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RESEARCH ARTICLE
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Abstract

Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on

retroelements called retrons and produced by the action of retron reverse transcriptases.

Retrons are widespread in bacteria but the natural function of msDNA has remained elusive

despite 30 years of study. The major roadblock to elucidation of the function of these unique

molecules has been the lack of any identifiable phenotypes for mutants unable to make

msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is nec-

essary for colonization of the intestine. Similarly, we observed a defect in intestinal persis-

tence in an enteropathogenic E. colimutant lacking its retron reverse transcriptase. Under

anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism

needed for Salmonella colonization of the intestine are dysregulated. We show that the

msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in

anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutro-

philic inflammatory response partially rescued the ability of a mutant lacking msDNA to colo-

nize the intestine. These findings together indicate that the mechanistic basis of msDNA

function during Salmonella colonization of the intestine is proper production of proteins

needed for anaerobic metabolism. We further conclude that a natural function of msDNA is

to regulate protein abundance, the first attributable function for any msDNA. Our data pro-

vide novel insight into the function of this mysterious molecule that likely represents a new

class of regulatory molecules.
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Author Summary

Multicopy single-stranded DNA (msDNA) is a unique molecule consisting of both an

RNA and DNA portion. This molecule is produced by a reverse transcriptase and has no

known natural function despite more than 30 years of study. We report that msDNA is

important for both Salmonella Typhimurium and an enteropathogenic E. coli, two patho-

gens that cause diarrhea in susceptible hosts, to survive in the intestine. Using mutant

strains incapable of producing msDNA, we show that msDNA is needed for Salmonella to

grow in the absence of oxygen. Mutants grown in oxygen-deficient conditions have sub-

stantial changes in overall protein composition, including numerous proteins known to be

important for anaerobic metabolism and growth in the intestine. Our findings link

msDNA to the ability of Salmonella to thrive in an oxygen-deficient environment similar

to the conditions inside the gut. We report that msDNA regulates the quantity of proteins,

the first natural function attributed to this molecule. msDNAmay represent a new class of

regulatory molecules.

Introduction

Retron reverse transcriptases (RT) in bacteria were first described inMyxococcus xanthus [1]

and E. coli [2] in the 1980s and are now known to be widely distributed in the genomes of

eubacteria and archaea (reviewed in [3]). All retrons contain three regions essential for produc-

tion of msDNA:msr (RNA primer for reverse transcription),msd (template sequence), and a

reverse transcriptase (RT). The retrons of pathogens, such as Salmonella Typhimurium (STm),

may also encode an additional ORF of unknown function [4]. The product of the ‘retron’ is a

small covalently linked RNA-DNA hybrid molecule called multicopy single-stranded DNA

(msDNA) that is predicted to form complex secondary structures [5]. The predicted secondary

structures of msDNA from enteric pathogens including STm, enteropathogenic E. coli and Vib-

rio spp. are similar [4] but the reverse transcriptase amino acid sequence from these enteric

pathogens share little identity. The location of the retron as well as the number of retrons in

each species varies. These observations suggest that retrons have been horizontally acquired by

convergent evolution to function in a fashion that is specific to the biology of the host

bacterium.

Although the molecular details of the production of msDNA have been heavily studied, no

natural function has been attributed to this mysterious molecule despite 30 years of study

(reviewed in [3]). A critical obstacle to elucidating the natural function of msDNA was the lack

of any phenotype for mutants unable to make this molecule. We have shown that the retron

reverse transcriptase encoded by STM3846 is essential for Salmonella Typhimurium (STm) to

colonize the calf intestine [6], a natural model of enteric salmonellosis that recapitulates the

earliest stages of human non-typhoidal Salmonella (NTS) infection. This was the first reported

phenotype for a mutant lacking a retron reverse transcriptase.

