alone.

Classical implementations of GA use binary coding in which each

model parameter is coded as a string of binary digits (bits). For

crossover, two members of the population are randomly chosen

as parents. A crossover site is then randomly selected within each

parameter space and the bit contents between the parents on the right

hand side of each selected crossover site for each model parameter

are swapped with a given probability of crossover Pc to produce

two children (see Stoffa & Sen 1991; Mallick 1995 for details).

Following crossover, the bits in each member of the child population

are then sequentially visited and modified with a given probability

of mutation Pm (Goldberg 1989; Stoffa & Sen 1991; Mallick 1995).

Although simple and straightforward, note that the binary coding

can only discretely sample the model space. Considering the fact

that the model space is continuous, not discrete, it is desirable to
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Multicomponent anisotropic seismic inversion 1141

Figure 9. Same as Fig. 7, but for the density. Note that applying an isotropic

inversion failed to capture the density trend.

Figure 10. Evolution of all solutions through generations under the de-

fined error functions or objectives given as the misfit between synthetic

data and real data measured as a cross-correlation. As shown in the leg-

end, the dots in different colours represent different generations. Note

how the solutions, widely distributed in the objective space, slowly con-

verge to the most optimal set of solutions over generations. Also note that

although the objectives are defined as the P–P error and P–S error, they are,

in fact the scaled misfits between the observed and synthetic vertical and

horizontal inline data components.

Figure 11. Comparison between the true densities with the inversion results

after 5000 generations. Here, the entire pre-stack data were inverted under

an azimuthally anisotropic assumption. Normalized PPD of the inverted

results is also plotted in light blue (cyan).

implement a methodology capable of continuous sampling of this

space. This is achieved by using a real coded GA with simulated

binary crossover (SBX) and real parameter mutation (RPM) as out-

lined by Deb & Agrawal (1995, 1999). Exact mathematical details

of SBX and RPM have been given by Padhi & Mallick (2013b) and

here we just briefly outline them. In addition to the probability of

crossover (Pc), SBX uses an additional parameter—the crossover

distribution index η. A high value of η tends to produce children

close to their parents while a low value of η tends to produce them

away. In addition to the probability of mutation (Pm) RPM is con-

trolled by another parameter—the mutation distribution index κ , a

small value of which produces the parameter of the mutated solu-

tion far away from the original solution and a large value produces

a solution close to it. In inverting multicomponent seismic data for

isotropic and VTI subsurface properties, Padhi & Mallick (2013b)

found that a moderate to high value of Pc between 0.7 and 0.9 and

low value of Pm between 0.03 and 0.1 are reasonable choices. They

also found that using η = 20 and κ = 10 provides reasonable inver-

sion results. However note that instead of keeping these parameters

constant, they should ideally be varied over generations. At the be-

ginning when none of the solutions are near the global optimum,

one should ideally use a high value of Pc and a low value of η so that

the model space is exhaustively sampled by performing crossover

often and producing child solutions away from their parents.
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1142 T. Li and S. Mallick

Figure 12. Same as Fig. 11, but for the ε1.

However as the generation progresses, Pc should be slowly reduced

and η should be slowly increased so that the good solutions aren’t

lost. Based on the same argument, Pm should be high at the begin-

ning and be reduced over the generations and κ should be low at the

beginning and increased over the generations. Besides scaling of

the objectives, non-dominated sorting, and crowding distance com-

putation based on both model and scaled objective spaces, varying

Pc, Pm, η and κ over generations would provide NSGA II additional

robustness not only in preserving diversity and propagating good

solutions over generations, but it would also allow an exhaustive

sampling of the model space. It will be shown later that by varying

these SBX and RPM parameters over generations produced good

results in our anisotropic inversion.

Parallel forward modelling algorithm

The reflectivity method, used as the forward modelling engine in our

application is computed in the plane-wave domain. As mentioned

before, computing one plane-wave seismogram is independent of

the other. Thus they could be simultaneously computed using dif-

ferent compute-nodes in a parallel computing environment. Being

a stochastic optimization method, NSGA II requires computing

many (of the order of millions) plane-wave seismograms during its

process. Consequently, parallelizing the forward computation can

substantially improve the computational efficiency.

Figure 13. Same as Fig. 11, but for the ε2.

M U LT I P H A S E I N V E R S I O N

O F T H E DATA

For any inverse problem it is always desirable that the number of

parameters being solved for is reduced, because of the fact that

the computational cost of stochastic search algorithms increases

with the increasing number of unknown parameters to be eval-

uated. By comparing the near-offset synthetic data generated by

using full anisotropic model and the near-offset data generated by

using isotropic models with same vertical P- and S-wave veloci-

ties, and densities, we observed that the differences between them

are not large. It is thus possible that the near-offset data could be

first inverted under an isotropic assumption to obtain an estimate

of the velocities and densities, which could then be followed by

an anisotropic inversion of the full offset data with the near offset

inversion results being used as constraints. By doing this, the com-

putational cost could be significantly reduced. This is because of

the fact that for the anisotropic inversion the background isotropic

model does not need to be re-estimated, which will reduce the num-

ber of model parameters, and therefore the overall computation cost.

