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Multi-contact Locomotion of Legged Robots
Justin Carpentier and Nicolas Mansard, Member, IEEE

Abstract—Locomotion of legged robots on arbitrary terrain
using multiple contacts is yet an open problem. To tackle it,
a common approach is to rely on reduced template models
(e.g. the linear inverted pendulum). However, most of existing
template models are based on some restrictive hypotheses that
limit their range of applications. Moreover, reduced models are
generally not able to cope with the constraints of the robot
complete model, such as the kinematic limits. In this paper,
we propose a complete solution relying on a generic template
model, based on the centroidal dynamics, able to quickly compute
multi-contact locomotion trajectories for any legged robot on
arbitrary terrains. The template model relies on exact dynamics
and is thus not limited by arbitrary assumption. We also propose
a generic procedure to handle feasibility constraints due to the
robot whole body as occupancy measures, and a systematic way
to approximate them using off-line learning in simulation. An
efficient solver is finally obtained by introducing an original
second-order approximation of the centroidal wrench cone. The
effectiveness and the versatility of the approach is demonstrated
in several multi-contact scenarios with two humanoid robots both
in reality and in simulation.

Index Terms—Humanoid Robots, Legged Robots,
Multi-contact Locomotion, Optimal Control, Machine Learning

I. INTRODUCTION

LEGGED robots are under-actuated systems which create

and break contacts with their environment in order to

move. The motion of a robot is the consequence of the

interaction forces created at each contact point. These contact

forces are constrained to remain inside the so-called friction

cones to prevent slippage and falls (see Fig. 1). Maintaining

these forces deep inside the cones is one of the main tasks of

the locomotion pattern generator (LPG).

In its generic form, a LPG deals with a high-dimensional

and complex optimal control problem (OCP), seeking both

for the sequence of contacts and the whole-body trajectory

while ensuring the feasibility of the contact constraints. This

generic formulation of the locomotion problem is currently

intractable by modern computers at sufficient control rate (e.g.

10Hz or more). To tackle the computational complexity, many

strategies have been proposed in the literature. Most of them

are based on reduced models: instead of working with the full

dynamics, only a subpart is considered, covering the essential

properties of the whole-body dynamics.

1) Reduced models: In the context of bipedal locomotion,

the most famous reduced model is the linear inverted

pendulum model (LIPM) [1]. The locomotion is then reduced

to the problem of finding a trajectory for the reduced model

which will in turn drive the whole-body system. Since the

seminal work of Kajita et al. [2], various optimal control

J. Carpentier and N. Mansard are with the Department of Robotics,
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Fig. 1. Illustration of HRP-2 robot and TALOS robot making contacts with
their environment. The green “ice-cream” cones are dispatched on the 4
vertices of the feet, symbolizing the friction cones with friction coefficient
of value 0.3.

formulations have been proposed by the community, to

either tackle the robustness problem [3], include viability

conditions [4], allow altitude variations of the center of mass

(CoM) [5], or also include foot placements as parameters of

the problem [6].

However, LIPM-based methods are restricted to basic

environments and cannot deal with more complex scenarios

such as non-coplanar contact cases, climbing stairs using

handrail, etc. Considering non-coplanar contacts invalidates

the linearization leading to the LIPM model. A first approach

to handle the non-linear dynamics was proposed in [7],

however it requires technical and dedicated developments

based on limiting assumptions (e.g. prior knowledge of

the force distribution). In another vein, it has been

proposed to simplify the whole-body optimization problem

by e.g. assuming unconstrained torque capabilities [8].

Both approaches indeed boil down to optimizing the

so-called centroidal dynamics [9] as a reduced model. Direct

resolution of the underlying optimal control problem is then

possible [10], [11](preliminary version of this paper), resulting

in real-time performances. Other contributions have also been

suggested that exhibit approximate dynamics (with possibly

bounded approximations) leading to convex optimization

problems, thus ensuring global optimality at convergence [5],

[12], [13]. In most cases, the footstep sequence is a given,

although some solvers are also able to discover it while

optimizing the centroidal dynamics [13], [14], at the cost of

larger computation times.

2) Feasibility constraints: The reduced model (either LIPM

or centroidal) is subject to feasibility constraints implied by the

whole body (e.g. kinematic or torque limits, footstep length,

etc.). For instance, the CoM trajectory must be achievable

(e.g. stay in the robot workspace) by the whole-body

kinematics. Such constraints are difficult to express as solely

function of the reduced model. These constraints can be

tackled explicitly, by adding the corresponding whole-body

variable in the optimization scheme [8], [14]. However, this

direct representation is also the most expensive in terms of

computation.
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Such constraints can also be represented at the level of

the reduced model by using so-called proxy constraints [15].

In most previous works, proxy constraints are defined using

rough approximations [12], [13], [16] (box constraints, elliptic

bounds, etc) that lead to conservatism, or are simply ignored

in many formulations [17], [18]. Footstep limits have been

defined from data, for example using hyper-planes based

on a dataset of robot success and failure inside a dynamic

simulator [19]. Similar constraints can be obtained by training

a neural network [20]. In [15], bounds of the capturability

regions are obtained by extensive computations of the viability

set of reduced models.

In [21], no proxy is set at the centroidal level. As the

centroidal trajectory may not be feasible by the whole body,

it is proposed to iteratively solve the centroidal then the

whole-body motion problems. Such a loop empirically tends

to quickly converge on a motion satisfying the constraints.

However, no guarantee can be formulated as the loop may

converge to invalid movement if no proxy is defined in the

centroidal problem.

In general, two important constraints impact the centroidal

dynamics: the motion of the CoM is limited by the

kinematics bounds of the whole-body; the contact forces

are constrained to lie inside the friction cones while motor

torques must exist to actuate these forces. The common

issue lies in the fact that it is hard (possibly hopeless)

to find analytic formulas to exactly represent and express

these constraints in the centroidal models. Approximations

are needed, which can be incorporated in problems reasoning

about the centroidal dynamics, while offering a good accuracy;

such representations must also offer a simple and smooth

geometry, so that being adequately handled by any numerical

algorithm used to solve the motion problem.

3) Organization: In this paper, we introduce a complete

formulation of LPG able to cope with multiple non-flat

contacts, footstep timings and whole-body “proxy” constraints,

with a generic and versatile approach, tractable at robot

control rate (from 20 to 100Hz). Our solution is based on

a generic optimal control formulation presented in Sec. II

which computes the centroidal dynamics trajectory according

to a given sequence of contacts while enforcing two sets of

constraints. On the one hand, the feasibility with respect to the

whole-body constraints is tackled using a systematic approach

introducing occupancy measure inside the optimal control

formulation. We then propose a complete solution to learn

the occupancy measure offline, by sampling the robot motion

capabilities in simulation (see Sec. III). On the other hand, the

feasibility of the contact model (friction cone constraints) is

handled either by directly working with the contact forces or

with the centroidal wrench. For that aim, we leverage on the

double cone description [22], [23] and provide an efficient and

original quadratic approximation of the centroidal wrench cone

(see Sec. IV). Both contact and proxy constraints are solved in

near real-time inside the proposed optimal control formulation

presented in Sec. V. A complete experimental analysis is

finally proposed, exhibiting the versatility and the efficiency

of the approach, based on various locomotion scenarios with

the new robot TALOS [24] in simulation and in reality with

the humanoid robot HRP2.

4) Contribution: The main contribution of this paper is

to propose the first complete formulation of a LPG able to

generate realistic trajectories for multi-contact locomotion in

near real-time. It relies on four technical contributions:

(i) the exact and generic formulation of the OCP;

(ii) an efficient approach to handle proxy constraints as an

occupancy measure;

(iii) an original and efficient quadratic approximation of the

centroidal wrench cone;

(iv) the proposition to rely on multiple-shooting for

computing the OCP solution.

The paper is based on two previous papers [11] (which

introduced the centroidal OCP) and [25] (which focused on

the proxy). In this paper, we additionally propose an efficient

approximation of the gravito-inertial wrench cone, unify the

formulation so that both forces or acceleration trajectories can

be handled and experimentally compare these formulations.

All the movements on the robot have been generated with the

latest formulation (i.e. they are new compared to [11], even if

based on similar scenarios).

II. GENERIC OPTIMAL CONTROL FORMULATION

In this section, we briefly recall the fundamental equations

which drive the dynamics of a poly-articulated system in

contact. We then introduce a generic OCP formulation for

multi-contact locomotion of legged systems. For that purpose,

we first recall how the whole-body dynamics can be reduced

to the centroidal dynamics under a simple assumption. We

also demonstrate how the centroidal dynamics can be driven

with two different controls leading to two OCP formulations

with complementary properties. We conclude this section by

highlighting how most LPGs in the literature are sub-cases

of this generic OCP. Although this section contains known

materials, we believe that both the exact formulation of

the dynamics decoupling and the development of a generic

formulation for the multi-contact problem are a contribution.

They are indeed prerequisites to the introduction of proxy

constraints and centroidal cone approximations in the next

sections.

A. Contact model

The interaction between a robot and its environment

is defined through a set of contact points

{pk ∈ R
3, k = 1, ...,K}. For instance, for a humanoid

robot equipped with rectangular feet, the contact points

correspond to the four vertices of the rectangular shape. At

each contact point pk is defined a contact force fk. In the

case of unilateral contacts, fk must lie inside a 3-dimensional

friction cone K3
k (also denoted quadratic Lorentz “ice-cream”

cone) characterized by a positive friction coefficient µk.

Fig. 1 depicts a humanoid robot making contact with its

environment.

In this work, we only consider rigid contact interaction

which is a reasonable assumption for most modern multiped

robots which are mostly equipped with rigid soles.
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A contact phase is defined by a constant set of contact

points. In the context of bipedal walking, two examples of

contact phases are the single and double support phases. As

soon as a creation or a rupture of contact point occurs, the

contact set is modified, defining a new contact phase. The

concatenation of contact phases describes what we name a

contact sequence, inside which all the contact phases have

their own duration.

The computation of such contact sequences in arbitrary

environment is computationally challenging. Since Bretl [26],

efficient algorithms have been proposed by the motion

planning community either to plan only for robot with

feet [27], [28] or more generically for any kind of multiped

robots [23], [29]. In our current approach, we use the open

source and efficient implementation of [29] proposed in [30]

to compute in real time a feasible contact sequence inside

complex environments.

B. Whole-body dynamics and centroidal dynamics

A legged robot is a free-floating-base system composed of

6+n degrees of freedom (DoF). Its dynamics is governed by

6 + n equations of motion, which link the joint configuration

q and its time derivatives q̇, q̈ to the torque actuation τa and

the contact forces fk:

[
Hu

Ha

]

q̈ +

[
bu
ba

]

=

[
gu
ga

]

+

[
06

τa

]

+
K∑

k=1

[
J⊤
k,u

J⊤
k,a

]

fk (1)

where subscripts u and a stands for the under-actuated and the

actuated parts respectively, H is the generalized mass matrix,

b covers the centrifugal and Coriolis effects, g is generalized

gravity vector and Jk is the Jacobian of the kth contact .