NTS are major threats to global animal and human health, causing more than 90 million

cases of gastroenteritis in people worldwide [7]. Human enteric salmonellosis is characterized

by inflammatory diarrhea containing primarily neutrophils. To efficiently colonize the host,

NTS use the type 3-secretion system 1 (T3SS-1) encoded on Salmonella Pathogenicity Island-1

(SPI-1) to invade the intestinal epithelium [8,9] and to promote the characteristic neutrophilic

inflammatory response. The host inflammatory response gives Salmonella a competitive

advantage over resident microflora. Within the intestinal lumen, the product of the neutro-

philic oxidative burst generates tetrathionate from oxidation of thiosulfate [10]. Salmonella
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uses tetrathionate as a terminal electron acceptor within the anaerobic conditions of the intesti-

nal lumen to gain a competitive advantage over resident microflora. Effectors of the TTSS-1

may directly activate epithelial production of inducible nitric oxide synthase (iNOS) thereby

creating nitrate, an additional terminal electron acceptor [11]. The relative importance of

nitrate during infection is illustrated by the fact that it is a powerful chemoattractant for Salmo-

nella during anaerobiosis [12]. In addition, Salmonella uses host-derived nutrients such as eth-

anolamine [13] during intestinal inflammation. These strategies facilitate the growth of

Salmonella in the complex microbial community of the intestine.

We used the enteric pathogen, Salmonella Typhimurium, to dissect the function of

msDNA. In the work described here, we report that mutants lacking msDNA produced by

the STM3846 reverse transcriptase are defective for colonization of the intestine using

murine models of salmonellosis. This colonization defect is due, in part, to a growth defect

for these mutants in anaerobic conditions. We show that mutants lacking msDNA have

altered abundance of over 200 proteins in anaerobiosis, many of which are known to be

required for growth in anaerobic conditions and for the pathogenesis of STm during enteric

infection. Inappropriate abundance of proteins encoding alternate terminal electron acceptor

reductases results in an inability of mutants lacking msDNA to utilize these compounds,

inhibiting anaerobic growth in vitro. The mutants lacking msDNA can only utilize nitrate as

an anaerobic terminal electron acceptor. Mutants lacking msDNA fail to colonize portions of

the intestine lacking substantial neutrophilic inflammation, likely due to the ability to only

utilize nitrate to support anaerobic growth. Finally, we report a similar defect in intestinal

persistence for an enteropathogenic E. coli lacking its retron reverse transcriptase suggesting

that msDNA is critical for enteric pathogens to thrive in the intestine of mammalian hosts.

Thus, we report a role in regulating protein abundance for msDNA, the first reported natural

function for any msDNA. msDNA may represent a new class of bacterial regulatory

molecules.

Results

msDNA is critical for STm intestinal colonization

Retron reverse transcriptases, including the STM3846 reverse transcriptase of the St-85 retron,

usemsr to prime reverse transcription of themsd template sequence to produce msDNA [14]

(Fig 1A). We generated a non-polar deletion ofmsd to establish that msDNA, and not some

other potential product of the STM3846 RT, mediates STm colonization of the intestine.

Neither the ΔSTM3846mutant nor the Δmsdmutant produce msDNA and its production

can be restored in both mutants by complementation in trans (Fig 1B). The additional ORF,

STM3845, is dispensable for msDNA production.

We used the murine colitis model [15], which responds to NTS infection with profound

neutrophilic inflammation in the cecum, to dissect the function of the retron in intestinal colo-

nization. We confirmed the requirement for STM3846 in colonization of the inflamed intestine

in this model (Fig 1C). In addition, both the Δmsd and ΔSTM3846mutants have indistinguish-

able phenotypes, suggesting that the effect of deletion of the RT is mediated by the msDNA

itself. The ability of each of these mutants to colonize the intestine is rescued by complementa-

tion in trans (Fig 1C and 1D). In cell culture, only the Δmsdmutant invades epithelial cells at a

level mildly reduced compared to the isogenic wild type (S1 Fig) suggesting that reduced tissue

invasion is unlikely to be the cause of the phenotype that we observed during infection of ani-

mal models. Our findings definitively link msDNA to the ability of Salmonella to colonize the

intestine.

