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Summary. The equations describing multicomponent, reacting MHD flows are
derived. Arbitrarily oriented magnetic fields are considered. The differential
equations are obtained for: (1) general flows, and (2) the special case of
plane-parallel, steady flows. The approximations made in deriving these
equations are critically assessed. Particular attention is given to the momentum
and energy ‘source terms’. Exact formulae are obtained for the momentum and
energy source terms for elastic scattering for two special cases of the momentum
transfer cross section: (1) dxv™'; and (2) G=constant. The effects of reactive
processes, such as recombination, photoionization, photodissociation, charge
exchange, and reactive scattering are also discussed. Departures from
Maxwellian velocity distributions are considered.

1 Introduction

In recent years it has been recognized that the multifluid nature of MHD flows in interstellar
clouds can be of great importance. Because the magnetic field interacts directly only with the
ion-electron plasma, shock waves in clouds of low fractional ionization may contain extended
regions in which the fluid velocities of the ions and neutrals differ appreciably, and this
ion-neutral streaming can play a major role in momentum and energy transfer.

The equations describing steady, plane-parallel multifluid MHD flows were given by Draine
(1980; hereafter D80) and Draine, Roberge & Dalgarno (1983; hereafter DRD83) for the special
case where the magnetic field B is transverse to the direction of shock propagation. These
equations were used in numerical calculations of the shock wave believed to be responsible for the
intense molecular line emission from OMC-1 (Draine & Roberge 1982; Chernoff, Hollenbach &
McKee 1982), and in general studies of molecular line emission from a broad range of shock
models (DRD83; Draine & Roberge 1984).

Flower, Pineau des Forets & Hartquist (1985; hereafter FPH85) have recently studied chemical
reactions in steady, plane-parallel, transverse MHD shock waves in diffuse clouds. To compute
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134 B. T. Draine

the structure of these shock waves, FPH85 adopted equations of energy conservation for the
electrons and ions differing from those of D80 and DRDS&3.

As it appears likely that study of MHD shock waves in molecular clouds will be of considerable
and continuing interest, it is desirable to present a rigorous derivation of the equations describing
such flows in order to clarify the disagreement between D80 and DRDS83, on the one hand, and
FPHS8S on the other. At the same time, the MHD equations describing stead)i; plane-parallel
flows will be extended to the general case where, in particular, the magnetic field B is not required
to be perpendicular to the direction of shock propagation. Finally, detailed consideration will be
given to the ‘source terms’ in the MHD equations which describe the exchange of mass,
momentum, and energy between the neutral, ion, and electron fluids.

In Section 2 we derive the equations expressing conservation of mass, momentum, and energy.
In Section 3 we examine the ‘source terms’ associated with elastic scattering processes. In Section
4 the effects of chemical reactions are considered. Our results are compared with those of FPH8S
in Section 5, where we also discuss the validity of various approximations adopted in deriving the
MHD equations. Finally, our results are summarized in Section 6.

2 Conservation laws for multicomponent fluid flows
2.1 NOTATION AND ASSUMPTIONS

Consider a system of three interpenetrating fluids: neutrals, ions, and electrons, denoted by
subscripts n, i, e. Fluid variables will be denoted by the subscript f, where f € {n, i, e}. Each fluid
will be characterized by the number density n¢, mass density o, flow velocity D, temperature T
[such that the mean translational kinetic energy per fluid particle in a frame moving with the fluid
is (3/2)kT¢], and internal energy per particle u; (due to rotational, vibrational, or electronic
excitation).

It is assumed that the neutral and ion fluids each consist of a number of distinct chemical
species. The subscript o will be used to denote a particular chemical species; n, and m, are the
number density and molecular mass of that species, and n; and g are given by

ne= Y ng, (2.1)
aef

0= D, NgMy. (2.2)
aef

We will assume that the length scales for variation in the fluid variables n¢, o, ¥, and T;are long
compared to the mean free path against scattering, so that a fluid description is meaningful. We
will neglect viscous stresses; i.e., we will assume that the velocity distribution function for each
fluid is locally isotropic in the frame of reference moving with the fluid. Particle diffusion* and
heat diffusion will be neglected. The validity of these and other assumptions will be discussed in
Section 5.3.

The notion of a comoving fluid element is useful in formulating the conservation laws. The
comoving fluid element has a (time-dependent) volume €(¢), and the closed surface bounding
this volume moves with the local fluid velocity v; (at the surface). In the limit Q;— 0 one has

DQy
Dt

where D¢/ Dt=v;-V+d/0t is the usual convective derivative for fluid f.