The 6 first rows of (1) corresponds to the under-actuated

dynamics of the robot, also called the centroidal dynamics [9].

This centroidal dynamics coincides with the Newton-Euler

equations of motion which links the variation of the linear

momentum and the angular momentum of the whole system

expressed around its CoM to the contact forces. Denoting by

h
def
= mċ the linear momentum (m being the total mass of the

robot and c the CoM position), and Lc the angular momentum,

the 6 first rows of (1) can be written:

ḣ =
∑K

k=1 fk +mg (2a)

L̇c =
∑K

k=1(pk − c)× fk, (2b)

where g
def
= (0, 0,−9.81) is the gravity vector and × denotes

the cross product operator.

The n last rows of (1) are the Lagrange dynamics of

a robot manipulator making contacts with its environment.

At this stage two important hypotheses are made. First the

manipulator dynamics is fully actuated through τa. In the

context of robots with passive joints, this formulation does

not hold anymore: a precise account of flexibilities and

additional under-actuation must be taken into account in

order to correctly control them. Second, we suppose that

the under-actuated robot must be equipped with sufficient

actuated joints in order to allow the under-actuation to be fully

controllable through the joint coordination (gesticulation) [31].

Both hypotheses are very classical when considering humanoid

and quadruped robots, but might be limiting if trying to

generalize the work to passive walkers.

C. Hierarchical decoupling between centroidal and

manipulator dynamics

Eq. (1) can be interpreted as: when supplying a certain

amount of joint torque τa, the environment reacts by producing

the contact forces fk. These forces act on the centroidal

dynamics to enable the robot to move along the environment.

Under the assumption that the system can produce sufficient

torque (which current high-performance legged robots usually

have), the centroidal and manipulator dynamics can be

decoupled one from the other. The locomotion problem can

then be split into two consecutive stages. In a first stage,

it is sufficient to find the force trajectories which drive the

centroidal dynamics. In a second stage, the required joint

torque trajectory can be retrieved through the manipulator

trajectory, knowing the centroidal trajectory and under the

hypothesis of non sliding contacts. In other words, the torque

may be seen as a slack variable1. This decoupling has been

highly exploited in humanoid robotics, for instance in the work

of Dai et al [8] and later in [13], [21], [32].

To ensure the effective decoupling, two additional

restrictions must be respected by the first stage:

1) in case of unilateral contacts, the corresponding forces

must belong to the friction cone;

2) the centroidal dynamics may be feasible by the system

in terms of both kinematics and dynamics;

The first constraint stems directly from the contact model

introduced in Sec. II-A. The second constraint comes from

the fact that the centroidal dynamics is linked to the

joint configuration and its derivatives through the centroidal

mapping:
[
h

Lc

]

= Ag (q) q̇, (3)

with Ag the so-called centroidal momentum matrix

(CMM) [9]. In the rest of the paper, we reduce the

whole-body dynamics to its centroidal dynamics.

D. State and control of the centroidal dynamics

Substituting h by its value mċ, (2) can be rewritten as:

m(c̈− g) =
∑K

k=1 fk (4a)

L̇c +m c× (c̈− g) =
∑K

k=1 pk × fk (4b)

Eq. (4) defines an affine dynamical system with

the state vector x
def
= (c, ċ,Lc) and the control vector

uf
def
= (fk, k = 1, . . . ,K) with fk ∈ K3

k. One drawback of

this formulation is that the control input grows linearly with

the number of contacts. To overcome that, one can write (4)

1Torque bounds can later be treated as a proxy constraint following the
approach that we introduce in Sec. III
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by condensing all the forces and torques with a single control

input uc
def
= (fc, τc) such that the centroidal dynamics reads:

m(c̈− g) = fc (5a)

L̇c = τc − c× fc (5b)

with fc
def
=

∑K
k=1 fk and τc

def
=

∑K
k=1 pk × fk, uc being

the gravito-inertial wrench exerted by the environment on the

robot and expressed in the world frame. The constraints on the

individual contact cone is then reduced to the 6 dimensional

constraint:

(fc, τc) ∈ K6
c , (6)

where

K6
c

def
= ⊕K

k=1K3
k =

{
∑K

k=1 (fk,pk × fk) ,fk ∈ K3
k

}

(7)

being the Minkowski sum of the contact cones translated by

the contact point positions. This cone was first introduced in

[7]. Following the wordings “centroidal dynamics” introduce

in [9], we name it Centroidal Wrench Cone (CWC)2

At this stage, several observations come:

(i) K3
k contact cones have analytic description as Lorentz

(“ice-cream”) cone [35] while there is no explicit formula

for the Minkowski sum K6
c of Lorentz cones;

(ii) K6
c explicitly depends on the contact point positions pk

but it is independent from the CoM position c;

(iii) Eq. (4) is a dynamical system whose control input grows

linearly with the number of contacts while (5) has a fixed

size control vector;

(iv) there is a forward map to pass from (4) to (5). The

reverse is not true: in case of multiple contacts, we cannot

uniquely retrieve the contact forces resulting in a given

contact wrench vector. But it is even harder as we cannot

ensure the existence of a contact wrench which lies in the

Minkowski sum and which gives rise to a given centroidal

dynamics value.

E. Generic optimal control formulation

From II-D, it appears that the centroidal dynamics can be

driven either by the force input uf or by the centroidal input

uc. In both cases, the dynamics can be written as an affine

dynamical system equation:

ẋ = f(x,u) = Fxx+ Fu(x)u (8)

where Fx and Fu(x) are two matrices directly deduced

from (4) or (5) and u indifferently represents uf or uc and

must belong to the corresponding set denoted by K. Eq. (8)

is a bilinear dynamics through the term Fu(x)u (the CoM

position x multiplies for forces u, as more clearly expressed

in (5b) with c× fc).

We are now able to describe the generic problem of

locomotion as follows:

2The same cone is also named admissibility polytope [33], contact wrench
cone [8], gravito-inertial wrench cone [34]. We believe that the wording CWC
is the most suitable for standardization, hence we have chosen to use it in the
paper.

From a given contact sequence and an initial centroidal

state, find a feasible centroidal trajectory, satisfying

the Newton-Euler equations, the contact constraints and

leading to a viable state.

This problem can be directly translated as an optimal control

problem with path and terminal constraints:

min
x,u,(∆ts)

S∑

s=1

∫ ts+∆ts

ts

ℓs(x,u) dt (9a)

s.t. ∀t ẋ = f(x,u) (9b)

∀t u ∈ K (9c)

∀t ∃ (q, q̇, q̈) s.t. x, ẋ is feasible (9d)

x(0) = x0 (9e)

x(T ) ∈ X∗ (9f)

where s is the index of the contact phase, x and u are the

state and control trajectories3, ts is the start time of the contact

phase s with t1 = 0 and ts+1 = ts + ∆ts. Constraints

(9b) and (9c) enforce consistent dynamics with respect to the

contact model. As (9b) is bilinear in the decision variables, this

constraint makes the problem nonconvex. While other works

have focused on the problems induced by this property [13],

we did not observe in practice any trouble to handle the

nonconvexity in our solver. Eq. (9d) is the constraint enforcing

the feasibility of the centroidal dynamics with respect to the

whole-body problem: it handles kinematics limits, bounds on

the angular momentum quantity, etc. We show in Section III

how it can be handled with proxy constraints in an automatic

way. Constraint (9e) constrains the trajectory to start from a

given state (typically estimated by the sensor of the real robot)

while (9f) enforces a viable terminal state [36]. Finally, ℓs is

the cost function typically decoupled in ℓx(x)+ ℓu(u) whose

parameters may vary according to the phase. ℓx is generally

used to smooth the state trajectory while ℓu tends regularize

the control.

F. Previous formulations

In the following, we present a state of the art in terms of

the main LPG which are present in the literature. In particular,

we detail how those LPGs correspond to a specific choice of

the exact formulation (9).

1) Walking patterns in 2D: One major difficulty of (9)

comes from the bilinear form of the dynamics (8). When the

contacts are all taken on a same plane, a clever reformulation

of the dynamics makes it linear [2], by neglecting the dynamics

of both the CoM altitude and the angular momentum. In that

case, K boils down to the constraint of the zero momentum

point to lie in the support polygon.

Kajita et al. [2] did not explicitly check the constraint (9c);

in exchange, ℓu is used to keep the control trajectory close to

a reference trajectory provided a priori. Similarly, (9f) is not

checked; in exchange, ℓx tends to stop the robot at a static

equilibrium at the end of the trajectory by minimizing the

jerk of the CoM. These three simplifications turn (9) into an

3in all the paper, trajectories are denoted as underline variables.
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unconstrained problem of linear-quadratic regulation (LQR)

that is implicitly solved by integrating the corresponding

Riccati equation.

Kajita’s LQR was reformulated into an explicit OCP [37],

directly solved as quadratic program. The OCP formulation

makes it possible to explicitly handle inequality constraints:

(9c) is then explicitly checked under its ZMP reformulation.

A modification of this OCP is proposed in [4] where (9f) is

approximated by the capturability constraint, which constrains

the CoM position and velocity in the context of coplanar

contacts.

2) Walking patterns in 3D: An iterative scheme is proposed

in [38] that can be written as an implicit optimization scheme

whose cost function is the distance to a given CoM trajectory

and a given force distribution. The resulting forces satisfy (9c)

by construction of the solution. There is no condition on the

angular momentum (9d) neither on the viability of the final

state (9f), however the reference trajectory enforced by the

cost function is likely to play the same role.

In [18], L̇c is null by construction of the solution. Moreover,

(9c) is supposed to always hold by hypothesis and is not

checked, while (9f) is not considered but tends to be enforced

by minimizing the norm of the jerk of the CoM, as in [2].

These assumptions result in a (bilinear)-constrained quadratic

program that is solved with a dedicated numerical method.

In [33], (9c) is explicitly handled (using the classic linear

approximation of the quadratic cones). As in [2], (9f) is

indirectly handled by minimizing the jerk. No condition

(9d) on the angular momentum is considered. Additionally,

the proposed cost function maximizes the robustness of the

computed forces and minimizes the execution time. Finally,

constraints are added to represent the limitation of the robot

kinematics.

In [32], (9c) is handled under a simple closed form solution,

while (9f) is not considered. To stabilize the resolution,

the cost function tends to stay close to an initial trajectory

of both the CoM and the angular momentum, computed

beforehand from a kinematic path. Consequently, (9d) is not

considered either (as it will simply stay close to the initial

guess). The method is later extended by re-optimizing the

centroidal dynamics once the whole-body trajectory as been

computed [21]. This tends to drive the centroidal dynamics

away from the whole-body constraints. It also generates a

movement where the angular momentum (due to the limbs

quickly moving from contact to contact) is better coordinated

with other centroidal effects. The same team later focused

on also deciding the contact placement in the centroidal

optimizer and the optimization of the timings of the contact

sequence [39]. A specific approximation of the dynamics

was also introduced to formulate the centroidal problem as

a convex optimization problem [13].