For our application, we therefore implemented such a multiphase

inversion, that is, we first inverted the near offset traces for the back-

ground isotropic properties. The vertical P- and S-wave velocities

obtained from this isotropic inversion of near offset traces were then
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Multicomponent anisotropic seismic inversion 1143

Figure 14. Same as Fig. 11, but for the γ 1.

used for the subsequent step of the anisotropic inversion of the full

offset data.

N U M E R I C A L E X A M P L E

We generated a stratified model of P- and S-wave velocity (Vp and

VS) and density (ρ), based on an actual well log data from the Rock

Springs uplift (Well RSU-1), WY, USA. Fig. 2 shows the schematic

diagram of the synthetic model that was used to test our inver-

sion method. The model had different types of anisotropic layers

with different directions of the symmetry planes. The original well

log data were blocked applying the Sequential Backus Averaging

(Lindsay & Koughnet 2001) and the thickness of each layer was

about 36.5 m. The blocked model had 113 layers, specifically, 39

isotropic layers, 30 VTI layers, 3 HTI layers, 40 ORT layers and an

isotropic half-space. Assuming that the first 23 isotropic layers in the

overburden are known, our model vector consisted of a total number

of 689 parameters. Figs 3(a) and (b) show the actual RSU-1 logs and

the blocked well log that was used in our inversion. Fig. 3(c) shows

the Thomsen–Tsvankin anisotropy parameters that were used to

introduce anisotropy in the RSU-1 model. Additionally, azimuthal

directions of the vertical symmetry planes in HTI and ORT layers

were assigned based on the in situ stress field analysis of the real

Figure 15. Same as Fig. 11, but for the γ 2.

RSU seismic data by Mukherjee et al. (2012). The entire model

shown in Fig. 3 was used to compute synthetic three component

(vertical and horizontal inline and crossline components of particle

displacement from an explosive point source) seismograms in the

intercept time–ray parameter (τ−p) domain using the reflectivity

method along two azimuths (N30◦E and N75◦E). These computed

synthetic data in the τ−p domain are shown in Figs 4–6. Note that

these synthetics were generated using a zero-phase Ricker wavelet

with a central frequency of 35 Hz and for our inversion tests, we

added 3 per cent random noise to these data.

We first used our parallel NSGA II to invert the near-offset two

component (vertical and horizontal inline) data under isotropic as-

sumption for the vertical P- and S-wave velocities (VP, VS) and

density (ρ). The near-offset data consisted of 20 traces spanning

0–0.02 s km−1 on the ray parameter axis. We chose a low range

for ray parameter because of the fact that we wanted to restrict to

the near offsets only for this isotropic inversion. In this numerical

experiment, we used a population size of 800, Pm = 0.04, Pc =

0.90, and the number of generations = 930. We also used 20 for

the crossover index η and 10 for the mutation index κ . Note that

these choices were based on the isotropic and VTI inversion results

using NSGA II given by Padhi & Mallick (2013b). Next, to resolve

anisotropic parameters, we inverted the three-component full-offset
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1144 T. Li and S. Mallick

Figure 16. Same as Fig. 11, but for the δ1.

data with 36 traces with ray parameter ranging from 0–0.18 s km−1

along two different azimuths in the τ−p domain with an anisotropic

assumption. For this anisotropic inversion, we used a population size

of 4000 and a number of generations of 5000. Additionally, we used

the estimated VP and VS from the near-offset isotropic inversion as

hard constraints and only estimated ρ and other anisotropic param-

eters. For this inversion, we also found that varying Pc, Pm, η and κ

over generation provides better convergence instead of keeping them

constant. For the of probability of crossover Pc we varied it linearly

with generation as Pc = 0.7 − 0.1 × t

tmax
, and for the crossover dis-

tribution index η we varied it as η = 1.0 + 19.0 × t

tmax
. In these

linear functions, t and tmax, respectively denote the current gener-

ation number and the maximum number of generations. Note that

based on our previous arguments, in our choice of generation de-

pendent Pc and η, we deliberately chose Pc to decrease and η to

increase with generation such that the model space is widely sam-

pled at the beginning and is slowly reduced over generations as we

approach the true solution. Following Deb & Agrawal (1999), to get

a mutation effect of 1 per cent perturbance in solutions out of the

entire set of population, we varied the mutation index as κ = 100 + t

and the probability of mutation as Pm = 1

n
+ t

tmax
× (1 − 1

n
), where

n is the total number of variables (model parameters). Note here

that similar to the choice of the generation-dependent Pc and η,

the choice of the generation-dependent Pm and κ as above were

also motivated by maintaining diversity in the population at early

Figure 17. Same as Fig. 11, but for the δ2.

stage and slowly reduce it over time as the solutions near the global

minimum.