Multicopy Single-Stranded DNA in Gut Colonization
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msDNA and anaerobiosis

The intestine is a specialized and highly diverse niche. Oxygen tensions within the lumen

decline from the stomach to the colon [16,17], and there is a gradient of increasing oxygen ten-

sion from the center of the lumen towards the epithelium [18]. Enteric pathogens must repli-

cate in this hypoxic setting using both aerobic and anaerobic metabolic pathways [19,20] and

express genes necessary for virulence in order to compete with resident microflora and colonize

the host efficiently.

To determine whether the intestinal colonization defect of the STmmsDNAmutants could

be due to an inability to grow in oxygen limited conditions, we measured the growth of our

mutants in the absence of oxygen, a condition where the retron is highly expressed [21]. Both

mutants unable to produce msDNA have severe growth defects in rich media in anaerobic con-

ditions (Fig 2A and 2B, S2 Fig), while the growth of these mutants in the presence of oxygen is

Fig 1. msDNA is produced bymsd and STM3846 and is essential for Salmonella to colonize the intestine. (A) Genomic context of the retron St-85
(adapted from [6]). (B) msDNAwas isolated from late-exponential phase cultures normalized by OD600 and visualized on a native 12% polyacrylamide gel with
in-gel ethidium bromide staining. msDNA is depicted by the arrowhead (WT—HA420; ΔSTM3845—JE143;ΔSTM3846 + pWSK29—JE122;ΔSTM3846 +
pSTM3846—HA1446; Δmsd + pWSK29—JE144;Δmsd + pRetronpro—JE145). (C-D) C57Bl/6 mice were treated orally with 20mg streptomycin and infected
with an equivalent mixture of (C) WT (HA697) and ΔSTM3846 bearing empty vector (closed circles; n = 4; JE63) orWT and complemented ΔSTM3846mutant
(open circles; n = 4; JE65) 24-hours after antibiotic treatment or (D) WT and Δmsd bearing empty vector (closed circles; n = 5; JE156) or WT and complemented
Δmsdmutant (open circles; n = 5; JE154). Feces were collected 24-hours after infection and mice were euthanized 96-hours post-infection to harvest cecum,
Peyer’s patches (PP), and mesenteric lymph nodes (MLN). Organ homogenates were serially diluted and plated to enumerate CFU. Competitive index (CI) was
determined by comparing the ratio of WT to mutant in the organ with that of the inoculum. Each data point represents data from a single animal with median and
interquartile range indicated. Statistical significance was determined by a t-test with * P < 0.05 (WT vsmutant) and **P < 0.05 (between infection groups).

doi:10.1371/journal.pgen.1005472.g001
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similar to the isogenic WT in both rich and minimal media (Fig 2C–2F). The necessity for

msDNA during anaerobic growth is consistent with the inability of msDNA-deficient mutants

to efficiently colonize the intestine.

Fig 2. Mutants lackingmsDNA are defective for anaerobic growth. (A-B) Overnight cultures of WT (closed circles; HA420), ΔSTM3846 (A; JE122) or
Δmsd (B; JE144) with empty vector (open squares), and complemented ΔSTM3846 (A; HA1446) or complemented Δmsd (B; JE145) mutant (open
diamonds) were transferred into an anaerobic chamber, sub-cultured 1:100 into LB broth pre-incubated for 24 hours in anaerobic conditions, and incubated
at 37°C. CFU were determined hourly. Data shown are mean +/- SEM of 3 independent experiments. (C-D) Aerobic growth of WT (closed circles; HA420)
and ΔSTM3846mutant (open squares; HA1444) in (C) LB and (D) M9 minimal media. (E-F) Aerobic growth of WT (closed circles; HA420) and Δmsdmutant
(open squares; JE135) in (E) LB and (F) M9 minimal media. Each data point is the mean +/- SEM of three independent experiments.