=QV-0; (2.3)

* We assume that individual chemical species do not diffuse relative to other species belonging to the same fluid (e.g.,
He does not diffuse relative to H or H). The neutrals and ions (and neutrals and electrons) are of course permitted to
‘diffuse’ through one another.
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Multicomponent, reacting MHD flows 135

2.2 NUMBER CONSERVATION

The basic equation governing the rate of change of the number density n, of species @ belonging
to fluid f is just (neglecting diffusion)

Dy
Bt— (”agf)=Nan’ (24)

where N, is the net rate per volume at which species a is being created by chemical reactions. Using
equation (2.3) above, this gives the familiar result

Ne

== Ne. (2.5)

\& (”a3f)+

2.3 MASS CONSERVATION

The fundamental equation of mass conservation (neglecting diffusion) is

Dy

— (0r82) =8¢, (2.6)
Dt

where S¢is the rate per volume at which mass is being added to fluid f by chemical reactions. Using
(2.3) one obtains

0
V- (o) + —é‘it’i:sf. @.7)

2.4 MOMENTUM CONSERVATION

The momentum 9,Q,,5;, of the neutral fluid within the comoving fluid element Q,, can be changed
only by (i) the pressure exerted by the neutral fluid on the boundaries of the fluid element; (ii) the
gravitational force; (iii) non-reactive scattering with particles of other fluids; (iv) creation or
destruction of neutral particles by ‘chemical’ processes. The fundamental equation of momentum
conservation is

D, N -
E (?n ann)= _an(nnan)_Qn Q,VO+F,Q,, (28)

where @ is the gravitational potential, and ff is the rate at which the momentum per volume of fluid
f is changed as the result of non-reactive scatterings as well as chemical processes. The fundamental
equation for momentum conservation of the neutrals is then

D
En' (in_fn)"’Qn—l})nV 'T))n+v(nnan)=fn—gnV(I)~ (293)
t
For the special case of plane-parallel, stationary flows (3/dx=3/dy=0/3t=0) this simplifies to
d - a
:i; (OnUnUn; +1akT1é;) =F— 0,V O, (2.9b)

where é, is the unit vector in the z direction. We assume that the charged particles (ions and
electrons) all have a common fluid velocity #;, since differences in the divergence of the ion and
electron velocities would lead to charge separation and strong electric fields opposing this charge
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136 B. T. Draine

separation. While differences in the fluid velocities of the ions and electrons (i.e., electric
currents) are of course required if magnetic field gradients exist, it will be seen below (Section
5.3) that the drift velocities associated with these currents are negligible compared to the fluid
velocities for all cases of interest. Since it is assumed that no net charge density is present, it
follows that there is no change of momentum due to the electric field E. Writing down a
fundamental equation of momentum con_s_f,rvation for the ions and electrons which is similar to
equation (2.8), but with an added term €;J Xﬁ/ c on the right-hand side representing the Lorentz
force on the fluid element, we obtain {using VX§=(4JI/C)T +(1/c)aﬁ/ at}

2
D (0:0)+0 BNV - Bi+V <nikTi+nekTe+~B—> L ®B- V)ﬁ+1— ﬁxﬁ =F+F.—o,VO.
Dt 8t/ 4w

4nc ot
(2.10a)
For the special case of plane-parallel steady flows this simplies to
d B? 1 9
———{pfl)’iviz-i*éz (nikTi+ nekTe+—>}—— B, —B=F,+F.—o,V0. (2.10b)
dz 8w 4 0z

It is worth noting that the derivation of (2.10a) and (2.10b) did not rely on any assumption
regarding the conductivity of the plasma (except in so far as the ion and electron velocities were
taken to be equal).

2.5 ELECTRODYNAMICS

We assume the plasma to be a perfect electrical conductor, so that the electric _;field vanishes in the

frame comoving with the plasma. Thus in a general frame we have E= —0;xB/c. Operating with
. . =2 .

VX and using the Maxwell equation VXE=—9B/cdt, we obtain

B _
—=VX(v; XB). (2.11)
ot '
For the special case of plane-parallel, steady flow we obtain
4 (Bv,)=B i (2.12)
—— bV )=D, — ¥, .
dz dz

from which we obtain (using V- ﬁ=0)

B,=constant, (2.13a)
d d

;Z— (vaiz)=Bz :1; Vix, (213b)
d d

:i;(Binz)=Bz'd‘; Viy. (2130)

2.6 ENERGY CONSERVATION

The ‘thermal’ energy content of the fluid element Q¢ consists of the kinetic energy (3/2)n:Q:k T
in random motions of the particles, plus n;Qsu¢, where u;is the mean internal energy per particle
due to excitation of internal degrees of freedom (rotation, vibration, etc.). The fundamental
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Multicomponent, reacting MHD flows 137

equation for the rate of change of the thermal energy content of the fluid element is

! { Q (3 kT, )} 1, 22 G (2.14)
— I Q¢ | = kTi+us ) p=—n + , :
Dt foef 2 f f f f Dt foef

where G is the rate of change per volume of the thermal energy content of fluid f due to interaction
with other fluids, emission or absorption of radiation, interaction with cosmic rays, etc. The term
on the right-hand side involving D;Q;/Dt is just the change in thermal energy of the fluid
associated with adiabatic compression or expansion of the fluid element. Heat diffusion (i.e.,
thermal conduction) has been neglected. Itis important to note that equation (2.14) applies to the
electron and ion fluids as well as to the neutral particles.* Equation (2.14) may be rewritten