R E S U LT S

All inverted models shown in the following figures were obtained

by first estimating the Pareto-optimal set of solutions, and then

choosing a solution with the highest likelihood of the a posteriori

probability density (PPD) of the estimated Pareto front. Because the

true PPD for multi-objective inverse problems is difficult to estimate

(Padhi & Mallick 2013b), we plotted all solutions of the rank-1

members in the model (decision) space in a normalized histogram

display as an estimate of the approximate PPD (for details, see

Mosegaard & Tarantola 1995; Padhi & Mallick 2013b), and the

highest likelihood solutions were estimated from these approximate

PPD plots.

Figs 7–10 show our inversion result of near-offset pre-stack data

under an isotropic assumption. In this study, we first filtered the

P- and S-wave models by applying a 10 Hz high-cut filter, and

then used a reasonably wide (±20 per cent of the filtered velocity

profiles) search window for vertical P- and S-wave velocities, and

the search window for density was set constant in the range of 2.2

and 2.8 g cm–3. Even though our search windows were somewhat

arbitrary, in a practical scenario it is expected to be similar. For ex-

ample, the initial guess of the low-frequency vertical P- and S-wave
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Multicomponent anisotropic seismic inversion 1145

Figure 18. Same as Fig. 11, but for the δ3.

velocities can be estimated by correcting the near-offset pre-stack

data for normal moveout (NMO), and using a search window similar

to ours around the NMO estimated interval velocities is therefore

a practical choice. Although velocity–density relations are avail-

able in the literature (for example, Gardner et al. 1974; Castagna

1991, among others), or it could be estimated directly from the

wireline logs, in general establishing a background density trend

is much more difficult than establishing the background velocity

trends. Consequently, we chose to use a flat and wide search win-

dow for density to find out how well our inversion method is capable

of extracting the true density values. Fig. 7 compares the inverted

VP with true VP along with the search window used for the isotropic

near-offset inversion. Figs 8 and 9 are same as Fig. 7 but they are

respectively for VS and ρ. Fig. 10 shows the evolution of solutions

through generations under the defined objective functions—the P–

P error on the horizontal, and the P–S error on the vertical axis.

Note from Fig. 10, how the models that are randomly and widely

distributed in the objective space at the beginning converge to the

optimal solution set over generations. Note here that although we

denote the objectives as P–P and P–S errors in Fig. 10, they ac-

tually are the estimates of the scaled vertical and horizontal inline

components of the misfit functions as defined by eq. (6). It can be

noted from Figs 7–9 that near-offset vertical and horizontal inline

waveform data could estimate the vertical P- and S-wave veloci-

ties quite well, but failed to obtain a good estimate of the density.

Figure 19. Same as Fig. 11, but for the azimuthal angle of vertical symmetry

planes.

Including wide angle reflections in waveform inversions allow better

estimation of the subsurface properties than using just the low angle

reflections (Virieux & Operto 2009). Therefore, poor estimation of

density using near offset data only is not surprising. However note

here that the reason for restricting to near offsets only is due to the

fact that here we applied inversion under the assumption of isotropy

while the subsurface is azimuthally anisotropic. Consequently, in-

verting the near offset data only is the most viable choice where

the azimuthal anisotropy effects are not large and the background

isotropic model could be extracted.

Figs 11–20 show our anisotropic inversion result of the full-offset

pre-stack data, that used the estimated VP and VS from the near-offset

isotropic inversion as constraints. Figs 11–19 respectively show ρ,

Thomsen–Tsvankin anisotropic parameters, and the azimuthal di-

rections for vertical symmetry planes in the HTI and ORT layers.

Note from Figs 12–18, the search windows for anisotropic parame-

ters for the isotropic, VTI and HTI layers were set slightly narrower

than those for the ORT layers. There was no specific reason for

using different search windows, but note that even though the search

windows used for the isotropic, VTI and HTI layers were a bit nar-

rower than those used for the ORT layers, they still sample a large

variation of models in the model space and the inversion results

won’t be different if they were kept same for all layers. Finally,
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1146 T. Li and S. Mallick

Figure 20. Cross-plots of different data errors for the three-component data inversion under full anisotropic assumption. In all these plots, the P–P error is the

scaled misfit in the vertical component response, P–SV error is the scaled misfit in the horizontal inline response, and P–SH error is the scaled misfit in the

horizontal crossline response. (a) P–P error versus P–SV error along azimuth 1, (b) P–P error versus P–SH error along azimuth 1, (c) P–SV error versus P–SH

error along azimuth 1, (d) P–P error versus P–SV error along azimuth 2, (e) P–P error versus P–SH error along azimuth 2 and (f) P–SV error versus P–SH error

along azimuth 2. Horizontal and vertical axes in all these displays represent the errors for the corresponding data components they represent. Each of these

cross-plots represents different 2-D sections of the estimated 6-D Pareto-optimal front.