In [40], the centroidal problem is written as a collocation

problem with both phase timings and contact placements on

a height-map. Kinematic feasibility is checked using ad-hoc

boxes representing the effector reachability limits, while the

angular momentum is set to zero. The authors empirically

show that their (off-the-shelf) solver can often cope with

discontinuities of the height-map, hence also solving the

contact sequence problem.

In [10], the conic constraint is directly handled. The angular

momentum is treated through the orientation of the system

(Lc ≈ Ĩω + τLc
, with Ĩ the compound (rigid) inertia of

the robot and τLc
the angular momentum due to the internal

gesticulation). Ĩω is kept low by penalizing the large rotation

ω but τLc
is unlimited, resulting in (9d) not being checked.

The viability (9f) is not checked neither, but as seen previously,

it is approximately handled by minimizing the derivatives of

the state in the cost function (however the first derivatives

instead of the third), while a reference trajectory of the CoM

is provided to keep the nice behavior of the numerical scheme.

Additionally, hard constraints on the CoM position are added

to represent the kinematic limits of the whole body.

In [41], the authors work only with the CoM acceleration

and neglect the contribution of the angular momentum quantity

setting it to 0 as in [2]. They approximate the Minkowski sum

of contact cones K6
c with a conservative linear approximation

following the method proposed in [33]. The proposed cost

function regularizes the control vector and tries to minimize

the distance between the final and the desired states. No proxy

constraint is provided to ensure the feasibility of the CoM

trajectory w.r.t. the whole-body.

In [12], the authors do not directly consider the angular

momentum quantity but instead, they chose to minimize an

upper bound of its L1 norm. Similar to [41], they consider a

linear approximation of K6
c and try to maximize the margin

on the CWC. In addition to those previous criteria, the cost

function is augmented with a regularization term on the CoM

acceleration.

In [42], the authors propose an efficient OCP formulation

to compute a CoM trajectory for horizontal contacts. The cost

function is composed of regularization terms on the contacts

forces and moments as well as on the CoM jerk. In addition,

they try to follow at best a reference trajectory both for the

ZMP and the CoM. In their work, the authors do not consider

friction cones, they just restrict the ZMP to lie in the convex

hull of the contact points.

G. From generic formulation to its implementation

OCP (9) corresponds to a generic formulation of the

problem, also exploited by several other works within the last

five years [8], [10], [13], [32]. It contains several terms that are

difficult, complex or even impossible to make explicit: whole

body constraints, angular momentum set, viability set. The

stake is now twofold: we need to decide (i) how to represent

these functions and (ii) how to solve the OCP.

(i) Representing the constraint functions implies a trade-off

between accuracy of the model and efficiency of the

resolution. In the following sections, we propose an original

contribution to formulate approximate proxy constraints

representing the whole-body limits with a generic offline

learning approach (Sec. III). We also propose an efficient

approximation of the contact constraints then allowing the

formulation of the OCP with the reduced variable uc (Sec. IV).

Both constraints could be used in any OCP, for example

directly applying to [10], [13], [17], [21], [43].
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(ii) Solving the OCP first requires its transcription into a

numerical problem (using a finite-dimension representation

of both control and state trajectories), then to solve it

with an adequate nonlinear optimizer. When formulating

the transcription, naive approaches (e.g. for representing

the dynamics, the trajectories or the constraints) very

often give very bad numerical behaviors (e.g. numerical

instability, long active-set iterations, etc). We propose a

complete transcription of the OCP into an efficient

numerical problem, based on multiple shooting, smooth

trajectory parametrization, smooth constraint representation

and continuous proxy temporal integration (Sec. V). The

proposed transcription is then solved using the off-the-shelf

solver MUSCOD-II.

Thanks to the original constraints (proxy and force) and

to the clean transcription, we are able to demonstrate an

efficient and reliable implementation of our approach,

leading to real-time performances (i.e. tractable at robot

control rate – from 20 to 100Hz) and able to produce efficient

movement on the real robot (Sec. VI).

III. LEARNING FEASIBILITY CONSTRAINTS FOR THE

CENTROIDAL PROBLEM

In this section, we first present a mathematical encoding of

the feasibility constraints as probability measures. We discuss

the interest of this representation with respect to more-classical

set-membership and show how it can be used to efficiently

implement (9d) in the OCP. We then present a complete

solution to efficiently approximate the CoM feasibility, i.e.

we want to guarantee that the CoM produced by the reduced

formulation is achievable by the whole-body kinematics.

Handling this sole constraint first is a proper way of validating

our proxy formulation. It is also interesting in practice,

as the feasibility of the CoM is one of the most limiting

constraint. Generalizing this proxy of the CoM position to its

velocity and its acceleration with respect to joint velocity and

acceleration limits would be straightforward. The extension to

the construction of the proxy on the torque limits is left as

a perspective. Finally, we conclude this section by validating

our learning process on the HRP-2 robot.

A. Handling feasibility constraints

1) Mathematical representation of feasibility constraints:

Our objective is to efficiently implement the feasibility

constraint (9d) in our OCP. This constraint explicitly depends

on the robot configuration, which is not a variable of the

centroidal OCP. A straight-forward implementation is to add

the robot configuration in the variables of the OCP [8].

However, this would surely lead the OCP to optimize

the whole-body trajectory in order to handle all the robot

constraints, which is yet not tractable especially if targeting

real-time performances. We rather believe that it is possible to

represent this constraint with an equivalent “proxy” constraint

not dependent on the robot configuration.

Various ways to encode proxy constraints have

been proposed in the literature. Most of them rely on

set-membership. Denoting by γ the centroidal projection

function:

γ : (q, q̇, q̈) → (x, ẋ) = γ(q, q̇, q̈)

the proxy can be written as the constraint to have the

state variables in the range space of γ. Set-membership

proxies are used for instance in [6], [28] to encode maximal

step size in biped walking, or in [12] to bound the CoM

position by simple geometric shape. In all these cases, the

set boundaries are represented by very simple mathematical

structures (typically linear inequalities) in order not to burden

the OCP solver. Remarkably, there are few papers about the

automatic synthesis of the set boundaries [15], [19], [20].

Despite its popularity, the set-membership representation

has important drawbacks. First, it is often difficult to

handle with the OCP solver, in particular when the

feasible set is not convex. The boundary, which is a

singular mathematical object, is also complex to describe or

numerically approximate. Finally, the OCP solver often tends

to saturate the set boundary, where the inverse kinematics

γ−1 is likely to fail. Consequently, the set is often arbitrarily

reduced to improve the robustness of the whole-body solution.

2) Proxy as occupancy measure: In this paper, we rather

state that the proxy is best represented by the notion of

occupancy measure over x, ẋ [44], [45]. In its generic form,

given a set A ⊂ R
n, a time interval I ⊂ R and a trajectory

s : I → R
n, the occupancy measure µ of the trajectory s on

A is defined as:

µ(A)
def
=

∫

I

✶A(s(t))dt (10)

with ✶A(.) the indicator function of the set A. It gives the

duration spent in the set A on the interval I by the trajectory s.

Now, consider a state trajectory x. With (9d), we want

to maximize the likelihood that the inverse-kinematics solver

converges on a trajectory q such that x is the image of q

by γ. For that purpose, it is desirable that to any state x

corresponds as many robot configurations as possible, so that

the inverse kinematics is likely to converge to a solution q

meeting continuity constraints.

We define the centroidal occupancy measure as the image

of the uniform distribution in configuration space through the

centroidal projection γ:

µo(x̃)
def
=

∫

q̃ s.t. γ(q̃)=x̃

dq̃ =

∫

Q
✶γ(q̃)=x̃dµQ

where x̃
def
= (x, ẋ), q̃

def
= (q, q̇, q̈), Q is the whole-body motion

range and µQ is the uniform distribution on Q.

Measure µo has several properties of the set-membership

representation. First, the support of µo is equal to the

feasibility set, which means that µo contains at least as much

information as the set boundaries. It indeed contains more

information, as for example the level sets of µo can be used as

boundaries of the interior of the feasibility set, used to improve

the robustness.

In practice, it is desirable that OCP (9) promotes centroidal

states x̃ where µo is the highest. First, it makes it easier to

then compute a corresponding configuration q̃. Second, the
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configuration is well inside the kinematic feasibility set, where

redundancy will help the robot to handle disturbances.

Finally, the measure also eases the life of the OCP solver,

compared to handling directly the feasibility set membership,

as explained next.

3) Maximizing the occupancy measure: Before deriving an

effective solution to represent µo for the specific case of

the kinematic feasibility, we quickly show how µo can be

integrated in the OCP (9).

In practice, the measure can be normalized and represented

by the corresponding probability density function (PDF),

denoted by p(x, ẋ). It is then possible to directly exploit

the measure to represent the set-membership constraint (by

imposing the integral of the measure to be positive on any

small neighbourhood around the trajectory). In addition, we

could use the PDF to directly optimize the robustness, either

by optimizing over a level set of the PDF, or by maximizing

the neighbourhood around the trajectory where the measure is

nonzero.

However, adding a PDF as a constraint of an OCP is not

straightforward. Therefore, we propose to remove the hard

constraint (9d) and penalize the OCP cost with the log-PDF.

The new cost formulation ℓ̃s is the composition of two terms:

the previous cost function ℓs which regularize the dynamics,

plus the log-PDF of the feasibility constraints, leading to:

ℓ̃s(x,u) =

regularization term
︷ ︸︸ ︷

ℓs(x,u) −
feasibility constraint
︷ ︸︸ ︷

log(p(x, ẋ)) (11)

In practice, the logarithm prevents the solver from selecting

non-feasible states x and controls u through the dynamics

equation ẋ = f(x,u). Constraint (9d) is always satisfied. It

also penalizes non-robust behavior where no redundancy q is

available, and avoids saturation of the hard constraint. Finally,

the OCP solver is gently pushed away from the constraint,

instead of searching for a solution living on the boundaries,

which greatly improves its efficiency. Furthermore, it is

unlikely that the OCP solver is trapped in local minima of

µo, as it manipulates a full trajectory x and not a single state

x. Experimentally, we observed that our OCP solver robustly

computes a good local minimum when optimizing over a cost

penalizing the log-PDF, while it is unlikely to converge to a

solution when optimizing over set-membership.

B. Learning the CoM reachability proxy

We now present a complete solution to efficiently

approximate the CoM feasibility, i.e. for any time t,

there exists a joint configuration q(t) such that (i) the

contact placements are respected and (ii) the CoM of the

poly-articulated system matches c(t).
1) Probabilistic model: The geometric condition can be

stated as the conditional probability of the CoM to be at

the position c given the current set of K contact points

{pk ∈ R
3, k = 1...K}. This conditional probability is denoted

by p(c|pk, k = 1...K), which means that for a given CoM

position c, it returns a positive real number which returns the

probability of the CoM to be reachable from the contact points

{pk, k = 1...K)}. Its domain is the whole R
3(K+1) on which

it sums to one. It is a quantity hard to compute in general due

to its inherent complexity.