Dy 3 5
— B¢ "‘ka‘i‘ uf>}+{nf (“ ka+ uf> V‘3f=Gf. (2153)
Dt 2 2

For the special case of plane-parallel, steady flow this becomes

d 3 d
- {nf (— ka+ uf> Ufz}+nfka — Ufz=Gf. (215b)
dz 2 dz

An alternative energy conservation equation for plane-parallel, steady flow is sometimes
useful. To obtain this equation for the neutral fluid, operate on equation (2.9b) with v,,,é,-, add
the result to (2.15b), and use (2.7) to obtain

d (1 5 5 r do

Z 5 OnUnz +HnUn, E an+un =Gn+Fannz—5SnUnz—QnUnz—;~ (216)
For the ion-electron plasma, operate on equation (2.10b) with v;,€, -, add the result to (2.15b) for
the ions plus electrons, and use (2.7) and (2.13) to obtain

d [1 24 {5( kT + kT)+1 (BZ+B2)}]
— | T OiViz; T Vi N iTHe e) VT x
az 12 ¢ 2 4 Y

1 B, du, dv, dd
=G+ Ge+(Fo +FeoJvi,—— Sl +— | B,——+B, — | —oivi,——. (2.17)
2 4 dz dz dz

3 Source terms: elastic scattering

Ns, Ss, ff, and G¢— the source terms for particle number, mass, momentum, and thermal energy
~ have the same definitions here as in previous work by D80 and DRDS83. In those papers
expressions were given for the contributions to these source terms due to a few selected processes,
such as ion-neutral elastic scattering, ion-electron elastic scattering, etc. A more comprehensive
discussion of these terms is provided below.

3.1 GENERAL RESULTS

We consider species @ and £, each assumed to have a Maxwellian velocity distribution (with
temperatures T, and Ty, respectively) centred around mean velocities v, and 7);; Let
do(v,0)/dQ be the differential cross-section for elastic scattering, where v is the relative
velocity of the collision partners, and 8 is the deflection angle in the centre-of-mass frame. Then

* Ohmic heating, though usually negligible (see Section 5.3 below) would enter as a contribution to Gy, as it is the
direct result of scattering of the current carriers by other species.
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138 B. T. Draine
the general expression for the contribution of elastic scattering to the momentum source term F
for species a is (see Appendix A):

n,ngmomg [ 2kT,\?
- a g Mo 7t ( r) (l-))ﬂ—l_))a)

Fa , elas. scat. —

(mg+mg) \7m,
xs 3 exp (—5?) f dx x?5(v=xc,) exp (—x?){2xs cosh (2xs)—sinh (2xs)}, (3.1
0
where
m=—a e (3.2)
(ma + mﬂ)
my, Tz +mg T,
T.= Ta’pTTpa (3.3)
(ma +m,3)
‘Ba —'75 l
g a0 (3.4)
¢
2kT,\V?
(=) (5)
mr
and

~ do
a(v)EJ' dQE (1—cos8) (3.6)

is the momentum-transfer cross-section for elastic scattering.
The general expression for the contribution of elastic scattering to the heat source term G for
species «a is (see Appendix B):

ngngmgmg [ 8kT,\'/* T;—T,
p P ( ) exp(—sz)ZkX{( £ )
(mg+mg)* \ m, s

Ga , elas. scat. =

ng Ta,

xj dx x*o(v=1xc,) exp (—x?) sinh (2xs) +
0

r

RS 2 mgTa
x| dxx’o(v=xc,)exp (—x”)cosh (2xs)— 5

0 m,s

X Jw dx x25(v=xc,) exp (—x?) sinh (2xs)} . (3.7
0

3.2 SPECIAL CASE: OU=CONSTANT

A special case of particular interest is that where the momentum transfer cross-section v~

since this applies to scattering by an r~* potential, a good approximation to the polarization
interaction between ions and neutral atoms or molecules. For this case the integrals in (3.1) and

(3.7) simplify greatly, with the result

- NgNgMgMg

Fa, elas. scat.=a_g__ (O'U) (333_7)21) (38)
(ma +mﬂ)
ngngMgmg

Ga, elas. scat.=_a—_a_5— (UU) {3k(T,3 - Ta)+mﬂ 'D’a _3,3 i2} (39)
(ma+m/3)
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Multicomponent, reacting MHD flows 139

3.3 SPECIAL CASE: G=CONSTANT

A second case of interest is that of elastic scattering by a velocity-independent cross-section. For
this case one obtains

1/2
E,, =(’1:”3:’m:’f (Z;T) ORANE (3.10)
115<1+L> exp(—s2)+<s+l—-l—) a2 erf (s). (3.11)
2s? s 45
An excellent approximation to I; is provided by
8 95\ /2
s (1422 (3.12)

which is exact in the limits s— 0 and s— o, and is accurate to within 1.5 per cent for 0<s<o. The
heat source term is

nengmgmg (8kT,\'? Mg +mg
Ga, elas. scat. = 2 ok (Tﬂ_Ta )12(8)+ - Ta13(s) (313)
(mg +mg) am, m,
5 3
IZE<s2+5 exp (—s%)+ -4—+3s+s3 a2 erf (s) (3.14)
s
1 1
I3E<s2+ —) exp (—s?)+ (s3+s———) x2erf (s). (3.15)
2 4s
I, and I3 may be approximated by
9s? \1/2 8
12z<1+ ) <4+— s2) , (3.16)
64 3
(accurate to within 5.0 per cent for 0<s<w«), and
952\ /2 8
L=(1+ — 52, 3.17
’ ( 64 ) 3 G

(accurate to within 1.5 per cent for 0<s<w).