doi:10.1371/journal.pgen.1005472.g002
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msDNA as a regulator

We hypothesized that msDNA might act as a trans regulator of gene expression for two rea-

sons. First, small RNAs are well known to have regulatory properties through base pairing with

DNA or mRNA transcripts [22]. Second, substantial over-expression of msDNA from one

strain of E. coli in a heterologous strain lacking a retron resulted in small changes in the prote-

ome [23]. To determine whether the msDNA produced by the St-85 retron might have regula-

tory properties, we evaluated the proteome of the WT and msDNA-deficient mutants

(ΔSTM3846 and Δmsd) at late exponential phase, a time when the retron is expressed and

msDNA is produced (Fig 1B and [24]), in both the presence and absence of oxygen. Of the

1504 total proteins identified, no significant differences in protein abundance between the WT

and mutants in the presence of oxygen were detected (Fig 3 and S1 Table). This finding is con-

sistent with previous findings that mutants lacking msDNA grow indistinguishably from the

Fig 3. Proteins needed for anaerobic metabolism are dysregulated in mutants lackingmsDNA.WT (HA420), Δmsd (JE135), and ΔSTM3846

(HA1444) were incubated either with agitation or statically in an anaerobic chamber for 4 hours. Proteins from bacterial cell pellets were digested and
analyzed as described in Materials and Methods. Z-scores of 148 of 1504 total proteins identified fromWT (n = 3) and Δmsd (n = 2) and ΔSTM3846 (n = 3)
mutant cultures grown in both aerobic and anaerobic conditions. Functions of selected proteins are listed to the right of the heat map.

doi:10.1371/journal.pgen.1005472.g003
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wild type organism in standard laboratory conditions (Fig 2C–2F). In addition, we noted that

very few proteins differ in abundance between the ΔSTM3846 and Δmsdmutants, consistent

with the hypothesis that the reverse transcriptase and msDNA operate in the same biological

pathway.

In anaerobic conditions however, we identified 238 proteins that differed in abundance

between the wild type and msDNA-deficient mutants (Fig 3 and S1 Table). Forty-three per-

cent of proteins with reduced abundance in the mutant were involved in amino acid and car-

bohydrate transport/metabolism and energy production/conversion (Table 1). Twenty-five

percent of all proteins of altered abundance did not belong to a functional grouping

(Table 1). The abundance of proteins encoded on SPI-1 was unchanged in the absence of

msDNA (Fig 3). Proteins necessary for motility were increased in abundance in anaerobically

grown msDNA-deficient strains (Fig 3). However, this apparent increase did not result in a

Table 1. Functional groupings of significantly dysregulated proteins in msDNAmutants. Proteins
reduced in abundance, and proteins increased in abundance in msDNAmutants as determined by clusters of
orthologous grouping [71].

COG grouping # of proteins

Proteins in reduced abundance mutants lacking msDNA relative to WT

amino acid transport and metabolism 32

energy production and conversion 27

carbohydrate transport and metabolism 14

cell wall/membrane/envelope biogenesis 9

coenzyme transport and metabolism 8

secondary metabolite transport, biosynthesis, catabolism 8

signal transduction 6

nucleotide transport and metabolism 5

transcription 5

inorganic ion transport and metabolism 4

post-translational modification, protein turnover, chaperone 3

intracellular trafficking, secretion, vesicular transport 2

cell cycle control, chromosome partitioning, cell division 2

cell motility 1

lipid transport and metabolism 1

general or unknown function 43

Proteins in increased abundance in mutants lacking msDNA relative to WT

cell motility 8

translation ribosomal structure, and biogenesis 8

energy production and conversion 5

inorganic ion transport and metabolism 5

amino acid transport and metabolism 4

cell wall/membrane/envelope biogenesis 4

signal transduction mechanisms 3

transcription 3

coenzyme, lipid, nucleotide transport and metabolism 3

carbohydrate transport and metabolism 2

post-translational modification, protein turnover, chaperone 2

replication, recombination, and repair 2

intracellular trafficking, secretion, vesicular transport 1

general or unknown function 18

doi:10.1371/journal.pgen.1005472.t001
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change in swimming motility of these strains in anaerobic conditions compared with the WT

