The 22nd European Conference on Few-Body Problems in Physics Cracow, 9th September 2013

Multicomponent Strongly-Interacting Few-Fermion Systems in One Dimension

Artem G. Volosniev

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions
Colla	aborator	ſS					
		-					

Dmitri Fedorov, Aksel Jensen and Nikolaj Zinner (Aarhus University, Denmark),

Jonathan Lindgren, Jimmy Rotureau and Christian Forssén (Chalmers University of Technology, Sweden),

Manuel Valiente (Heriot-Watt Univesity, UK).

Jonathan Lindgren et al. (2013) arXiv:1304.2992 Artem G. Volosniev et al. (2013) arXiv:1306.4610

artem@phys.au.dk

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions
Out	line						

- 1 System
- 2 Aims
- 3 Motivation
- 4 Approach
- 5 Results
- 6 Conclusions

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions
C							
Syste	em						

N particles of equal mass in one spatial dimension:

- the particles are divided into classes of identical spinless fermions;
- the system is trapped by the external potential;
- the interparticle interaction is assumed to be of zero range $V(x_i x_j) = g\delta(x_i x_j)$.

Title	Outline	System	Aims	Motivation	Approach 000000	Results	Conclusions
Aims	5						

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + g \sum_{i>j} \delta(x_i - x_j)$$

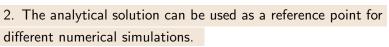
The aim is to obtain analytically the eigenvalues and the corresponding eigenstates for such Hamiltonian for large repulsive interaction, i.e. in the vicinity of $1/g \rightarrow 0$.

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions

Motivation to study such systems

1. The system is experimentally realizable¹ and needs a thorough theoretical description.

- classes of spinless fermions: ⁶Li hyperfine states
- quasi-one-dimensional geometry: optical lattices with different aspect ratios
- interparticle interaction can be tuned using external magnetic field

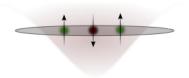


¹See for example G. Zürn (2012) PhD thesis *Few-fermion systems in one dimension*

artem@phys.au.dk

Title	Outline	System	Aims	Motivation	Approach ●○○○○○	Results	Conclusions
Appr	roach to	obtain	solutio	ns			

The approach can be shown by using the simple system of *three particles trapped in the harmonic oscillator: two particles* out of three from one class that will be referred to as *spin up* and *one particle* will be called *spin down*.



$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{\uparrow(1)}^2} - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{\uparrow(2)}^2} - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{\downarrow}^2} + g\delta(x_{\uparrow(1)} - x_{\downarrow}) + g\delta(x_{\uparrow(2)} - x_{\downarrow})$$

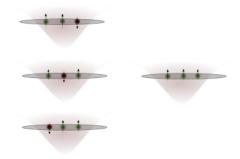
artem@phys.au.dk

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach ○●○○○○	Results	Conclusions
Арр	roach to	o obtair	ı soluti	ons			

Note that for 1/g = 0

- impenetrable regime (two particles cannot exchange their position)
- fermionization: $\Psi(x_{\uparrow^{(1)}} < x_{\downarrow} < x_{\uparrow^{(2)}}) \sim \Psi_{spinless fermions}(x_{\uparrow^{(1)}}, x_{\uparrow^{(2)}}, x_{\downarrow})$



artem@phys.au.dk

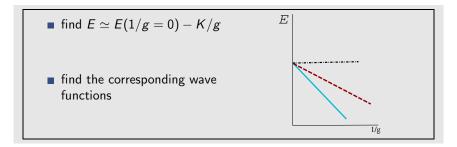
Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach ○○●○○○	Results	Conclusions
App	roach to	obtain	solutio	ns			
1.66		obtaini	0014010	ne			

It follows

artem@phys.au.dk

- the energy spectrum is the same as for three spinless fermions.
- the system can be found in the following independent configurations ↑↑↓, ↑↓↑, ↓↑↑, which means that the energy spectrum is three times degenerate.



Title	Outline	System	Aims	Motivation	Approach ○○○●○○	Results	Conclusions
Арр	proach to	o obtain	solutio	ons			

$$\mathcal{K} = \lim_{g \to \infty} g^2 \frac{\partial E}{\partial g} = \lim_{g \to \infty} \frac{g^2 \int |\Psi|^2 \left(\delta(x_{\uparrow^{(1)}} - x_{\downarrow}) + \delta(x_{\uparrow^{(2)}} - x_{\downarrow}) \right) \mathrm{d}x_{\uparrow^{(1)}} \mathrm{d}x_{\uparrow^{(2)}} \mathrm{d}x_{\downarrow}}{\langle \Psi | \Psi \rangle}$$

artem@phys.au.dk

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach ○○○○●○	Results	Conclusions
Арр	proach to	o obtain	solutio	ons			