Fig. 20 shows the error analysis plot, or different 2-D cross-sections

of the estimated 6-D Pareto-optimal front for our final anisotropic

inversion result. As for the isotropic inversion, ‘P’, ‘SV’ and ‘SH’

used in the axes labels of Fig. 20 respectively denote the ‘verti-

cal’, ‘horizontal inline’ and ‘horizontal crossline’ components of

the particle displacement.

D I S C U S S I O N

We tested two-step inversion of noisy synthetic data generated from

a realistic earth model derived from a real well-log with isotropic,

VTI, HTI and ORT subsurface layers:

(1) The near-offset two-component data along one azimuth was

first inverted for the background isotropic properties.

(2) The entire-offset three-component data along two different

azimuths was then inverted under full anisotropic assumptions with

inverted results from (1) used as constraints.

For step-1 (Figs 7–10), we found that while the vertical P- and S-

wave velocities could be recovered from the near-offset data to a

reasonable accuracy, the estimation of density is rather poor. We

therefore believe that

(1) Near-offset data could be inverted for the vertical P- and

S-wave velocities.

(2) These velocities could then be used to constrain the verti-

cal velocities for an anisotropic inversion of the entire-offset data,

which, in turn, can significantly reduce the computation expense of

the anisotropic inversion.

(3) Density could not be accurately estimated from the near-

offset isotropic inversion. When the subsurface is anisotropic, an

accurate estimation of density requires full offset data.

As demonstrated in Figs 11–21, using the background velocities

from near-offset isotropic inversion as constraints, all anisotropic

parameters including density could be recovered quite well from

the anisotropic inversion. Not only the extracted model is close to

the true model, the PPD plots, shown as light blue (cyan) curves

in Figs 11–19, show well-constrained model estimates. In addition,

the widths of these PPD plots provide an estimate of the uncertainty

associated with the estimation of each parameter. Note that the ver-

tical resolution of in our inversion results is approximately quarter

wavelength of the dominant seismic frequency. Because we used a

35 Hz Ricker wavelet and the maximum vertical P-wave velocity in

our model was approximately 6000 m s–1 (see Fig. 3), our vertical

resolution was 43 m or lower.

In the examples presented here we used tight constraints for all the

model parameters of the first 23 layers which represent the isotropic

overburden and they constitute the top 900 m of the model. This is

similar to a situation when inversion is applied over a certain data

window assuming the overburden structure to be known. It must

however be noted that assumptions about the overburden is likely

to have an effect on the inversion of field data as the error will

propagate into the deeper layers.

In this work, we have focused only on horizontally stratified (1-

D) earth models. However in a practical situation, our algorithm

can be applied to field data in a number of scenarios after the seis-

mic data are migrated. Although 1-D assumptions exclusively made

in our algorithms could be applicable to real data after migration

for relatively simple structures, it is likely to fail for geologically
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Multicomponent anisotropic seismic inversion 1147

Figure 21. Comparison between the true VP with the inverted VP. Here, the

full-offset pre-stack data were inverted using a full anisotropic assumption,

and the inversion results from near-offset data were used to narrow down

the search window. Normalized PPD of the inverted results is also plotted

in light blue (cyan).

complex structures. While a 3-D anisotropic PWI is ideal for han-

dling a geologically complex subsurface, such a method is still in

early stage of its development (Warner et al. 2013). At the same

time, a methodology capable of handling at least the local 3-D

structures for every source–receiver offset/ray-parameter/angle pair

is required so that the inversion could be applied to real data where

the subsurface is relatively complex. Jiao et al. (2000) developed a

residual migration velocity analysis in τ–p domain and showed how

local dips could be incorporated and the same methodology could be

easily implemented into PWI. In addition, ray-based offset-to-angle

transform outlined by Mukhopadhyay & Mallick (2011) could also

allow incorporating local dips into the PWI. These issues are cur-

rently being investigated and will be discussed in a separate paper

in connection with inversion of real data.

Although here we applied our inversion to surface seismic data,

the flexibility of the reflectivity method for the forward synthetic

computation allows extending the method to other data types such as

the ocean–bottom cable (OBC) or vertical seismic profile (VSP) data

(see Mallick & Frazer 1988 for details). In addition, the inversion of

three-component data demonstrated here could be easily extended

to invert more data components such as nine component (9C, i.e.

three component sources and receivers) data if available. While 9C

surface seismic acquisitions are not common, they are frequently

recorded in walkaway VSP geometries and extending our inversion

methodology for such data could be of practical interest.