(S3 Fig). The abundance of numerous proteins known to be important for anaerobic growth

and intestinal colonization was significantly reduced (Fig 3 and S1 Table), including proteins

for 1,2 propanediol utilization [25], ethanolamine utilization [13], anaerobic sn-glycerol-

3-phosphate utilization [26], anaerobic vitamin B12 biosynthesis [27], and serine/threonine

degradation [28].

Numerous proteins involved in reduction of anaerobic electron acceptors [29] were altered

in abundance between msDNAmutants and wild type bacteria during anaerobic growth (Fig

3). Proteins important for the reduction of thiosulfate (PhsAB) and sulfide (AsrC) were of low

abundance (Fig 4 [adapted from [30]] and S1 Table). In addition, proteins necessary for the

reduction of DMSO (DmsA, STM4305.s) and fumarate (FrdA) were in low abundance in

mutants lacking msDNA, although they did not meet our stringent criteria for statistical signif-

icance. Expression of genes necessary to utilize alternate electron acceptors is often induced by

the presence of the electron acceptor [29] so the absence of a statistically significant reduction

in some of these proteins is not surprising because these compounds were not present in the

growth conditions we used. Interestingly, NapA, encoding the periplasmic nitrate reductase

[29], was one of the proteins that was present in increased abundance in msDNA deficient

mutants compared to the WT, and there was no change in the abundance of NarGH, one of

Fig 4. Anaerobic carbonmetabolism is severely disrupted in msDNA-deficient mutants. Proteins
necessary for a given reaction are listed beside the reaction. In our proteomic analysis, proteins shown in
blue were present in decreased in abundance in mutants unable to produce msDNA, those shown in red are
present in increased in abundance in mutants unable to produce msDNA, and those in green are unchanged
in abundance in mutants unable to produce msDNA. Proteins shown in black were not observed. Boxed
proteins identify alternate electron acceptors used during anaerobic conditions. Figure adapted from [30].

doi:10.1371/journal.pgen.1005472.g004
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the two other nitrate reductase complexes (Fig 4 and S1 Table). These data are consistent with

the growth defect of our mutants in anaerobic conditions, and suggest that msDNA-deficient

mutants have a severe dysregulation of proteins necessary for reduction of terminal electron

acceptors needed during anaerobiosis.

Anaerobic terminal electron acceptor utilization in msDNAmutants

Our proteomic data predict that msDNA is critical for STm to produce proteins necessary for

reduction of terminal electron acceptors critical for metabolism during anaerobic conditions.

In order to confirm that the reduced abundance of anaerobic terminal electron acceptor reduc-

tases, as indicated by our proteomic data, has functional consequences, we tested the ability of

the addition of various terminal electron acceptors to rescue anaerobic growth of the STM3846

mutant. We found that providing the alternate electron acceptors fumarate, DMSO, or thiosul-

fate to the culture media during anaerobic growth failed to restore growth of the strain lacking

msDNA to WT levels (Figs 5B–5F, 6B and 6C). This finding makes sense, as our proteomic

data suggest that the enzymes that transfer electrons to these terminal electron acceptors dur-

ing anaerobic growth, thiosulfate reductase, sulfide reductase, fumarate reductase, and two

DMSO reductases, are reduced in abundance in mutants that lack msDNA. However, the addi-

tion of nitrate to culture medium rescued the anaerobic growth of the reverse transcriptase

mutant (Figs 5A and 6A). These data are consistent with our proteomic data showing that

mutants lacking msDNA have adequate NarG and an increased amount of NapA allowing

these strains to use nitrate as a terminal acceptor for electrons during anaerobic growth.