4 Source terms: chemical reactions
4.1 GENERAL FORMULAE

Let N, ; be the rate per volume at which particles @ are being created (if N, ; >0) or destroyed (if
Ny, 2<0) by a specific chemical reaction A. By ‘chemical reaction’ we mean any process which
creates or destroys particles of a particular species — i.e., we consider photoionization,
photodissociation, electron—ion recombination, and charge exchange to be ‘chemical’ reactions.

In addition to the mean velocity v, of species a, we define the velocity i”a, 4 to be the mean
velocity of particles & emerging from reaction A (if the reaction is one which creates species  —
i.e., Ny, 1>0) or being destroyed by reaction A (if the reaction is one which destroys species o —
i.e., Ng, 1 <0). We also define y, , to be the three-dimensional velocity dispersion of particles a
emerging from reaction 4 (if N,,, , >0) or being destroyed by reaction 4 (if N, , <0). With these
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140 B. T. Draine

definitions, it is now straightforward to write down the rate per volume of creation of mass for
species a:

Sa,i= a,lma; (41)
the rate per volume of addition of momentum to species a by reaction 4:

>

Fo 1 =Ny 1Mo Wo 45 4.2)
and the rate per volume of addition of thermal energy to species a by reaction A:

Ga,).=Na,A(1/2ma|Ba-‘7a,}.’2+1/2mayg,i)~ (43)

The total source terms for fluid f are obtained by summing over all reactions A involving
components of f:

-
Xf=2f ;XM (X=N,S,F, or G). (4.4)

4.2 ION—ELECTRON RADIATIVE RECOMBINATION

For radiative recombination A=I1"+e~— A + hv with rate coefficient @ we have

NA,,1=—N1J=— e,,1=an1ne (45)
Sq,a=—S8;1=anmm.my, Se ;=—anmn.m (4.6)
= =2 - = -

Fu,=—F ,=anmn.muv;, F. ,=—anmn.m.v;, 4.7)
Ga,a=ann(Yamy|0,—0;|*+%2kT), (4.8)
GI,A =—an1ne3/2kTi, Ge,/l = —an,nekTe, (49)

where we have assumed that: (i) T./m.> T;/m; (so that the recombination rate is independent of
the random velocity of a given ion); (ii) m;>m, (so that m;=m,, and the velocity of a
newly-formed atom is equal to that of the ion which recombined to form it); (iii) #;=0.; (iv)
the radiative recombination cross-sections o(v)xv™2, so that the mean kinetic energy
(1 /2)mey§, rad. rec. Of the recombining electrons is just k7.

4.3 ION—ELECTRON DISSOCIATIVE RECOMBINATION

For exothermic dissociative recombination A =1*+e™— A+ B+AE (where AE>0 is the kinetic
energy of the products minus the kinetic energy of the reactants) with rate coefficient @ we have

N4 ,2=Np 1=—N; ;=—N, =anjn,, (4.10)
Sa,4+8p 2a=—S8,=anmn.m;, S, ;=-—anmn.me, 4.11)
FA,,{ +FB,A =—i‘:1,,1 =annem;v;, i"e,/l =—ann.m.;, (4.12)
Ga, 1 +Gp s =anmn.(Vamy|0y—0;|*+ %2 kT;+kT.+ AE), (4.13)
Gy ,=—ann.2kT;, G, ,=—anmn.kT,, (4.14)

where we have made the same assumptions [(i)—(iv)] as in the preceding discussion of radiative
recombination.
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Multicomponent, reacting MHD flows 141
4.4 PHOTOIONIZATION

For photoionization of a neutral A=A +hv—I*+e”~+AE at a rate per volume n4¢; one has

Np =N ,=—Nj ,=n,4§ (4.15)

Spa=—Sai=nalymy, Sei=nslym. (4.16)

- - - - -

Fii==Fa1=n,5muv,, F.,=n,{meu,, (4.17)
3kT,

Gaa=—na&y 5 (4.18)

Gra=nal; (Vamy| 0= *+%kT,), G. ,=ns5AE. (4.19)

4.5 PHOTODISSOCIATION

Consider photodissociation A=AB+hv— A+ B+AE, where A and B are both neutral. Then