Being population-based global search methods, all MOEAs are

capable of finding solutions as close as possible to the true global

Pareto front. Since a large number of solutions are evaluated during

run, the solutions can be stored and the approximate PPD plots can

be generated to get an idea of the uncertainty of the evaluated model

parameters. While Kozlovskaya et al. (2007) claim that the quality

and the confidence interval for multi-objective inverse problems

could be estimated from the Pareto-optimal fronts alone, it was

pointed out by Padhi & Mallick (2013b) that as the number of

objectives increase, combining the Pareto-optimal fronts with the

estimates of the PPD is more appropriate. Not only do they allow

interpreting how well behaved the inverted solutions are, but the

width of each PPD curve allows us to quantify the uncertainties

associated with the estimates of each model parameter for each layer.

In our displays of the estimated models from inversion (Figs 7–9 and

11–19), we have also displayed the corresponding PPD estimates in

the background. The quality of these estimated PPD values provide

useful information on the inversion. For example, poor estimation of

density from the near-offset isotropic inversion (Fig. 9) is reflected

in the corresponding PPD plots as well. Similarly, reasonably good

estimates of velocity from near-offset isotropic inversion (Figs 7

and 8) and those of density and other anisotropic parameters from

the full-offset anisotropic inversion (Figs 11–19) are visible in tight

and well-constrained nature of the corresponding PPD plots.

One important point we must note here in connection with how

we estimate the PPD. Although our estimates are perfectly coherent

with the current state-of-the-art, we must note that the PPD we used

in this study is not a true posterior distribution in the Bayesian sense.

GA is a stochastic optimization method and tends to underestimate

the posterior uncertainty (Sen & Stoffa 1996). This is in fact true

for all stochastic optimization algorithms such as GA, simulated

annealing (SA), particle swarm optimization (PSO), etc. The main

advantage of these stochastic methods is that they can avoid local

minima by exhaustively sampling the model space, however models

sampled ‘away’ from the global minima do not contribute to the

estimation of the posterior uncertainty which in the Bayesian sense

they should, if they have non-zero likelihood in the prior. Therefore

what we get by modelling a probability density function (PDF) from

the optimized ensemble is not a posterior PDF in the Bayesian sense

but simply a normalized likelihood function. To estimate the true

posterior PDF, it is necessary to employ a more exhaustive sampling

method such as a Gibb’s sampler (Sen & Stoffa 1996). However,

using such, especially for anisotropic seismic inverse problem is

computationally prohibitive. Therefore for our application here we

have regarded the normalized likelihood estimates as approximation

of the posterior PDF even though earlier studies have demonstrated

that our approach would underestimate the uncertainties.

Our proposed methodology has some computational advantages:

(1) By inverting near-offset pre-stack data under isotropic as-

sumption first, the values of vertical P- and S-wave velocities could

be constrained within an acceptable range. These isotropic results

could be utilized to reduce the number of parameters to be estimated

for in the anisotropic inversion using the full range of offsets. This

substantially reduces the overall computational cost.

(2) The parallel implementation of NSGA II further increases

the computational efficiency of the algorithm. As all MOEA meth-

ods require large population size while dealing with complex non-

linear problems, the parallelization suggested here is of crucial

importance.
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(3) By scaling the objectives prior to ranking and computing

crowding distance, redefining the crowding distance in terms of

the normalized distances measured both along the scaled objective

space and the model space, and varying the crossover and mutation

parameters over generations, we believe that not only we presented

here a parallel implementation, but we also provided an improve-

ment of the original NSGA II. This is especially true for problems

such as the multicomponent seismic waveform inversion where the

number of model parameters to be estimated is much higher than

the number of objectives.

Using 10 nodes with 4 cores per node Intel Xeon W5580 @ 3.2G Hz

processors with 48 Mb of memory, our current implementation of

isotropic inversion takes approximately 10 hr. The full anisotropic

inversion on the other hand takes approximately 24 hr using 20 sim-

ilar nodes. Although these runtimes could be significantly reduced

using more nodes, we still think that further investigations are nec-

essary to improve the computational efficiency of our methodology

along the following lines:

(1) In the reflection matrix method used for forward modelling,

the calculation is actually done in the frequency-slowness (ω−p)

domain. Because the reflection matrix is built from the top down

(see eq. 4), the behaviour of propagating seismic waves in the lower

layers is independent of the layers above them. Therefore a slid-

ing inversion window in τ−p domain for each component of the

data could be applied from top to the bottom of the whole dataset.

Inversion the pre-stack seismic data in τ−p domain part by part

could significantly reduce the number of parameters that are being

solved for in the model space, and thus could significantly improve

its computational efficiency.

(2) The search algorithm currently implemented in our method

samples the model space via crossover and mutation. This sampling

is somewhat random, and in many instances, the process of crossover

and mutation results in a model that is not physically meaningful

such that the elastic stiffness matrix [Cij] is not positive definite.