The probability domain can be exactly reduced by

gathering together the contact points belonging to the

same rigid end-effector (e.g., the 4 vertices of the

humanoid foot belongs to the same end-effector). We denote

by Mi = (Ri,pi) ∈ SE(3) the placement (position and

orientation) of the contact body i. The conditional probability

is then reduced to p(c|Mi, i = 1...Kc) where Kc is the number

of end-effectors in contact.

2) Kernel density estimation by CoM sampling: There is

in general no closed form to encode p(c|Mi). Nevertheless,

this conditional probability can be approximated by extensive

sampling of the CoM position. The points must be sampled

for a given contact configuration Mi, i = 1..Kc, by projecting

random configurations to satisfy the given contacts. We discuss

below this particular aspect of the problem.

The probability distribution can be approximated from

the cloud of CoM points by the kernel density estimators

(KDE) [46]. KDE are in some sense the analogues of

histograms but for continuous domains. For each point of the

data set, it associates one kernel centered on the point and all

kernels share the same parameters. In the present work, we

use isotropic Gaussian kernel.

3) Reduction of dimension: One drawback of the KDE

representation is its computational complexity: evaluating the

exponential function contained in the Gaussian kernel takes

around 10 ns on modern CPU. Evaluating the PDF of the KDE

takes approximately 10.Nsamples ns which becomes rapidly a

bottleneck when the number of points is huge (Nsamples greater

than 100 points).

We propose to then approximate the KDE with a Gaussian

mixture model (GMM) [47]. GMMs are particularly suited

to approximate a PDF with only few Gaussians in the

mixture. The GMMs are learned for each end-effector

from the corresponding cloud of samples by means of the

expectation-maximization (EM) algorithm [48].

The quality of the GMM approximation can be estimated

using the Kullback-Leibler (KL) divergence between the KDE

(ground-truth) and the learned GMM (approximation) using

the Monte Carlo estimator proposed in [49]. Depending on the

number of Gaussians in the mixture, the divergence can reveal

under or over fitting effects. The optimal number of Gaussians

is easily selected for each end effector by dichotomy, as

exemplified in next section.

4) Independence hypothesis: The distribution p(c|Mi, i =
1..Kc) varies when the contact changes. It must be evaluated

each time a new contact set Mi, i = 1..Kc is chosen (which

is typically at run-time, when a new contact phase is added

to the sequence). Sampling 200 configurations in contact

takes approximately 0.5 seconds (1 to 5ms per configuration)

and can be parallelized; fitting the GMM using EM takes

approximately 0.1 seconds for 10 Gaussians. The entire

evaluation of p(c|Mi, i = 1..Kc) is then feasible at run-time.

We propose here an approximation to off-line evaluate the

distribution and get rid of this cost at run-time.

To that end, we assume that variables Mi are all

independent. This assumption is abusive, however is a
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reasonable approximation under knowledge of c, later

discussed. Under this assumption, the conditional probability

reads:

p(c|Mi, i = 1...Kc) ∝
Kc∏

i=1

pi(c) (12)

where pi(c) stands for p(c|Mi) and ∝ stands for “is

proportional to”. pi(c) is the probability distribution of the

CoM to be at position c w.r.t the frame defined by Mi.

The assumption of independence of the Mi is commonly

used inside the machine-learning community as a trick to make

the problem numerically tractable. In this particular case, it

simplifies a lot the learning process: instead of working in a

high dimensional space, the problem is restricted to a subset of

R
3. In addition, the independence of end-effector placements

plays the role of an upper-bound for the real probability: if a

CoM is not feasible for at least one of the end-effectors (i.e.

one of the pi(c) is equal to 0), then the joint probability is also

zero. The converse is not true. We empirically show in next

section that this approximation, although intuitively rough, is

reasonable in practice and leads to good experimental results.

5) Summary of the learning procedure: In summary, for

each end effector, Nsamples configurations are sampled off-line

and the corresponding CoM is computed in the end-effector

frame. The resulting KDE is approximated by fitting a GMM

using EM. Finally, the probability of CoM occupancy is

approximated as the product of pi(c), for i the end effectors in

contact with the environment. The OCP cost function is then

given by:

ℓ̃s(x,u) = ℓs(x,u)−
Kc∑

i=1

log(pi(c)) (13)

C. Empirical validation of the CoM proxy

We first validate the proposed approximation of the CoM

proxy using the model of the HRP-2 robot. This unit testing

is completed with an integration test in the complete LPG in

the result section of the paper. For that purpose, we illustrate

the learning procedure and then validate the independence

assumption.

1) Illustration of the learning procedure: We only expose

(for space reasons) the learning of the accessibility space of

the CoM w.r.t. the right foot (RF). A similar study can be

conducted on the three other end-effectors.

The learning process is made from a set of 20000 points

sampled uniformly in the configuration space. The KDE of

this set is represented on the first row of Fig. 2. The first

observation is that the PDF of the RF is not convex and follows

a kind of banana distribution on the X-Z sagittal plane. In other

words, this means that the distribution cannot be approximated

by a single normal distribution but must be composed of

several ones. The second row of Fig. 2 represents the color

map of the GMM used inside the OCP. At this stage, it is

important to notice that the approximation with GMMs does

not fit perfectly the maximal values of the real distribution.

However, this approximation is conservative with respect to

the support and the level sets of the original distribution.

Y-Z projection X-Z projection X-Y projection

Fig. 2. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of HRP-2, projected along the three axis X,Y,Z. The
first row corresponds to the ground truth distribution estimated through KDE
(20000 points). Next rows depict the learned GMM with respectively 3, 5 and
7 kernels in the mixture. All the units on these axes are expressed in meter.

Fig. 3. Evolution of the KL divergence between the KDE distribution and
GMMs of different sizes for the four end-effectors of the HRP-2 robot.

Fig. 3 highlights the experimental procedure suggested in

Sec. III-B3 and shows the evolution of the KL-divergence with

respect to the size of the GMMs. For the right and left feet,

the KL-divergence stagnates from 7 kernels in the mixture. In

other words, it is sufficient to choose a GMM of size 7 to

represent the CoM distribution in the foot frame. For the right

and left grippers, it is not the case. The KL-divergence first

decreases and then increases from 14 kernels. This behavior

can be explained by the fact that the EM algorithm does not

optimize the KL divergence but the likelihood of observation

(expectation). We thus represent the CoM distribution w.r.t.

the grippers with a GMM of size 14.

A similar study was conducted for the TALOS humanoid

robot, which is bigger and taller than HRP-2 and has different

leg and arm kinematics. The obtained distributions for the right

foot of TALOS are depicted in Fig. 4.

2) Validation of the independence assumption: In

Sec. III-B1, we make the hypothesis of independence

between the end effectors in order to simplify the learning

process. We test this assumption empirically for 2, 3 and 4

contacts.

For that purpose, we use an analytical inverse-kinematics
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Y-Z projection X-Z projection X-Y projection

Fig. 4. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of TALOS, projected along the three axis X,Y,Z. The
first row corresponds to the ground truth distribution estimated through KDE
(20000 points). The second row depicts the learned GMM with 4 Gaussian
kernels in the mixture. The axes have the same scale than in Fig 2. All the
units on these axes are expressed in meter.

solver to uniformly sample configurations with respect to

end-effector placements. These samples give a ground-truth

estimation of the constrained CoM distribution, which is then

compared to the estimate (12).

Fig. 5 shows the results of this validation protocol for

two, three and four contacts. We computed the cumulative

distribution function for both the ground-truth distribution and

the distribution obtained from the independence assumption.

We plot the isolines of the cumulative distribution, indexed by

the volume inside the curve.

The CoM reachability volume decreases with the number of

contacts for both real and approximated distributions, which

is expected: with more contacts, less degrees of freedom are

available to freely move the CoM.

For scenarios with two and three contacts, the independence

hypothesis leads to a fair approximation of the ground truth.

The approximations are centered. This is positive, as the OCP

will then drive the CoM to the region of high probability, hence

makes the computation of the whole-body movement easy.

The important part of the workspaces are properly captured.

Considering only the support of the distribution (i.e. the area

where the probability is not negligible), we may consider it

optimistic. However, the strength of considering the measure

and not only its support is that the OCP will push the trajectory

in the zone of high probability. This effect is strengthen by

the simultaneous optimization of several steps. We show in

the results section (Sec. VI) that such an approximation leads

to a feasible whole-body trajectory in 100% of the observed

cases.

With four contacts, the approximation is pushed to its

limit. The distribution is less adequately centered, and we

are missing half of the workspace (here, the back of the

robot workspace). In that case, it might be more interesting to

sample p(c|Mi, i = 1..4) without relying to the independence

hypothesis. Yet, we have been able to compute a complete

movement even in this situation. Here, we have chosen to

rely on a hypothesis of independence. Other models could be

taken to benefit from off-line computations. For example, we

may prefer to approximate the probability by a minimum over

single-contact distribution (i.e always take the most limiting

Fig. 5. Validation of the CoM independence hypothesis for various scenarios.
For each scenario shown on the left column, the proxy constraint are plotted by
the level sets of the cumulative distribution of the CoM occupancy measures
(ground truth in solid lines and approximations Πipi(c) in dash lines), along
the lateral (sagittal) and horizontal (frontal) planes. The approximations are
satisfactory for 2 and 3 contacts (properly centered, with the high probability
level set inside the feasibility support). For 4 contacts, the approximation is
pushed to its limits. All the units are expressed in meters.

Fig. 6. Alternative approximation, using minimum of probability instead of
product.

constraint):

p(c|Mi, i = 1..Kc) ≈ pmin(c) = min
i=1,...,Kc

pi(c)

The resulting distributions for 2, 3 and 4 contacts are plotted

in Fig. 6. Such an approximation leads to a weaker model than

considering the hypothesis of probabilistic independence.
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D. Discussion

We have proposed to represent the whole-body proxy

constraints with an occupancy measure rather than a feasibility

set. This presents the advantage of better capturing the

information. It is more suitable when used inside an OCP,

leading to smoother, more robust trajectories and smaller

computation costs.

We proposed a complete implementation of this idea for

representing the CoM feasibility. The occupancy measure can

be either estimated on the fly from the placement of the

contacts (by sampling on-line some contact configurations),

or be approximated as a product of independent single-contact

distributions (evaluated off line).

In the results section (Sec. VI), we will show that the

approximation is a good solution for classical locomotion

scenarios. The occupancy measure properly captures the

constraints, even with the independence hypothesis, and

empirically always lead to a feasible whole-body movement.