Na,a=Np i =—Nap 1=napl;, (4.20)
Sa,4+S88,4+S48,1=0, (4.21)
- > -
Fa1+Fp i +F4p =0, (4.22)
GA,/1+GB,/1 +GAB,,1=nABQAE. (423)
If an ion is photodissociated into a neutral and an ion, A=AI*+hv— A+I*+AE, then
Na,a=Np=—Napi=na8, (4.24)
Sa,2=—(Spa+Sar)=narlyma, (4.25)
- - = -
Faa=—(Fpa+Fa)=na & myv;, (4.26)
1 3mA mIAE
Ga,a=na1&; {“ ma |0y~ |+ ———— kT, —“—}, (4.27)
2 2(mys+my) (ma+my)
3mA mAAE
Gri+Gara=naéiy— kT;+ . (4.28)
2(ma+my) (ma+my)

4.6 ION—~MOLECULE REACTIONS WITH k(T)=CONSTANT

If the rate coefficient k; for an ion-molecule exchange reaction A=A+I*—B+J*+AE is
temperature independent (the reaction must be exothermic for this to be true), then the
probability per time of a given particle A or I'* reacting is independent of its velocity, and we find

NB,/1=NJ,/1=_NA,/1=—N1,A=k/lnAn1a (4-29)
Sa,a+8p,4=—(81,,+5;5 2)=kynan(mp—my). (4.30)

We now assume no forward-backward asymmetry to the differential-scattering cross-section
do(6, v)/dQ describing the reaction, i.e.,

f(da/dQ) cos 8dQ=0,

where 6 is the angle between the (incoming) velocity of A and the (outgoing) velocity of B in the
centre-of-mass frame. This assumption is reasonable if the reaction proceeds via formation of a
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142 B. T. Draine

long-lived ‘intermediate complex’ A" which loses ‘memory’ of the incoming directions of the
reactants. With this assumption the mean velocity of the reaction products is zero in the
centre-of-mass frame, and

- ma(mp—my— ml);;n mBmIT))i
Fa +fB,A =—(F;,, +FJ,A)=kA nA”I{ + (4.31)
(matmy) (ma+my)
my(mamy+mgmy) > mpAE
GI,A+G],A=k/1nAnI{ 5 =0, ———
2(mA+m1) mA+m1
3k(mamy+mpm
Myt msm) —Ti)} (4.32)
2(mA+m1)2
mi(mam;+mgm m;AE
GA,A+GB,A=kAnAnI{ mamy le) =B 2 —
2(my+my) my+my
3k(moam;+mpm
(mam, + mam;) (Ti—Tn)}. (4.33)
2(my+my)?

N\
4.7 OTHER ION—MOLECULE REACTIONS

If the cross-section o(v) for a reaction A=A +1*— B+J ¥+ AE does not vary as v " (as must, for
example, be true of endothermic reactions with AE<O0) then the effective rate coefficient for 4 is
given by (Draine & Katz 1986)

{

1/2
k; =( ST, ) f dx x*0; (v=xc,) sinh (2xs) exp {—(x*+5%)}, (4.34)
m,s*

where T,, m,, ¢,, and s are defined in equations (3.2-3.5). With this expression for k; , the number
and mass source terms are given by equations (4.29) and (4.30). Calculating the momentum and
heat source terms F and G associated with such a reaction is complex, however, since Fand G
depend upon the precise velocity dependence of the reaction cross-section o(v) (the reaction will
preferentially _()ieplete particular parts of the reactant velocity distributions). Lacking detailed
estimates for F and G, however, a reasonable approximation is to use equations (4.31-4.33).

4.8 CHARGE EXCHANGE A+Bt—> AT+ B+AE

At low velocities charge exchange, if ‘rapid’, occurs via formation of an ‘excited complex’ AB™,
with a ‘Langevin’ rate coefficient k; ~10~° cm®s ™" independent of temperature and drift velocity.
“ In this low-velocity regime it is probably a good approximation to assume that there is no net

forward—backward asymmetry to the scattering process, in which case the results of Section 4.6
) (equatlons 4.29-4.33) are directly applicable with the substitutions I*—>B*,J*—»A™:

my0;—mi0,

FA,/I 'i'FB,,q,=—(FA+J~ +FB+,A)=k,1nAnB+ -_—, (435)
mA+mB
~ mi+m%) (1 3 muAE
GA,,1+GB,,1=k;_nAnB+{Li——B)2- (_ mB’D’i—Un|2+—— k(Tl"'Tn)> +—A_—“} (436)
h (mA+mB) 2 2 my+mpg
= mi+m%) (1 3 mpAE
GA+’,1 +GB*,/1 =k,1nAnB+ { (—f——L) <— mAWi—i'))n|2+— k(Tn—Tl)> +——Bi——} . (437)
~ (ma+mp)* \2 2 my+mg
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At higher velocities, the rate coefficient begins to increase with increasing velocity. In the
high-velocity regime, the nuclei typically undergo very little deflection; in the limit of zero nuclear
deflection one has

F’A,/l +i‘23’,1 =—(F)A+J. +~1-‘=B+,A.)=k/1 nAnB+(m33i—mA3n), (438)
Ga.1+Gp 2 =Y2mp|0i— 0, +¥2k(Ti—T,), (4.39)
GA+J +GB+,,1=1/2mAlgi—3n|2+3/2k(Tn—Ti). (440)

In equations (4.38-4.40) we have neglected (as in Section 4.7 above) the fact that a
velocity-dependent rate coefficient will lead to non-uniform depletion of the velocity
distributions of A and B*.