As NSGA II generates new members, it is mandatory to check

whether the generated models satisfy the positive definite conditions

(Appendix A) and accept them only when they do. We believe that

a robust and advanced sampling strategy of the model space by

incorporating rock physics into NSGA II could potentially increase

the sampling efficiency and lead to a better convergence of the

methodology compared to our current implementation.

While our proposed two phase inversion is computationally effi-

cient, it has a fundamental problem with the estimation of the other

model parameters. Once the VP and VS are fixed from the near-offset

isotropic inversion, the other parameters being inverted for are bi-

ased by the choice of their values. Additionally, if the methodology

is extended to include sliding windows, the model parameters fixed

for the overburden are likely to bias the estimates for the current

window that is being inverted for. In our near-offset isotropic inver-

sion (Figs 7–9), note that although our estimates of VP and VS were

reasonable, they are not exact. Consequently, fixing their values may

impact on the final inversion result. So, we also ran a full anisotropic

inversion where VP and VS, in addition to ρ and other anisotropic

parameters were inverted for. For this inversion we used the esti-

mated VP and VS from the near-offset inversion as constraint and

used a narrow search window (±5 per cent) to estimate them. These

inverted values of VP and VS, shown in Figs 21 and 22 demonstrate

that this leads us to achieve a better estimation of these two parame-

ters (compare Figs 21 and 22, respectively with Figs 7 and 8). Fig. 23

compares the waveform fit between the observed and predicted data

Figure 22. Same as Fig. 21, but for VS.

for all three components along a single azimuth (N75◦E) for this

anisotropic inversion demonstrating the fact that all major features

on the observed data were predicted quite well by the final inversion

model. From these results we think that for the two-step inversion,

it may be necessary to invert for VP and VS in addition to ρ and

other anisotropic parameters during the full anisotropic inversion.

While the estimates of VP and VS from the near-offset inversion

help reducing their search windows during the anisotropic inver-

sion, please note this is likely to take additional computation time

than the case where they are not inverted for. Consequently, further

investigations are required to improve the computational efficiency

of our proposed multiphase inversion.

As noted above, by making the probabilities of crossover and

mutation (Pc and Pm) and the crossover and mutation distribution

indices (η and κ) to vary with generation helped the anisotropic

inversion. Our choice of the specific linear functions that were used

to vary each of these parameters, although were based on some

preliminary experiments, we must admit that we did not make rig-

orous investigations on how each of them must be optimally varied.

Therefore we think that investigations are also required to find out

how each of these parameters should be changed to obtain the best

results.

Although we applied our inversion to noisy synthetic data our

noise is random. In most field data, the noise could however be

coherent. For example, although the interbed multiple reflections
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Multicomponent anisotropic seismic inversion 1149

Figure 23. Waveform fitting for the anisotropic waveform inversion along a single azimuth (N75◦E). The result along the other azimuth is similar and therefore

not shown. (a) Observed data, horizontal inline component, (b) Predicted (synthetic) data, horizontal inline component, (c) Data residual, horizontal inline

component. (d)–(f) Same as (a)–(c), but for the horizontal crossline component. (g)–(i) Same as (a)–(c), but for the vertical component.

are included in our algorithm, the multiples that our method will

honour are only those generated within the inversion window. In

real data, multiples from the overburden layers that are not being

inverted for may contaminate data within the inversion window.

Although advanced processing methods are available to attenuate

such coherent noise, it is often difficult to assess their effects on

the amplitudes and therefore the validity of applying any waveform

based method. We are in the process of applying our inversion to

real multicomponent seismic data where these practical issues will

be addressed.

C O N C LU S I O N

Estimating elastic parameters and density from seismic waveform

data is a non-linear problem with non-unique solutions within ac-

ceptable error limits of fitting the data. Such non-uniqueness can

be tackled by using multicomponent data to constrain the various

model parameters being inverted for. Casting the problem of in-

verting such multiple data sets as a multi-objective optimization

problem, we have developed and used a global search method for

finding compromise solutions that can simultaneously fit all the

data components to reasonable accuracy. We applied the method

to invert noisy synthetic pre-stack seismic waveform data gener-

ated using a multilayer model obtained from a real well log with

isotropic, azimuthally independent (VTI) and azimuthally depen-

dent (HTI, ORT) anisotropic layers. Our results show that inverting

two-component near-offset data under isotropic assumptions fol-

lowed by a three-component anisotropic inversion of the full offset

data along two azimuths can successfully retrieve the subsurface

elastic anisotropic parameters. Even though our proposed method-

ology is valid for 1-D subsurface, it could be applicable to real data

after pre-stack migration for many simple geological settings of

practical interest. In addition, we also outline methodologies how

our proposed method could be extended to 3-D structures such that

more complex geology could be handled. We therefore believe that

our method could potentially be applicable to invert real multicom-

ponent seismic data. Further investigations are however necessary

to improve the computational efficiency of the method.
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A P P E N D I X A : P H Y S I C A L LY

M E A N I N G F U L T H O M S E N – T S VA N K I N

PA R A M E T E R S F O R

V T I / H T I / O RT H O R H O M B I C M E D I A

The physical limits for the Thomsen–Tsvankin parameters for

VTI/HTI and orthorhombic medium can be readily obtained from

the equations that convert them into elastic stiffness coefficients.