For more complex scenarios, like the robot standing

up using 4 limbs, the approximation resulting from the

independence hypothesis is weaker but is also often usable. In

these cases, it might be more suitable to rather use the exact

distribution estimated on the fly. We did not investigate the

case where the end-effector has less degrees of freedom than

the dimension of the contact constraint (i.e. 6 for humanoid

in planar contact, 3 for the quadruped with point contact).

While theoretically valid, the chosen hypotheses might make

the method less suitable.

In the future, the proposed proxy will be extended to

encompass velocity, acceleration and forces constraints. We

will also work to build an off-line model of the conditional

probability p(c|Mi, i = 1..Kc). Finally, we also believe that

constraints imposed by the environment (e.g. collision) might

be included in the OCP by a similar approach. We will also

consider how these proxy interacts with the method used to

compute the whole-body trajectory, for example by using some

results of the whole-body motion generator to optimize a

variation of the LPG, as done in [21].

IV. CENTROIDAL WRENCH CONE APPROXIMATION

As mentioned in Section II-D, the linear and angular

momentum variations must lie in the CWC, which is defined

by (7) as the Minkowski sum of Lorentz cones. In general,

there is no closed-form formulation of such Minkowski sum.

Moreover, either an exact representation or the classic linear

forms that are typically used to approximate it are composed

of many facets, hence many inequalities to be added in the

optimization problem. This is not suitable as it would be hardly

tractable when solving the OCP.

We propose here an efficient approximation (both easy to

compute and very suitable to use in the numerical solver)

under the form of a single quadratic inequality. We empirically

show in the result section (Sec. VI) that, despite being simple,

the approximation is suitable for classical instances of the

locomotion problem. We also give future directions to extend

the proposed approximation while keeping its good properties,

in case more complex scenarios out of the scope of this paper

should be investigated.

A. State of the art

The CWC formally corresponds to the projection in the

centroidal wrench space of the Cartesian sum of the friction

cones at each contact bodies. Two main approaches can then

be separated: either the CWC is handled by manipulating

directly the contact forces; or a representation of the projection

must be written. Like other previous works in centroidal

optimization [13], [32], [40], we first worked with the first

solution by optimizing the trajectory of the contact forces [11].

The side effect is that the solver must also decide the

contact forces, which increases the dimension of the numerical

problem and makes it slower to solve. Here, we rather try

to follow the second approach, and formulate an adequate

representation of the CWC, so that the contact forces can be

removed from the final problem to speed up its solution.

A first attempt to compute the exact supporting area has

been limited to the context of static equilibrium [50]. However,

this method is limited to very specific cases called “tame

stances”. No attempt has yet been published to express the full

CWC. A linear version of the CWC is classically obtained by

replacing contact cones with their linear approximations [33].

The set-membership constraint (6) is then reduced to a set of

linear inequalities thanks to the double-description property of

linear cones [22].

Several recent approaches now rely on the

double-description of the CWC [29], [41]. Yet, the

computation of the double-description is numerically unstable

for 2, 3 contacts and more [41] with no polynomial-time

guarantee [22]. More important, the implicit description leads

to high number of inequalities (about 150 inequalities with 2

contacts, more than 300 with 3 contacts) which depend on

the contact placements, thus increasing the dimensionality of

the global problem. This is a bad property when aiming at

using the CWC representation in a numerical problem.

In the perspective of using the CWC in a numerical problem,

it is important to find a representation of the set that is smooth

and simple (i.e. not composed of multiple facets, linear [22] or

nonlinear [50]). We must remember that the CWC is simply

the projection of the Cartesian product of quadratic cones, so

it is the image of a simple and smooth geometric object. We

must keep a simple representation, or the resulting numerical

problem would be artificially complex.

In the following, we propose a CWC approximation

composed of a single quadratic inequality, no matter the

number of contacts. This approximation is obtained by first

computing an outer approximation of the CWC (the so-called

Löwner-John ellipsoid minimally encompassing a set of rays

of the nominal CWC – see Sec. IV-B), which then enables us

to obtain a conservative inner approximation (Sec. IV-C). In

practice, this inner approximation can be relaxed to obtain a

less conservative approximation, which we empirically show

to be suitable for various instances of the locomotion problem

(see Sec IV-D). And we discuss how the approximation could

be extended, should a more accurate representation of the

CWC be need in more complex scenarios (Sec. IV-E).
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(a) Estimation of the plane direction n

from the collection of rays contained in
K6

c . Outer ellipsoid E estimated from the
convex-hull C(n, β) obtained from the ray
projection onto the plane P (n, β).

(b) Computation of the antipodal points
from the ellipsoid E5.

(c) Estimation of the outer
cone direction from the
collection of antipodal
points.

(d) Computation of the minimal
conic from the projection of rays
onto the plane P (d0, 1).

Fig. 7. Illustration of the procedure to build the outer approximation of the CWC from the collection of rays coming from the linearization of the contact
cones.

B. Outer approximation

To keep the description of the method simple, we directly

work in the 6-dimension space R
6 (all the developments apply

in any dimension larger than 3). In its generic form, the friction

cones are Lorentz (or “ice-cream”) cones, classically defined

as:

K6 def
=

{
y = (τ , η) ∈ R

6, ‖τ‖2 ≤ η
}

(14)

For example, for the 3D Coulomb cone described in

Section II-A, the component τ corresponds to the tangential

forces and the η variable is the normal force scaled by the

friction coefficient. With a more geometric view, K6 can rather

be represented with a hyper-plane Π intersecting the cone (the

so-called conic section) and a 5-dimension ellipsoid E5 in this

hyper-plane:

K6 =
{
y ∈ R

6,PΠ(y) ∈ E5
}

(15)

with PΠ(y) the normal projection of y in Π. The conic

section Π is easily represented by its normal direction d. The

projection is then PΠ(y) = y− (y⊤d)d. The ellipsoid E5 can

be represented by its center b ∈ Π and a symmetric definite

positive (SDP) matrix Q (E5 is the spectral ellipsoid of Q):

K6 =
{
y ∈ R

6, ‖y − (y⊤d)d− b‖Q ≤ y⊤d
}

(16)

Several triplets (d, b,Q) can be chosen to represent the same

cone K6. Among all triplets, the specific case where b is null

(i.e. E5 is centered on the normal direction d) also corresponds

to the spectral radius of Q being minimal. Finally, we can

equivalently work with Q being a 5-matrix, or a 6-matrix with

arbitrary-given norm.

Our goal is to find the best outer Lorentz approximation

K6
o of the CWC K6

c using the generic form (16), i.e. to find

the direction d and SDP matrix Q such that K6
c ⊂ K6

o and

K6
o is minimal (the center b being null at the optimum). This

is equivalent to minimize the spectral radius of Q so that a

sufficiently-large family of rays of K6
c are inside the resulting

outer approximation. This statement can be translated into the

following optimization problem:

min
Q�0,d∈R6

det(Q) (17a)

s.t. λi ∈ K6
o(Q,d), i = 1, ..., Ñ (17b)

‖d‖ = 1 (17c)

d⊤Qd = 1 (17d)

where (λi)i=1..N is a family of rays of K6
c (typically obtained

by concatenation of regular rays of the 3D contact cones

K3
k)4. The cost (17a) induces the minimization of the area

of the section, with (17d) required to avoid trivial solutions.

Constraint (17c) enforces the unitary norm of the direction

vector. Constraint (17b) means that all the rays must belong to

the Lorentz cone K6
o parametrized by Qo and do. In practice,

we take the same number of rays than what is typically used

to compute a linear approximation of the CWC by double

description [33] (i.e. 4 rays per contact cone). Here we have

the advantage that the complexity of problem (17) typically

scales linearly with the number of rays while it induces a

combinatorial when using the double description.

Nevertheless, (17) is hard to solve. To simplify its

resolution, we propose to better use its geometric structure and

rely on a dedicated alternate descent strategy which iteratively

and independently optimize the plan and the ellipsoid. The

procedure is summarized in Fig. 7: (i) we first find a

suboptimal direction d, (ii) then a suboptimal (non-centered)

ellipsoid E5 = (Q, b); (iii) this ellipsoid is used to compute

the optimal direction d where the ellipsoid would be centered;

(iv) the optimal ellipsoid is then obtained by optimizing the

sole matrix Q.

(i) Choosing a initial direction d: We can choose the normal

direction n by only considering the family of rays (λi) (if

the family is large enough, which is the same hypothesis

–implicitly– done with the double-description approach, and

is always true in practice). Each ray λi defines a half-space

(the linearized cone is the intersection of all the half-spaces).

Clearly, if the normal direction is not in this half-space, the

normal hyper-plane Π will not properly intersect the cone (i.e.

4This family of rays span a linear approximation of K6
c which is typically

handled by the double-description approach [33].
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the intersection of K6
c and Π is not an ellipsoid) [51]. We then

search d as close as possible to the mean of the family of rays,

while respecting this constraint. It can be computed with the

following quadratic program (QP):

min
d∈R6

1

2

∑

i

‖d− λi‖22 (18a)

s.t. Λ⊤d > 0 (18b)

where Λ is the matrix where columns are the rays λk (see

Fig. 7a).

(ii) Computing an outer ellipsoid on the plane: Any

hyper-plane Π
def
= { x ∈ R

6,n⊤x = β} with β > 0 can be

considered (we typically take β = 1). The intersection of the

rays (λi)i with Π defines a family of points (pi)
def
=

(
β λi

n⊤λ

)

i
in Π. The convex hull of (pi) is the intersection of the

linear inner approximation with Π. We search E5 as the

minimum-volume ellipsoid that encloses the set of points (pi)i
(also called the Löwner-John ellipsoid [52]) represented by

its center b and spectral matrix Q. The pair of parameters

is obtained by the following second-order conic program

(SOCP):

min
b∈R5,Q∈R5×5

detQ (19a)

s.t. Q � 0 (19b)

∀i = 1..N, ‖ Qpi − b‖ ≤ 1 (19c)

This SOCP reads as: find the minimal (by minimizing the

determinant) ellipsoid (by making Q positive) containing each

of the N rays (by satisfying the last inequalities for each i

below N). Details can be found in [35, p. 410].

(iii) Choosing the optimal direction: As previously

explained, the minimal outer approximation is found when

the ellipsoid E5 is centered on direction d. We can directly

obtain the optimal direction by considering the antipodal

points of the initial ellipsoid E5 (the opposite points on the

ellipsoid corresponding to Eigen directions of Q). Consider the

bisecting planes Bi defined from antipodal points (i = 1..5,

see Fig. 7c), i.e. Bi is the hyper-plane containing the center

of the cone and for which the pair of antipodal points are

reflections. Then the optimal direction d∗ is defined by the

intersections of the 5 hyper-planes Bi.

(iv) Computing the optimal ellipsoid: The minimal section

is finally computed by solving again SOCP (19), but this time

in the plane defined by the optimal direction d∗. For that, we

first define the intersecting plane ⋄ with normal d∗ and level

value β = 1. Then, we project the rays onto this plane and

compute the minimal ellipsoid E∗ defined by Q∗ and b = 0
enclosing those projected points by imposing its center to be

zero in the plane frame (see Fig. 7d).