Fig 5. Nitrate, but not fumarate, DMSO, or thiosulfate, rescues the anaerobic growth defect of the ΔSTM3846mutant to WT levels.WT (closed
circles; HA420) and the ΔSTM3846 mutant (open squares; HA1444) were grown anaerobically as described in Fig 2, in LB with added electron acceptor: (A)
Added nitrate (40 mM), (B) Added fumarate (40 mM), (C) Added DMSO (1% v/v), (D) Added thiosulfate (40 mM) or control (E) NaCl (40 mM) or (F)—LB
only)]. Data points represent the mean +/- SEM of four independent experiments. Statistical significance determined by t-test on log-transformed data with
* P<0.05.

doi:10.1371/journal.pgen.1005472.g005
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Fig 6. Growth defects of the ΔSTM3846mutant in the presence of electron acceptors are linked to
disruption of alternate electron acceptor reductases. Bacterial cultures were grown anaerobically for 4
hours in the presence of alternate electron acceptors as indicated in Fig 5. (A) Anaerobic growth of theWT
(HA420), a ΔSTM3846mutant (HA1444), a mutant lacking all three nitrate reductases (ΔnarG ΔnarZ ΔnapA;

CAL50), and a ΔnarG ΔnarZ ΔnapA ΔSTM3846 quadruple mutant (JE335) in the absence (black bars) or
presence (white bars) of nitrate. (B) Anaerobic growth of theWT (HA420), a ΔSTM3846mutant (JE142), a
mutant lacking the fumarate reductase (ΔfrdA; JE309), and a ΔfrdA ΔSTM3846 double mutant (JE334) in the
absence (black bars) or presence (white bars) of fumarate. (C). Anaerobic growth of theWT (HA420), a
ΔSTM3846mutant (HA1444), a mutant lacking all three putative DMSO reductases (ΔSTM0964 ΔSTM2530

ΔSTM4305; JE341), and a ΔSTM0964 ΔSTM2530 ΔSTM4305 ΔSTM3846 quadruple mutant (JE343) in the

Multicopy Single-Stranded DNA in Gut Colonization
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msDNA and colonization of the inflamed intestine

In the presence of an intact T3SS-1, NTS induce an inflammatory response that includes

recruitment of luminal neutrophils and induction of inducible nitric oxide synthase as part of

the inflammatory response [9,10,31], resulting in generation of tetrathionate and nitrate as

available terminal electron acceptors in the inflamed intestine. To determine whether the colo-

nization defects we observed were dependent on a functional T3SS-1 and host neutrophilic

inflammatory response, we performed competitive infection experiments between the virulent

WT and the ΔSTM3846mutant both in the presence and absence of SPI-1 (Fig 7A). We

observed that a ΔSTM3846mutant colonizes the intestine poorly and associated organs. The

modest colonization defect may be due to an inability to utilize carbon and amino acid sources

within the inflamed intestine [13], or due to poor growth compared with WT prior to the host

inflammatory response. Interestingly, the colonization defect of the ΔSTM3846mutant in the

mouse cecum was exacerbated in the absence of a functional T3SS-1, suggesting that a robust

inflammatory response partially rescues mutants unable to produce msDNA (Fig 7A). Consis-

tent with this finding both the small and large intestines, which lack appreciable neutrophilic

inflammation (Fig 7C), are poorly colonized with the ΔSTM3846mutant in mice inoculated

with this strain alone (Fig 7B). In murine models that do not develop a neutrophilic infiltrate

in the intestine in response to infection (murine typhoid model), the ΔSTM3846mutant also

colonizes poorly after oral infection (Fig 8A and 8B). Our results suggest that STM3846 is

essential for STm to colonize the intestine, a defect that is partially rescued in the presence of a

profound host inflammatory response, supporting the necessity for intact anaerobic metabolic

pathways in intestinal colonization.