Below, we outline only the VTI and orthorhombic case. Extending

the VTI results to HTI is straightforward because HTI is simply a

90◦ rotation of the VTI medium about the y coordinate axis.

VTI case

The equations that convert the Thomsen parameters into the elastic

coefficients are

C33 = ρV 2
P , (A1)

C44 = ρV 2
S , (A2)

C11 = C33 (1 + 2ε) , (A3)

C66 = C44 (1 + 2γ ) , (A4)

and

C13 = [(C33 − C44) {2δC33 + (C33 − C44)}]
1
2 − C44. (A5)

Note that C33, C44, C11 and C66 must be non-negative. If not, it will

mean that the wave propagates with negative velocity along certain
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directions which is physically impossible. In addition, while the S-

wave velocity can be zero for the acoustic case, P-wave velocity is

never zero. Additionally, density cannot be a negative quantity or

zero. Using these arguments, eqs (A1) and (A2) gives

ρ > 0; VP > 0; VS ≥ 0. (A6)

Because C11 also cannot be zero or negative, from eq. (A3) we get

ε > −
1

2
. (A7)

On similar arguments, eq. (A4) gives

γ ≥ −
1

2
. (A8)

Finally, from eq. (A5), we get

C33 > C44, (A9)

and

C33 − C44 ≥ 2δC33. (A10)

Note that the inequality shown in eq. (A9) is based on the fact that

the S-wave velocity must always be less than the P-wave velocity,

not even equal.

All constraints shown by eqs (A6)–(A10) must be satisfied in

choosing random models in any inversion method. Although the

eqs (A6)–(A9) are quite obvious and is not likely to be encountered

in choosing random models, eq. (A10) is important in constraining

the negative δ values.

Orthorhombic case

For orthorhombic medium, the equations for computing the elastic

stiffness coefficients from the Thomsen–Tsvankin parameters are

C33 = ρV 2
P , (A11)

C55 = ρV 2
S , (A12)

C22 = C33 (1 + 2ε1) , (A13)

C66 = C44 (1 + 2γ1) , (A14)

C11 = C33 (1 + 2ε2) , (A15)

C44 = C55 (1 + 2γ2) , (A16)

C23 = [(C33 − C44) {2δ1C33 + (C33 − C44)}]
1
2 − C44, (A17)

C13 = [(C33 − C55) {2δ2C33 + (C33 − C55)}]
1
2 − C55, (A18)

and

C12 = [(C11 − C66) {2δ3C11 + (C11 − C66)}]
1
2 − C66. (A19)

Based on eqs (A11)–(A19) and the arguments for the VTI case, the

following are the constraints on the Thomsen–Tsvankin parameters

for the models to be physically meaningful

ρ > 0; VP > 0; VS ≥ 0, (A20)

ε1 > −
1

2
; ε2 > −

1

2
; (A21)

γ1 ≥ −
1

2
; γ2 ≥ −

1

2
, (A22)

C33 > C44; C33 > C55; C11 > C66; (A23)

C33 − C44 ≥ 2δ1C33, (A24)

C33 − C55 ≥ 2δ2C33, (A25)

and

C11 − C66 ≥ 2δ3C11. (A26)

Again, the constraint on δ1, δ2 and δ3 shown in eqs (A24)–(A26)

are especially important.

A P P E N D I X B : K E Y C O N C E P T S O F

M U LT I - O B J E C T I V E E V O LU T I O NA RY

A L G O R I T H M

NSGA II, like all MOEAs, attempts to estimate the Pareto-optimal

set of solutions using two fundamental concepts (1) non-dominance

and (2) population diversity. Details of these concepts were dis-

cussed by Padhi & Mallick (2013b). Here, we review some of its

fundamental concepts in the context of our parallel and computa-

tionally efficient implementation.

Dominance, non-dominance and Pareto-optimal front

In multi-objective optimization with a total number of m objectives,

if a set of solutions x1 dominates over another set, say x2, it is then

denoted as

x1 ≻ x2. (B1)

Considering that the multi-objective optimization is a minimization

problem, x1 ≻ x2 under the following conditions:

(1) If x1 = [x1
1 , x1

2 , . . . . . . x1
n ]T and x2 = [x2

1 , x2
2 , . . . . . . x2

n ]T

in the decision space X maps respectively onto y1 =

[y1
1 , y1

2 , . . . . . . y1
m]T and y2 = [y2

1 , y2
2 , . . . . . . y2

m]T in the objective

space Y then

(i) y1
i ≤ y2

i ,∀i = 1, 2, . . . . . . m.