C. Inner approximation

From the previous section, we have an outer approximation,

i.e. any feasible wrench is guaranteed to be in the

outer approximation. We want the opposite, i.e. an inner

(conservation) approximation. A property of the Löwner-John

outer ellipsoid is that an inner ellipsoid can be obtained by

simply scaling down the outer approximation by the dimension

of the space (here, dimension 5 of the plane ⋄) [52]. Moreover,

if the convex-hull is symmetric with respect to the center of the

ellipsoid, it can be simply reduced by a factor
√
5 as detailed

in [35, p. 410].

Using this property, we obtain an inner approximation of

K6
c , denoted K6

i and having the same direction as K6
o.

The proposed approximation is guaranteed to strictly lie

inside the CWC by construction. While it is conservative

– less centroidal wrench variations are allowed – the proposed

approximation can be used in the context of robust control

where the contact forces must be sufficiently inside the contact

cones to avoid contact slippage.

In practice, the reduction factor α can be chosen in the

interval [ 15 ;
1√
5
] depending on the invariance properties of the

set of wrenches (symmetries, alignment, etc.). Using the lower

bound leads to theoretical guarantee, while choosing a greater

value allows to exploit geometric properties of the contact set,

like symmetries. Theoretically, the factor α can be adjusted

on the fly by a quick dichotomy in the range [ 15 ;
1√
5
]. In

practice, we will see in the following that choosing a fixed

α larger than these nominal values also leads to an effective

inner approximation of the CWC.

D. Validation of the centroidal cone approximation

We illustrate here this inner approximation with respect to

both the real CWC and the linearized version of the CWC

on the scenarios already used in Sec. III-C2. Given a contact

configuration of the robot (i.e. contact placements and COM

position), we uniformly sample values of the centroidal wrench

and check whether they are in the true CWC cone, in its linear

approximation and in either α-approximation of the CWC.

The resulting sampling live in a 6-dimension manifold. For

visualization purposes, we only plot a 2D cross-section of the

cones. Fig. 8 shows the cross-section corresponding to L̇c = 0

and c̈z = 0 (i.e. corresponding to the LIPM dynamics), in

the case of 2, 3 and 4 contacts. The true CWC is obtained

by a rejection sampling approach: for a random value of the

centroidal wrench, we check wether there exists a contact

force distribution which gives rise to this centroidal wrench by

solving a SOCP problem. If such distribution exists, we keep

track of this wrench, otherwise it is invalid. From this set of

valid contact wrenches, we are able to compute its projection

on the 2D surface and then get its convex-hull, corresponding

to the black thin curves in Fig. 8. In other words, the more

wrench samples, the better the ground-truth approximation of

the CWC.

As theoretically expected, the outer (α = 1) approximation

contains the true CWC. The linear approximation is inside

the true CWC and closely matches it (to the cost of high

computation costs when solving the resulting OCP). A fair but

nonconservative approximation is obtained for α = 0.5 while

α = 0.3 is in the CWC but is conservative. In practice during

the experiments with the robot, we used α = 0.3. The resulting

cone indeed corresponds to the inside of CWC where it is the

most desirable to select the forces achieved in the context of

legged locomotion. For the 4 contacts scenario we can observe

that the approximation α = 0.5 is also contained in the real
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Fig. 8. Illustration of the contact wrench approximations for scenarios of Fig. 5. The exact CWC is obtained by sampling and taking the convex hull of the
samples. The exact CWC and its linear approximation closely match. The outer approximation is obtained with α = 1, and the inner approximation with
α = 0.2. The approximation α = 0.3 appears to be an efficient trade off. For 2 contacts, the exact CWC is a quite flat objects (as torques along the contact
are strongly limited by the size of the body in contact – here the feet): it is properly approximated by a flat ellipsoid. For 3 contacts, the CWC is clearly
composed of several nonlinear facets. In all cases, the inner approximation is conservative, while a more accurate (but nonconservative) approximation can
be found with a unique value of α.

CWC because of the symmetries in the contact placements.

However, we did not find useful in practice to adjust α in

order to take advantage of the larger volume. Note that the

outer approximation in general does not touch the true cone

when plot in an arbitrary 2D section (while it does in the 6D

space).

A side result is obtained from comparing the cone resulting

of 2 contacts to the cone resulting of 3 contacts. The CWC

remarkably grows with the addition of a new contact. This

goes in favor of multi-contact locomotion: adding contacts

enable the robot to increase its dynamics capabilities while

constraining more its kinematics.

E. Discussion

We proposed a quadratic approximation that is suitable to

represent the CWC in a numerical problem. It can be made

conservative or adjusted by tuning α to better fit to the real

CWC. In practice, we show in the result section (see Sec. VI)

that slightly relaxing the inner approximation without fine

tuning α leads to excellent results.

It may happen that the approximation is not satisfactory

(either too conservative –α too small– leading to unfeasible

forces –α too large–). This is easy to detect, and thanks to

the reported computation speed, the parameter can easily be

adjusted on the fly. In practice, we have not observed this to

be necessary.

For scenarios where the proposed approximation is not

suitable, two approaches can be considered. First, our OCP

solver can work directly with the contact cones by optimizing

the contact forces [11]: the CWC approximation is optional.

This comes with an extra computation cost, quantified in the

result section (see Sec. VI) . Thanks to sparsity and low

number of forces, the performances when also deciding the

contact forces are acceptable. Alternatively, the approximation

might be extended. In the cases where the CWC does not

span the entire 6-dimension space (for example in case of

one or two point contact), or if the forces are not bounded

(for example when climbing a chimney), it is easy to detect

the trivial direction and only compute the ellipsoid in the

orthogonal space. If more accuracy is needed, the ellipsoid

can be replaced by another smooth object, for example a

super-quadric. Optimizing the shape of the super-quadric to

get an outer approximation would be a nonlinear yet tractable

optimization problem, that we expect to be similarly easy to

solve.

The main message of this section is that the CWC must

be represented by a smooth and simple object. In particular,

representing the CWC by a linear polytope using the double

description is not the best choice and might lead to bad

numerical performances. The proposed approximation is a fair

trade-off between performances and accuracy, able to cope

with most of the relevant locomotion scenarios. If need be, a

better approximation can be used for extra computation cost. In

the context of locomotion, we advocate for our approximation

which we observed to be good enough, and knowing that

reduced computation time is a true advantage when preparing

the implementation of model-predictive control (MPC).

V. FINAL FORMULATION OF THE OPTIMAL CONTROL

PROBLEM

In this section, we formulate the tailored optimal control

used in the experimental section. It is based on the generic

OCP (9) and uses the results of Sec. III for the CoM proxy

and of Sec. IV for the constraints on the control vector. In

addition to that, we propose an effective way to solve it in

order to reach real-time computations.

A. Tailored optimal control problem

Based on previous sections, the OCP (9) is finally

implemented under the following from :

min
x,u,(∆ts)

S∑

s=1

∫ ts+∆ts

ts

ℓs(x,u)−
∑

i log(pi(x)) dt (20a)

s.t. ∀t ẋ = f(x,u) (20b)

∀t u ∈ K (20c)

x(0) = x0 (20d)

x(T ) = (cf ,0,0) , ẋ(T ) = 0 (20e)

where the feasibility constraints (9d) is replaced by the

additional log likelihood sum in the cost function, as explained

in Sec. III. The control variable u can be either uf (the contact

forces with the Lorentz cone constraints for (20c)) or as uc

(centroidal wrench with approximate quadratic CWC for (20c),
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as explained in Sec. IV). We discuss this choice in the result

section. We reduce the terminal viability constraints (9f) to

the constraint of the robot to be at rest at the end of the

motion (20e). Here, the i-th mixture of Gaussians pi(c) has

been replaced by pi(x) to be generic. And the cost function

is given by:

ℓs(x,u) = wc̈‖c̈‖22 + wL̇c

‖L̇c‖22
For all the experiments and robots presented in the next

section, we use the same weighting in the cost function:

wc̈ = wL̇c

= 10. This weighting allows us to balance between

the contribution of the log-PDF terms and the regularizations

of the dynamic variables ensuring a smooth state trajectory.

Concerning the cost tuning, it is important to mention that

there are none. In other words, we use a fixed ℓs for all the

experiments, as a regularization criterion in order to select

among all the feasible solutions, the ones which are smooth

with respect to the state variables of the centroidal dynamics.

B. Transcription into a numerical problem

The decision variables of problem (20) are the trajectory in

state x and control u spaces. The study of the geometrical

properties of its solution, through the optimality principles

of Hamilton-Jacobi-Belman or Pontryagin Maximum, seems

yet out of reach (because of the bilinear constraint (20b)).

Like previous works about LPG, we rather follow a “direct”

approach, by doing the transcription of this OCP into a static

optimization problem where x and u are expressed in a

truncated (finite dimension) basis of function.

Several choices arise during the transcription and they

have a direct impact on the performances. They are

summarized here, with their justification. We mostly follow

the recommendations coming from the Control community

(MPC), adapted to the specificities of our robotic problem.

a) Representing the trajectories: They are typically

represented by piece-wise polynomials, with degrees varying

from 0 (piecewise constant) to 3 (piecewise cubic). Other

discretization, or higher degrees, might be chosen, but

polynomials are known to be universal approximations with

good properties. A trade-off must be chosen, between the

polynomial degree and the number of intervals. Our experience

is that better results are obtained with higher degree and large

intervals (opposite to low degree and shorter intervals). We

used degree 3 polynomials and set 2 to 3 intervals per contact

phases. It is also important to get smooth forces, as the robot

would not be able to track the discontinuities in the reference

forces.

b) Representing the dynamics: An important choice is

how the dynamics constraint (20b) is implemented to constrain

x with respect to x. Collocation is often used in robotics [21],

[33], [40]. x and u are independently represented and the

dynamics (20b) is only checked on a fixed temporal grid. For

accuracy, a fine grid must be chosen. Consequently, a finer

discretization of x must be taken so that it can fit to the real

dynamics at every collocation points. This leads to artificially

large numerical problems.

On the other hand, single shooting consists in only

representing u by some polynomials, and obtaining x by

temporal integration of the dynamics [18]. It follows that

the dynamics can be tracked as accurately as wanted. On

the other hand, single-shooting transcription leads to unstable

numerical problem. Because of the unstable bilinear (20b),

single shooting is poorly applicable to our problem.

Multiple shooting can be seen as a trade-off between

both [53]. The dynamics is integrated over the shooting

intervals, while x is only represented by its static value at the

beginning of each interval (the values on the rest of the interval

being obtained by integration). An additional constraint must

then be added to enforce the continuity at the shooting nodes.