5 Discussion

FPHSS have recently discussed the effects of chemical reactions in MHD shocks. Their treatment
of the dynamics of chemically-reacting multicomponent MHD flows differs from the present one
in several respects. FPH85 adopted energy equations for the ions and electrons in these flows
which differ from the equations of D80, DRD&3, and the present paper. FPHS85 have also
presented results for the ‘source terms’ associated with chemical reactions in these flows which
differ somewhat from those found here. These disagreements are discussed in Sections 5.1 and
5.2 below. Section 5.3 is devoted to consideration of the validity of the approximations used in
deriving the MHD equations.

5.1 MHD EQUATIONS

FPHSS5 have discussed steady, plane-parallel, multicomponent MHD flows for B, =0, vs=vs,é,,
and V®=0. They have put forward the following equations (equations 12 and 13 of FPHS85):

d (1 5 B?

— {— ,Qil/?‘i‘— niv,-kTi+vi — =Bi

dz \2 2 4

d (1 .5 B?

‘;i; —2‘ OiVi +E vi(nikTi+ nekTe)+Ui 4—72-‘ =Bi+Be

where B; and B, on the right-hand-side are ‘source’ terms which presumably vanish in the absence
ofion—electron, ion—neutral, or electron—neutral scattering, or chemical processes involving ions
or electrons. Subtracting the first of these equations from the second one obtains

d (5

. (2 nevikTe> =B..

This equation, if correct, would imply that in a flow with no ionization or recombination
[so d(n.v;)/dz=0] and no electron—ion or electron—neutral scattering (so B.=0) one would have
T.=constant. It is clear, however, that acceleration or deceleration of the electron—ion plasma
must result in expansion or compression of the electrons, and that this expansion or compression
will result in adiabatic cooling or heating of the electrons, as described by equation (2.15b) with
G.=0. It is also clear that such acceleration or deceleration of the electron—-ion plasma can (in
principle) take place even with no scattering of the electrons (i.e., B.=0) as the result of
ion—neutral scattering, a gradient in the magnetic pressure, or heating or cooling of the ions. If
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the identification Bj+ B.=G;+ G+ (F;,+F.,)v;,—(1/2)S;v% is made, then equation (13) of
FPHSS5 is in agreement with our equation (2.17). Equation (12) of FPH85 is therefore incorrect. ™

5.2 SOURCE TERMS

FPHS85 have discussed the source terms associated with various chemical processes in
multicomponent MHD flows, and have presented some general expressions for the heating
effects of chemical reactions (equations 25-29 of FPHS85) which differ from our results. As one
simple example, we consider the contribution of electron—ion recombination to heating of the
neutral fluid. FPH85 have adopted a notation which differs from that in this and previous papers
(D80, DRD83); in particular, FPH85 have used the symbols B,, B;, and B, to denote total (as
opposed to thermal) energy source terms for the neutrals, ions, and electrons. We first observe
that the neutral fluid energy equation (11) of FPHSS is identical with our (2.16) provided one
makes the identification

B,=Gy+ Fov,,—¥28,02,. (5.1)

This interpretation of B, will be adopted, since otherwise equation (11) of FPH85 would be
invalid.

For the case of ion—electron radiative recombination I*+e~— A +hAv at a rate per volume
Npi=ann., FPHS8S give (their equations 25 and 27)

By =Nuy {Vamvi+%k(Ti+Te)}.

According to our analysis above, however, we find that

G+ Fo U0~ %25 v2, =Ny (Vamuvi+%2kT). (5.2)
For dissociative recombination, FPH85 (equations 25, 27, and 31) give

B,=Ny {Vomw?+%k(T;+T.)+AE},

whereas we find

G2+ Fy a0, =280 102, =N, 1 (Vamui+3%kTi+ kT .+ AE). (5.3)

It is clear that our results for the heating effect of ion—electron recombination differ significantly
from the formulae given by FPHS5.

5.3 VALIDITY OF THE APPROXIMATIONS
5.3.1 Maxwellian velocity distributions

The derivation of the MHD equations given in Section 2 assumes that the stress tensor (Landau &
Lifshitz 1959) is isotropic: i.e., diagonal, with equal velocity dispersions in the x, y, and z
directions. To what extent is this assumption valid? Evaluation of various source terms in Sections
3 and 4 further relied on the assumption that the velocity distribution functions could be
approximated by Maxwellian distributions. How good is this approximation?

Let 750w=L/v, be the time-scale for the fluid to flow a length L over which physical conditions

*This error in the MHD equations of FPH85 appears to have only very minor numerical consequences in MHD
shocks in molecular clouds of low fractional ionization, such as those studied by FPH85. This is because adiabatic
compression contributes only a small fraction of the heating of the electrons and ions — in the centre of the shock
transition region, heating of the ions is dominated by collisions with streaming neutrals, and heating of the electrons
is primarily due to Coulomb scattering by the hot ions.
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change appreciably. For steady, plane-parallel C-type MHD shocks, L is of order (D80).

atm 132
L~ (my+m;)Bj (5.4)

T0i0000{Oin V) Us

where By is the preshock transverse magnetic field, p;y and g, are the preshock densities of ions
and neutrals, and (&, v) is the ion—neutral momentum transfer rate coefficient.