(ii) y1
j < y2

j for at least one value of j where 1 ≤ j ≤ m.

In above, the symbol ∀ denotes ‘for all’. The Pareto-optimal solu-

tions in the decision space are those solutions that do not dominate

one another. Due to their non-dominance, in the objective space,

they form a front, known as the Pareto-optimal front. The first es-

sential step in NSGA II is sorting the models in descending order of

their respective dominance levels, or in other words, sorting them

into different Pareto-optimal fronts.

Scaling

The concept of scaling has been discussed by Goldberg (1989) and

has been used in the past for single component seismic inversions
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1152 T. Li and S. Mallick

(Stoffa & Sen 1991; Sen & Stoffa 1992; Mallick 1995, 1999). At

early generations where most solutions are far from global optimum,

ranking members and computing their crowding distances purely

based on their raw objectives is improper because relatively better

solutions in the population tend to drive algorithm towards a local

optimum (Goldberg 1989). So, it is advisable to scale down the

relatively better solutions and scale up the relatively poor ones

during early generations and slowly relax this scaling process as

the generation progresses and convergence to the global optimum

is reached. In seismic inversion problems, two types of scaling of

the objective function have been used (1) linear scaling and (2)

exponential scaling.

In linear scaling, the poor solutions are scaled up and good solu-

tions are scaled down using a linear function in such a way that the

average value of the objective stays the same. For example, if f is

the raw objective and f ′ is the corresponding scaled objective, the

linear scaling computes the scaled objective as

f ′ = a f + b. (B2)

In eq. (B2), the constants a and b are chosen such that the average

values of both raw and scaled objectives are equal, that is, f ′
avg =

favg and the maximum value of the scaled objective is given as

f ′
max = Cm favg, where Cm is a user-defined parameter. Using these

conditions for the average and maximum values of the scaled fitness

f ′, the constants a and b could be readily derived as

a =
favg (Cm − 1)

fmax − favg

, (B3)

and

b = favg (1 − a) . (B4)

In our application, varying Cm from 1.2 at generation 1 to 2.0 for

the last generation for each objective produced very good results.

In an exponential scaling, a parameter T which is similar to

the temperature in simulated annealing (SA) is used to scale the

objective values using an exponential function (Stoffa & Sen 1991).

Similar to SA, T is initially chosen to be very high and slowly

reduced over the generations. Details of this exponential scaling

including how to vary T optimally over generations can be found in

Stoffa & Sen (1991). Because we did not use exponential scaling in

our applications, we do not repeat them here.

Rank, diversity, and crowding distance

In NSGA II, the best set of solutions out of the entire population

is chosen such that they do not dominate one another but dominate

the rest of the solutions, and are assigned a rank 1 (the first Pareto-

optimal front). Another set of solutions are chosen such that they

do not dominate one another, but are dominated by the members

belonging to rank 1, and they dominate the others that are not yet

ranked. This set is assigned rank 2 (the second Pareto-optimal front).

This process of ranking in descending order of their dominance is

continued until the entire population is exhausted. Ranking the

population according to their dominance levels is one criterion to

ensure that the best set of models is propagated over generations.

Although it provides the mechanism for selecting the best members,

it may still fail when most models do not dominate one another, that

is, they all belong to the same rank or Pareto-optimal front. In theory,

all stochastic searches including MOEA are based on an infinite

population size. In practice however, the size of the population of

the models must be finite, and any stochastic search using a finite

size of population tend to cluster near a single solution over time.

Such a clustering, known as the genetic drift (Goldberg 1989) is

desirable when the solutions are near the global optimum, but they

must be avoided at all other times to avoid premature convergence.

For single objective problems, Sen & Stoffa (1992) proposed that

running several independent GA inversions and combining them

together can potentially overcome genetic drift.

Since for multi-objective problems running several GA inversions

is expensive, the concept of ‘population diversity’, introduced by

Deb et al. (2002) is a useful and practical alternative. Thus, in

addition to sorting according to their dominance levels, to avoid

clustering, the MOEAs assign a measure of population diversity to

individual members. In standard MOEAs, the diversity is typically

given as a normalized distance of a member from its neighbours,

measured along each objective axis, and is called the ‘crowing

distance’ (Deb et al. 2002). Out of two members belonging to the

same rank, the one that is least crowded is given a higher chance

for being selected than the other. This ensures that while choosing

the good solutions, diversity in the population is also maintained.

While in standard MOEA, raw objectives are used in assigning

ranks; in our implementations we use the scaled objectives for such.

Additionally, we compute the crowding distance both in the scaled

objective and model space and combine them together to define a

new crowding distance for each model.
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