It follows that the dynamics can be accurately tracked with

a low-dimension representation of x and only some few

additional constraints. Additionally, the resulting optimization

problem is numerically stable.

c) Continuous integration: On each shooting interval,

the dynamics is integrated, typically using a Runge-Kutta

integrator. The integrator must be set with adaptive time

samplings; otherwise, it leads to numerical inaccuracies that

tend to jam the numerical solver. A side effect is that

the derivatives of any function of x cannot be written

in closed-form anymore. However, they can be easily

integrated using the same integration scheme (using the

so-called sensitivities of the integrator), resulting in accurate

computation of the true derivatives.

d) Smooth force constraints: As already explained when

describing the CWC, force constraints must be simply and

smoothly represented. Using a large number of inequalities

would make the problem artificially complex. In the best case,

it would slow the solver converge, by increasing its size and

preventing proper use if the derivatives of the set border. In

the worst case, the active-set algorithm internal to the solver

would not converge and fail.

e) Continuous validation of the kinematic proxy: OCP

constraints should typically hold at any time, but are indeed

only checked at a finite number of points. However, the

kinematic proxy is formulated as an additional cost term with

a log barrier. It is then continuously integrated and checked at

any time.

C. Numerical algorithm

Once the OCP is transcribed into a numerical problem, a

numerical algorithm must be chosen and implemented.

a) Numerical solver: Two main classes might be

considered. As interior-point solver are difficult to initialize,

we rely on a SQP. The solver must be sparse to take advantage

of the OCP temporal structure: we used OOQP [54] to sparsely

solve the QPs inside the SQP.

b) Warm start: The SQP can work from scratch (e.g.

0 control and constant shooting states). However, we found

that it is easy to build a good warm start thanks to the

multiple-shooting transcription. We initialize the OCP with a

constant CoM position at each shooting interval. The velocity

of each node is set to 0, with forces compensating the gravity.

The state is then discontinuous, but the solver is able to address

this issue and converge from this guess to a feasible trajectory.
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c) Optimal control toolbox: We relied on the software

MUSCOD-II to easily transcript our problem [55]. MUSCOD

offers efficient integrators with sensitivities, transcription from

the continuous OCP into a static optimization problem and

a SQP solver tailored for multiple-shooting. However, the

proposed transcription would apply to any off-the-shelf solver,

as no specific point would be difficult to implement outside

MUSCOD (except maybe its tailored SQP). In particular,

previous attempts to solve the centroidal OCP with MUSCOD

but without adopting the same transcription led to minutes of

computation [10].

VI. EXPERIMENTAL RESULTS

We first quickly present the complete pipeline used to

compute the robot movements, from generating the sequence

of contacts, then optimizing the locomotion patterns and

finally computing the whole-body trajectory. We summarize

the computation performances of our method. We report

several movements with the real HRP-2 humanoid robot in

industrial scenarios, along with the same last movement in

simulation on the new TALOS robot. Finally, we validate the

proposed approximations on two sets of 1, 000 simulations in

random debris environments.

A. Description of the complete pipeline

Our locomotion framework is composed of three stages:

a) Contact sequence planning: Depending on the

experiments, the contact sequences are either manually

designed or automatically generated using the contact

planner [29]. We also manually design the end-effector

trajectories by using splines with zero acceleration and

velocity at take off and landing instants.

b) Centroidal resolution: From the contact sequence and

the learned CoM feasibility constraints, we solve the optimal

control formulation (20). We initialize the OCP with a linear

interpolation of the CoM positions between the initial and

final postures. In addition, the OCP initial guess considers

the system to be at rest on each multiple-shooting interval.

The state is then discontinuous at each multiple-shooting node

which is not a problem for the multiple-shooting solver. The

control inputs are encoded as cubic splines, allowing the

control variable to be continuous and differentiable along all

the motions.

c) Whole-body resolution: From the OCP, we obtain

a reference trajectory for the centroidal dynamics that we

follow using a second-order inverse kinematics (IK) solver

similar to [56]. In addition, the IK must track the end-effector

trajectories. Optimal forces are also extracted from the OCP

(if uf is the control variable) and can be used as references to

control the robot with an inverse dynamics low-level controller.

B. Time scores

Table I summarizes the performances of our approach on

the different scenarios, either using the centroidal wrench

uc or the contact forces uf as control input. The two last

rows of this table show the percentage of the time spent

TABLE I
TIME SCORES, WITH DISTRIBUTION, FOR SOLVING THE OCP.

Exp.1 (a) Exp.1 (b) Exp.2 Exp.3
control type uc uf uc uc

motion duration 8 s 8 s 24 s 36 s
computation time 1.23 s 3.89 s 8 s 10 s
iterations 22 40 42 15
time / iteration 56 ms 97 ms 0.19 s 0.66 s
QP 42 % 77 % 70 % 70 %
sensitivity computation 53 % 14 % 20 % 16 %

either in solving the QP inside the SQP or in computing the

numerical sensitivities of the multiple-shooting problem using

finite-differences. All the computations were performed on a

single thread of a i7 CPU running at 2.2 GHz (similar to the

one we have on the real robot).

The solver takes between 7ms and 15ms to make one step

of optimization for one second of motion. If using our method

as a model-predictive controller, it would be necessary to take

2 to 3 seconds of horizon length, allowing the solver to run at

20Hz. This matches the application needs [57]. Fig. 10 shows

the evolution of the mean duration to compute a single iteration

of the OCP solver according to the number of contact phases

(hence duration of the horizon) in the sequence. The reduced

OCP is 10 times faster for 10 steps or less. For more than

10 steps, the cost grows quadratically (likely due to internal

finite-differencing implementation; theoretically, the cost is

linear in the number of shooting nodes). The quadratic term

is not predominant until 20 steps for the reduced formulation.

There exists no open-source software that would have

allowed us to benchmark our method with respect to

existing works Time scores are given in some previous

works. In [10], 30 minutes are needed for some few

steps. In [12], 8 minutes are needed per iteration for long

movements. In [13], 100ms are needed per iterations for

5 contact phases, but using a relaxation of the dynamics

(results are not demonstrated on a real robot). From our

own experience on preliminary implementations, optimizing

whole-body movements with the real robot constraints implies

several ten minutes of computation. Whole-body optimization

using MUSCOD-II [58], [59] requires hours of computation

to generate biped gaits. In [43], the solver needs 3 hours to

generate multi-contact movements. Model-predictive control

is targeted in [60], [61], while one step of optimization

(with horizon length of 0.5s) implies 100ms of computation;

however, the results are yet not realistic enough to generate

locomotion on a real robot.

In summary, our approach is the first one that is able

to generate effective movements that the robot can execute,

with a versatile and exact formulation, while matching the

computation performances imposed by the application.

C. Experiment 1 – long steps walking

In this first experiment, we aim at comparing the influence

of both types of controls uc and uf on the solution. For that

purpose, we use a simple benchmark which consists in long

step walking with a stride of 0.9m with the HRP-2 robot.

This stride is close to the limit of what a humanoid robot

of 1.6m height can achieve. Then, starting from a resting
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Fig. 9. Experiment 1: Comparison of the state trajectories obtained with either the force-based OCP (simple and exact 3D cones, non-minimal parameters –
af ) or the motion-based OCP (approximate 6D cone, minimal 6D parameters – ac). In theory, the optimum of both problems should be the same, however
the numerical properties of each OCP leads to minor variations. The CoM trajectories have similar shape but the dynamic marginally varies. The motion-based
OCP leads to marginally smoother trajectories. Much more oscillations appear at the angular momentum level when optimizing the forces, but they mostly
correspond to numerical noise.

Fig. 10. Evolution of the mean duration to compute a single iteration of the
multiple-shooting algorithm according to the number of contact phases.

position and ending to an other resting position, the solver

has to find a crouching gait in order to satisfy kinematics

feasibility constraints.

The results of such motion are depicted in Fig. 9. The state

trajectories have similar shapes, with smooth trajectories at the

position and velocity levels on the x-axis and y-axis directions.

On the z-axis, we can observe some weak oscillations of the

CoM position mainly when optimizing the forces uf . This

might appear as the conflict between the least-square cost on

the CoM acceleration and the feasibility constraint. For the

contact forces control, the angular momentum trajectory is

more jerky. This is because the angular momentum is not

a direct control of the systems, but a consequence of the

contact wrenches action. Then, the least-square minimization

of such a quantity is affected by the sensitivities and the conic

constraints on the contact forces. The noise is mostly below

the threshold of numerical noise. While direct OCP resolution

(e.g. multiple shooting) is sensitive to local minima, it is likely

that the two obtained trajectories are numerical approximation

of a same minimum, with the formulation uc better able to

approximate it thanks to the more direct correlation between

the centroidal variables and the resulting motion.

D. Experiment 2 – climbing up 10-cm high steps

The experimental setup is an industrial stairs made of six

10-cm high steps. The steps have a length of 30 cm. The

durations of the single and double support phases are 1.4s and

0.2s respectively. The resulting motion is depicted in Fig. 12.

During execution, the reference posture is tracked as well as

X-Z plane
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Fig. 11. Experiment 2: Projection of the CoM trajectory inside the right
foot frame with and without taking into account the log-pdf term in the cost
function. The level set corresponds to the GMM distribution used in our OCP.

the reference foot forces using the robot low-level control

system (named HRP “stabilizer”).

Fig. 11 shows two trajectories of the CoM projected in the

right foot frame: the black curve takes into account the log-pdf

term in the cost function, while the green one does not. The

figure also includes the level sets of the GMM of right foot

(depicted in Fig. 2). It appears that the OCP tends to maximize

the inclination of the CoM to stay in the most feasible region,

i.e. closed to the maxima of the PDF. On the contrary, if we

do not add the log-pdf term, the CoM tends to be infeasible.

E. Experiment 3 – climbing up 15-cm high steps with handrail

support

The experimental setup is another industrial staircase made

of four 15-cm high steps and equipped with a handrail. The

steps have a length of 30 cm too. The durations of the double

and triple support phases are 1.8s and 0.4s respectively. Here,

the double support phases correspond either to the case of

two feet on the steps or one feet plus the right gripper on the

handrail. Snapshots of the entire motion are shown in Fig. 13.

We reproduce the climbing stairs with handrail scenario, but

this time with the TALOS robot in simulation. Compared to

HRP-2, TALOS is a 1.78m high humanoid robot weighting

around 100kg. For this experiment, only the end-effector

trajectories and the GMMs are different: the cost function

remains the same. The complete motion is depicted in Fig. 13.
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Fig. 12. Experiment 2: Snapshots of the climbing up 10-cm high steps motion with the HRP-2 robot.

Fig. 13. Experiment 3: Snapshots of the climbing up 15-cm high steps motion with the HRP-2 or TALOS robot using the handrail.

Fig. 14. Experiment 4: Snapshots of the trajectory on 6 different debris scenarios (simple random distribution on the top row, difficult distribution on the
bottom row).

TABLE II
SUCCESS RATES IN TWO SETS OF 1, 000 RANDOMIZED DEBRIS.