Let 744 be the mean time, for a typical particle of fluid f, between collisions with a particle of
species 8. Then

Tﬁ==<‘:§: Téél>-— (5‘5)

Bef

is the relaxation time for fluid f. Since elastic scattering of f by f will tend to bring about a
Maxwellian distribution for f, it is clear that

Ter

<1, fe{n,i,e} (5.6)
Tfiow

is a necessary condition for fluid f to have a near-Maxwellian velocity distribution. If fluid g is
streaming through fluid f with a velocity (9,—0;) which is appreciable compared to the velocity
dispersion of fluid f, then a second necessary condition is that the rate of heating per volume be
small compared to the thermal energy density divided by the self-relaxation time z:

mfm;%iﬁz-ﬁElz 1£i3

. <l. (5.7)
Beg (n1f+-n13) k]} Tﬂg

Note that (5.7) is not a sufficient condition: one could have infrequent but violent collisions (e.g.,
T55/Ti=10"2, mem}|¥s—0;|*/(m;+mg)*=10kT;) which would result in a pronounced
non-Maxwellian tail to the velocity distribution.

For the neutrals, using (5.4) with (G, v)=2Xx10"°cm>s™! we obtain

Ton z2<1+m“ )_1<4”9“°U§ )( il )’1/2 s (5.8)
THlow m; B} 10°K Ny
and

Ton T, \™*n

- 23(103K) ny ' (5-8)

where we have assumed a neutral-neutral scattering cross-section ~107"°cm?. Streaming
electrons will have little effect on the neutrals because m.<m,. Thus in flows with
(47monov2/B3)=<10® and low fractional ionization n;/n,<10~%° the conditions (5.6) and (5.7) are
both satisfied: neither compression of the neutrals nor collisions with streaming ions will
significantly distort the velocity distribution function of the neutrals.

For the electrons we find

7, T. \"?T 4mo,ov?
< =3><10—7( < ) [—0—0} (5.10)
Ttiow 10°K B

where we have assumed InA=25 in evaluating the electron—electron collision time (Spitzer 1962).
Since the factor in square brackets probably does not exceed 10°, the velocity distribution
function for the electrons will be close to Maxwellian.
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Evaluating the condition (5.7) for the ions we find

)71”)112l ;))—‘?)) 2 Tii n T))i—';)’ 2 Ti 1/2
M B T gge T (‘ a ) ( ) : (5.12)
(mi+m)*kT; 1, n; \Skms™! 10°K

where we have assumed In A=25, m;=12my, and m,=1.5my. It will turn out that in many flows,
(5.11) is not small compared to unity, so that condition (5.7) for the ions is not satisfied. For
example, in the central regions of the v;=25kms™! shock waves shown in Figs 1, 2, and 3 of
DRDS3 the fractional ionization n;/n,<2x107*4, |2,—9;|>15kms™!, and T;>10*K, so that the
right-hand side of equation (5.11) exceeds ~30. Thus we see that strongly non-Maxwellian ion
velocity distributions may be present in interstellar C-type MHD shock waves. For any plausible
magnetic field strength the gyroperiod will always be short enough to maintain azimuthal
symmetry of the ion velocity distribution with respect to the local field direction, but the velocity
distribution in the two directions perpendicular to B may differ greatly from the distribution
parallel to B. The energy distribution may also be strongly non-Maxwellian. Such departures
from a thermal velocity distribution may have important implications for endothermic
ion-molecule reactions (e.g., C*+H,+0.4eV—-CH"+H), a question which merits further
investigation.

5.3.2 Viscous stresses

The derivation of the MHD equations given in Section 2 assumes that viscous stresses are
negligible. We have seen above that the neutrals and electrons in C-type shocks will have velocity
distributions which are close to a Maxwellian distribution (for which the viscous stresses vanish).
For the ions, on the other hand, we have seen that the velocity distribution function may in some
cases be highly anisotropic. Our estimates for the ‘pressure’ forces due to the ions are therefore
somewhat inaccurate; the ion viscous stresses may sometimes be comparable to the ‘pressure’
stress. Nevertheless, the MHD equations derived neglecting viscous stresses remain a good
approximation, because a low fractional ionization ensures that the ion pressure is not
dynamically important.

We conclude that the neglect of viscous stresses and the use of equations (2.9, 2.10, 2.15) are
satisfactory approximations outside of ‘jump’ fronts for MHD shocks in low-fractional ionization
interstellar clouds. Within a jump front, if present, the viscous stresses are large, but the detailed
structure of the viscous shock transition is not generally of interest, and it can normally be treated
as a discontinuity, the usual ‘jump conditions’ being used to connect the fluid variables across the
jump front.