$$\begin{split} \mathcal{K} &= \lim_{g \to \infty} g^2 \frac{\partial E}{\partial g} = \lim_{g \to \infty} \frac{g^2 \int |\Psi|^2 \left(\delta(x_{\uparrow^{(1)}} - x_{\downarrow}) + \delta(x_{\uparrow^{(2)}} - x_{\downarrow}) \right) \mathrm{d}x_{\uparrow^{(1)}} \mathrm{d}x_{\uparrow^{(2)}} \mathrm{d}x_{\downarrow}}{\langle \Psi | \Psi \rangle} \\ & \left(\frac{\partial \Psi}{\partial x_{\uparrow}} - \frac{\partial \Psi}{\partial x_{\downarrow}} \right) \Big|_{x_{\uparrow} - x_{\downarrow} = +0} - \left(\frac{\partial \Psi}{\partial x_{\uparrow}} - \frac{\partial \Psi}{\partial x_{\downarrow}} \right) \Big|_{x_{\uparrow} - x_{\downarrow} = -0} = 2g \Psi \Big|_{x_{\uparrow} = x_{\downarrow}} \\ \mathcal{K} = \mathcal{K}[\Psi(1/g = 0)] \end{split}$$

artem@phys.au.dk

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach ○○○○●	Results	Conclusions
Арр	roach to	o obtair	soluti	ons			

$$\begin{split} \mathcal{K} &= \lim_{g \to \infty} g^2 \frac{\partial E}{\partial g} = \lim_{g \to \infty} \frac{g^2 \int |\Psi|^2 \left(\delta(x_{\uparrow^{(1)}} - x_{\downarrow}) + \delta(x_{\uparrow^{(2)}} - x_{\downarrow}) \right) \mathrm{d}x_{\uparrow^{(1)}} \mathrm{d}x_{\uparrow^{(2)}} \mathrm{d}x_{\downarrow}}{\langle \Psi | \Psi \rangle} \\ & \left(\frac{\partial \Psi}{\partial x_{\uparrow}} - \frac{\partial \Psi}{\partial x_{\downarrow}} \right) \Big|_{x_{\uparrow} - x_{\downarrow} = +0} - \left(\frac{\partial \Psi}{\partial x_{\uparrow}} - \frac{\partial \Psi}{\partial x_{\downarrow}} \right) \Big|_{x_{\uparrow} - x_{\downarrow} = -0} = 2g \Psi \Big|_{x_{\uparrow} = x_{\downarrow}} \\ \mathcal{K} = \mathcal{K}[\Psi(1/g = 0)] \\ & \mathcal{W}(1/g = 0) = \int_{-2}^{-2g} \frac{a_1 \Psi_{spinless fermions} :\uparrow\uparrow\downarrow}{a_2 \Psi} \end{split}$$

$$\Psi(1/g=0) = \begin{cases} a_1 & \text{spinless fermions} \\ a_2 \Psi_{\text{spinless fermions}} & \uparrow \uparrow \uparrow \\ a_3 \Psi_{\text{spinless fermions}} & \downarrow \uparrow \uparrow \end{cases}$$

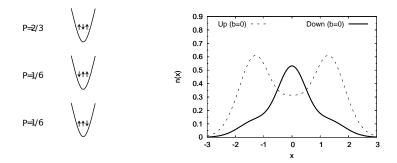
 $K = K(a_1, a_2, a_3)$

artem@phys.au.dk

Aarhus University, Denmark

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions
Resi	ults						

For the ground state: $a_3 = a_1, a_2 = -2a_1$

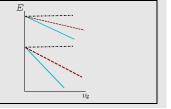


Title	Outline	System	Aims	Motivation	Approach 000000	Results	Conclusions ●○
Con	clusions						

For

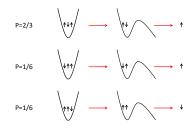
- *N* particles of equal mass in one spatial dimension;
- the particles are divided into classes of identical spinless fermions;
- the system is trapped by the external potential;
- the interparticle interaction is assumed to be of zero range $V(x_i x_j) = g\delta(x_i x_j)$.

It is possible to find analytically the energy spectrum near $1/g \rightarrow 0$ up to linear in 1/g order and the corresponding wave functions at 1/g = 0



Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions ○●
Con	clusions						

Experimental probe



This means that the probability to see the particle with spin down is five times smaller than the probability to detect a particle with spin up.

artem@phys.au.dk

Title	Outline	System	Aims	Motivation	Approach	Results	Conclusions
A few relevant publications							

```
Experiment (Heidelberg)
```

F. Serwane PhD thesis *Deterministic preparation of a tunable few-fermion system* (2011)

G. Zürn PhD thesis *Few-fermion systems in one dimension* (2012) Andre Wenz et al. arxiv:1307.3443

Theory

- J. Lindgren et al. (2013) arXiv:1304.2992
- A. Volosniev et al. (2013) arXiv:1306.4610
- S. Gharashi and D. Blume (2013) PRL 111, 045302
- T. Sowiński et al. (2013) arXiv:1304.8099
- X. Cui and T.-L. Ho (2013) arXiv:1305.6361