FWC CWC LWC

uf ∈ X
K
k=1

K3

k
uc ∈ K6

0
uc ∈ K6

c

success rate
OCP resolution

– 89.2 % 63.8 %

S
im

p
le

success rate
IK resolution

100 % 100 % 100 %

success rate
OCP resolution

– 67.8 % 42.9 %

D
if

fi
cu

lt

success rate
IK resolution

100 % 100 % 100 %

F. Experiment 4 – empirical validation of the kinematic proxy

and the conic inner approximation

We empirically check the proposed formulation: the

robustness of the OCP numerical solver, and the validity

of the two proposed approximations (the kinematic proxy

and the conic inner approximation). We randomly sampled

environments similar to the debris of the Darpa Robotics

Challenge (DRC), composed of 12 tilted stepstones. Altitude,

stride and angles of the stones were randomly chosen.

Each stone is placed relatively to the previous stone, with

a delta in the forward (x), lateral (y) and vertical (z)

directions uniformly sampled in a given interval, and roll

(αr) and pitch (αp) angles relative to horizontal also taken

uniformly in an interval. A first set of 1,000 scenarios

were sampled with uniform distribution where (x, y, z, αr, αp)
is taken between (0.2,−0.05,−0.05,−0.35,−0.35) and

(0.4, 0.05, 0.05, 0.35, 0.35). A second set of more difficult

1,000 scenarios were sampled with intervals between

(0.3,−0.1,−0.1,−0.35,−0.35) and (0.9, 0.1, 0.1, 0.35, 0.35).
An overview of the scenarios is shown on Fig. 14.

The protocol is made of two consecutive stages: we check

first the validity and interest of the CWC approximation by

computing a centroidal pattern with 3 different formulations;

we then measure the validity of the proxy constraint when

generating the whole-body movement from the centroidal

pattern.

a) In the first stage (LPG): we solve the centroidal

optimal control formulation with three variants:

- the full control formulation with one ice-cream cone at

each contact surface (full force wrench cone – FWC),

- the reduced control formulation using the proposed conic

approximation of the CWC (conic centroidal wrench cone

– CWC),

- the reduced control formulation using a high-dimensional

linear constraint inequality to represent the CWC

obtained by using the double description (linear

centroidal wrench cone – LWC).

Each LPG formulation computes the momentum trajectory and

the contact timings, while optimizing the proxy integral. We

took (FWC) as ground truth to assess the feasibility of the two

conic approximations (CWC) and (LCW). We then measure

the validity of (CWC) and (LWC) and the capabilities of the

OCP solver to handle both.

The results are summarized in the white rows of Tab. II.

First, (CWC) leads to more success than (LWC) for the two

datasets (simple debris and difficult debris). LWC indeed is

a better approximation than CWC (i.e. the volume of the

LWC is larger than CWC), but LWC is not suitable for

LPG. The failures of LWC corresponds to either failure of

the double description algorithm [22] (5% of the cases) and
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failure of the active set of the QP solver5 after 1,000,000

iterations (95% of the cases). On the opposite, failures of

CWC corresponds to situations where the needed actuation

capabilities to cross a large gap between two stones are not

captured by the quadratic approximation. As both CWC and

LWC are conservative approximation, any solution found by

the two LPG is dynamically consistent. The conclusion is that

LWC is not a sane approximation when used inside an OCP.

CWC is better used by the OCP, although its conservatism

might be limiting in difficult scenarios. However, when a

scenario is in the difficulty range of CWC, it can be repeatedly

handled as the OCP will always safely converge.

b) In the second stage (IK): we feed the IK solver with

the computed centroidal trajectories and some suitable foot

trajectories. As expected, the success rate does not depend on

FWC, CWC or LWC formulations. The results are summarized

in the gray rows of Tab. II. The IK is always able to find

a whole-body movement. This validates the fact that the

kinematic proxy accurately approximates the kinematic limits,

at least for debris environments.

VII. DISCUSSION

The proposed method is able to generate various centroidal

locomotion patterns for the most classical scenarios of

locomotion: walking on any quasi-flat floors, biped or

quadruped, climbing stairs, with or without contacts of the

hand on e.g. a handrail or a wall. Thanks to the computational

efficiency, it is aiming at controlling the robot and could be

used to recover after disturbances or to adapt to an unexpected

contact. The kinematic proxy, automatically generated from

data, makes the centroidal trajectory easy to track when

generating the whole-body movement. As the trajectory is

smooth by design, the resulting robot movement is also smooth

and directly apply to the physical platform.

Yet, some problems remain open, to extend it to more

complex scenarios or to apply it to control the robot using

a receding-horizon scheme.

First, the kinematics and dynamics constraint are handled

through approximations. We claim that these approximations

are a fair trade-off between accuracy and efficiency, and

empirically demonstrated that they are valid for e.g. most of

the motion problems of the Darpa Robotics Challenge. The

proposed kinematic proxy can be either accurately estimated

on the fly, or, as we rather propose, approximated as a product

of off-line distributions. For more complex scenarios, the

proxy should be extended to take into account other kinematic

constraints (e.g. collisions with the environment). Actuation

constraints (e.g. motor limits [63]) should also be added. In

the end, the proxy might measure the occupancies of CoM

position, velocity and acceleration, hence also encompass a

representation of the CWC. While the general idea to learn

such a proxy is clear (generate many data in simulation and

learn the occupancy measure by any suitable representation),

we believe that some developments in machine learning are

5for (LPG), we had to rely on the QP solver QPOPT [62], whose active
set is more robust, as QP solver OOQP (used for FWC and CWC) was not
able to deal with the linear cone constraint.

required to scale to the problem dimension and geometry

(most of the variables describing a robot and its dynamics

lie on manifolds whose geometry must be well captured by

the approximation).

Second, the proposed CWC approximation is simple,

which makes it easy to compute and to use in the OCP

solver. The side effect is that it might lack of accuracy to

properly capture the shape of the exact CWC. A parameter

α can be used to more accurately scale the approximation,

although its importance is limited to keep a conservative

approximation. This approximation is easy to extend, either by

eliminating trivial wrench dimensions, or by fitting some more

expressive curve on the cone section (e.g. a super-quadric).

Both approximations carry a same message: in order to be

useful inside an OCP solver, the constraint representation must

be kept simple and smooth, as they are indeed the projection

in the 6-dimension centroidal wrench space of some simple

and smooth objects of larger dimension. Failing to keep the

simplicity and smoothness of the representation means that we

make the OCP problem artificially complex (and that, likely, it

would be more efficient to solve it in some higher dimension).

Some effects are more difficult to capture at the centroidal

level. The approach would not be very suitable for passive

robots, or to finely capture the actuator dynamics. The angular

momentum, mostly due to the movement of the off-contact

limbs, is not properly decided at the centroidal level. A LPG

is rather able to find a feasible trajectory, that must then

be optimized at the whole-body level to get the full robot

efficiency. On the other hand, the classic solvers used to

solve the whole-body movement are not properly able to

capture the subtle CoM effects when they rely on instantaneous

linearization (e.g. Inverse Kinematics). Investigating how the

LPG and the whole-body solver can interact, for example

by iterating several times on the same movement [21] is

an interesting direction that we are currently implementing.

We are also investigating how to solve the whole-body

problem using a nonlinear trajectory optimizer (e.g. based on

differential dynamic programming [61]), and how the LPG

and whole-body OCP solver would interact. In general, the

proposed LPG is a part of a complete framework [64], where

a contact planner first decides the sequence of contacts [29],

followed by the centroidal optimizer. Another planner, the

“limb-RRT” then decides the trajectory of the feet in the free

space [11]. The whole-body trajectory is finally obtained by

task-space inverse dynamics [65]. All the elements of this

cascade have been designed to allow fast motion generation,

and could be run on-line during the robot motion.

The next step for us is to bring this methodology for

controlling the robot. Concerning the LPG, the main issues are

to connect it: in input with a centroidal state estimator [66];

and in output with a whole-body controller. The main stake

is to show that the LPG endowed with a receding horizon

scheme is able to control the unstable part of the centroidal

dynamics. Results have already been obtained, but only for the

LIPM version of the MPC [6]. We also believe that the MPC

must be coupled with some torque-control capabilities, as it

seems to be the only possible solution to handle the impact

when creating a new contact, especially under uncertainties.
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Finally, some technological issues prevent us to release

our method as an open-source component. Our LPG relies

on MUSCOD-II for solving the OCP, which is a proprietary

software whose academic license is not easy to obtain. Behind

this technological lock, the current numerical solvers used by

the robotics community are not quite suitable for MPC of

complex serial-chain robot. They mostly rely on a Sequential

Quadratic Programming strategy (like MUSCOD or SNOPT)

whose underlying active-set QP solver is not satisfactory for

MPC, or on Interior Point methods (like IPOPT, MOSEK or

GUROBI) whose log-barrier strategy is difficult to warm-start,

hence not suitable for MPC neither. We are currently working

on implementing a numerical solver dedicated to robotics,

upon which our LPG software will be released. It will also be

the opportunity to explore in depth how the bilinear dynamics,

resulting into a non-convex numerical problem, is handled by

convex optimization, and more particularly how our method

would be complementary (or not) to the convex approximation

proposed in [13], [39].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a complete solution

to generate a centroidal trajectory for the locomotion of

legged robots with multiple contacts. The method is able

to produce efficient and smooth trajectories, suitable for

their execution by the physical robot. Several elements

make the method computationally efficient and able to cope

with the complex constraints of the real robot. First, we

proposed a clean transcription of the generic centroidal

optimal control problem into an efficient numerical problem,

by using multiple shooting and by preserving important

geometric properties (e.g. smoothness, simplicity) of the

nominal problem. Second, we proposed an original approach

to represent the whole-body constraints at the centroidal level,

by using occupancy measures. This approach is suitable both

for properly capturing the whole-body constraints despite their

projection into the centroidal dynamics, and for its application

in the numerical solver. Finally, we proposed to approximate

the force constraint by a quadratic centroidal wrench cone,

hence simplifying the numerical problem while keeping the

main part of the robot actuation capabilities.

We have demonstrated the validity of the method by

showing that the generated movements can be executed by

the real robot, and by statistically analyzing the behavior

of the method on randomly generated debris environments.

As our method consider by design the smoothness of the

dynamics, the generated movements are suitable for their

executions on the robot. The analysis on random environments

showed that the proposed approximations are relevant for the

classical locomotion scenarios. For more complex scenarios,

we have proposed additional solutions or research directions

to extend the proposed approximations while keeping their

computational properties.

While we are still working on extending the proposed

method (by adding the computation of the footstep position

near the initial guess, improving the computation efficiency

and the integration in the whole-body generator), our next

step is to apply the OCP to control the real robot, using

a receding horizon scheme. This also implies an important

experimental work in centroidal perception and to control

the robot by reference torques. We are also working on the

numerical solver, in order to release an open source version

of our method.
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