5.3.3 Finite electrical conductivity

It has been assumed in Section 2 that the conductivity of the plasma is essentially infinite,
resulting in ‘freezin_g’ of the flux lines into the plasma. For finite conductivity, the electric current
is J= ocond(ﬁ—vixB/ c). Assuming 4/0t=0, and using Maxwell’s equations, one obtains

v > L c? Vxﬁ
x(vai)-4—V>< , (5.12)

T Ocond

so that the fractional error in the flux-freezing equation (2.12) is negligible provided
Ocona™C2/4mu L, where L is the characteristic length scale for variation in B. Using equation
(5.4) to estimate L, and assuming By=10"%(n,o/cm~>)"/2 gauss and (7, v)~2x10"° cm3s ™!, this
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implies that the conductivity must satisfy the condition
nio
s -3 -1
Ocona®9%10 (0.01 Cm_3> s . (5.13)

The electron contribution to the conductivity, considering scattering by both ions and neutrals, is
approximately

0.59 (kT.)*? { Lo n,,ae,,(kTeY}-l

e’ml?InA nee*In A

Te 3/2 o Tc 2y -1
=5.5x1012( ) {1+2.7><10—3 — ( ) } s71, (5.14)
10K ne \10*K

where we have assumed InA=25 and an electron—neutral scattering cross-section
Oen=10"1 cm™2. It therefore is clear that the perfect conductivity approximation is valid even for
very low fractional ionization.

It has also been assumed in the derivation of the equations that the electrons and ions share the
same bulk flow velocity. Since currents must be present to sustain the magnetic field gradients, it
is clear that there must be differences in the mean velocities of the ions and electrons. However,
using equation (5.4) to estimate the length scale for magnetic field compression, we find that the
velocity difference between ions and electrons is only

— Ry 172 Us
|l7i—0e|*‘-0-06( 33 ) (—-——) cms™?, (5.15)

cm 10kms™!

Ocond™

which is clearly negligible from the standpoint of energy or momentum conservation.

6 Conclusions

The principal results of this paper are:

(i) A rigorous derivation has been given for the conservation laws for mass, number,
momentum, and energy in a multicomponent, reacting fluid flow, including neutrals, ions,
electrons, and magnetic field. No restriction has been made concerning the orientation of the
magnetic field relative to the direction of propagation of the shock. The results of D80 and
DRDS83 are recovered for the special case of magnetic field transverse to the direction of shock
propagation. The electron energy equation used by FPHSS is shown to be incorrect.

(if) General expressions are presented for the momentum and energy ‘source terms’ associated
with both non-reactive and reactive scattering.

(iii) For the case of elastic scattering, we give exact results, as well as simple approximations,
for the energy and momentum source terms for two special cases of the momentum transfer
cross-section: gxv~! and g=constant.

(iv) The source terms associated with several specific ‘chemical’ processes, such as
photoionization, recombination, and ion-molecule exchange reactions, are determined.
Comparison is made with the results of FPHS8S.

(v) The validity of the MHD formulation given here ~ in particular, the neglect of viscous
stresses, and the assumption of perfect conductivity — are examined. These approximations are
shown to be highly valid for shock waves in interstellar clouds.

(vi) Itis shown that ion—neutral collisions can in some cases result in non-Maxwellian velocity
distributions for the ions. This may have implications for endothermic ion—-molecule reactions.
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Appendix A: Momentum source term F,,;,

Let A denote elastic scattering of species & and 8. Let w,; and Wg; denote the velocities of particles
a and S prior to scattering, and let W, and wg ¢ be the corresponding velocities after scattering. Let
do/dQ be the differential scattering cross-section in the centre-of-mass frame. For elastic
scattering, the outgoing velocities W, s and wg; are fully determined by the initial velocities and the
scattering angle. Then the rate per volume of momentum transfer to species a is

- do
Fa/l =ngyNg f dwai¢a(i’)ai) j d‘-‘-’)ﬂi¢ﬁ(gﬁi) l Wai -;V‘)ﬂi’ fdQ ;5 ma(i‘v)af—‘_",ai)a
where ¢, and g are the velocity distribution functions for species @ and . The momentum

transfer cross-section o(w,e) for relative velocity wy is defined by

do _ mogmg
JdQ T ma(Waf_Wai)=a(wrel) — (wﬂi-i’)ai)'
dQ mg+mg

If we assume Maxwellian velocity distributions of the form

my 32 niy ‘ ‘_"’a —3a .2
a\Wa )= €X M
?u(¥a) <2.7'[kTa > P ( 2kT, )

where B, is the mean flow velocity, then straightforward though tedious integration yields the
result (3.1) for the momentum transfer rate f?:,l.

Appendix B: Heat source term G,;

Using the same notation as Appendix A, the rate of increase of thermal energy per volume of
species « as the result of a scattering process 4 is

Gaur=ngng f AW,1i @ (Wari) J AWsi05(Wg:) | Wai— Wi | f ds 0 {E ma(ng_ng)} —foh - B,
For elastic scattering, Maxwellian velocity distribution functions ¢, and ¢, and the momentum
transfer cross-section & of Appendix A, routine though tedious integration yields the general

result (3.7).
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