msDNA in enteropathogenic E. coli

The msDNA of STm is similar in predicted secondary structure to msDNA of other enteric

pathogens including enteropathogenic E. coli (EPEC; [4]), a close relative of STm. EPEC atta-

ches to the epithelial surface causing characteristic attaching and effacing lesions and a malab-

sorptive diarrhea [32]. Despite the fact that the pathology caused by NTS and EPEC is distinct,

both organisms colonize the intestine and cause diarrheal illness in susceptible hosts. We

hypothesized that the RT of EPEC O127:H6, a serotype previously shown to produce msDNA

[33], is necessary for this organism to colonize the gut. To test this hypothesis, we generated a

non-polar deletion of the retron RT (ΔE2348C_3890) and performed competitive infections

between this mutant and the WT. We found that an EPEC mutant lacking the RT fails to per-

sist within the intestine of mice, both in the luminal contents and adherent to tissue (Fig 9).

This defect was reversed by complementation in trans (S4 Fig). These data suggest that the

importance of retron reverse transcriptases during intestinal infection is not restricted to sal-

monellae, and thus are likely to be more broadly applicable to enteric pathogens.

Discussion

The natural function of msDNA has remained elusive despite more than 30 years of study

[1,2,5,34–38]. We describe the first phenotypes for any mutant lacking msDNA. Using the

enteric pathogen S. Typhimurium, we show that msDNA produced by a retron reverse tran-

scriptase is critical for efficient colonization of the mammalian intestine. In STm, msDNA is

absence (black bars) or presence (white bars) of DMSO. Bars represent mean +/- SEM of at least three
independent experiments. * Indicates significant difference between mutant andWT for that condition
(P<0.05 by ANOVA). ** Indicates significant difference between conditions (P<0.05 by t-test).

doi:10.1371/journal.pgen.1005472.g006
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Fig 7. The STM3846 reverse transcriptase mediates intestinal colonization of Salmonella

Typhimurium. (A) Competitive index of WT (JE67) vs ΔSTM3846 (JE23; n = 5 mice; closed circles) and

Multicopy Single-Stranded DNA in Gut Colonization
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critical for the ability to grow in the absence of oxygen. Identification of these phenotypes cre-

ates the first opportunity for detailed studies of the molecular function of msDNA since the

discovery of these unique molecules. We further showed that STmmsDNA directs coloniza-

tion of the intestine through regulation of the abundance of proteins necessary for central

anaerobic metabolism. Thus, our data suggest that the natural function of msDNAmay be to

control protein abundance, the first natural function to be ascribed to any msDNAmolecule.

In STm, msDNA is produced by the STM3846 reverse transcriptase usingmsd as a template

sequence andmsr as a primer. The msDNA from STm has a predicted 85-nucleotide DNA

stem with no mismatched base pairs and a 4-nucleotide loop, and an RNA portion with two

predicted smaller imperfect stem loop structures [4]. The RNA and DNA portions of msDNA

are covalently joined by a unique 2’5’ phosphodiester linkage on a conserved guanine [39]. It is

unclear whether the entiremsr RNA sequence remains in the mature STm msDNA. Consistent

with prior reports [34,39], we showed that both the RT andmsd are requirements for produc-

tion of msDNA. The intervening ORF, STM3845, is dispensable for msDNA production. This

is perhaps not surprising as the presence of another ORF in addition to the RT in retrons is rel-

atively rare, and appears to be more common on retrons borne by pathogens [4,40,41]. It has

been suggested that the retron RT could produce a variety of different cDNA molecules if the

sequence of the mRNA transcript is identical to that of the 5’ end ofmsr [42]. However, we

observed similar defects in intestinal colonization and anaerobic growth of mutants lacking

either the RT ormsd. These data suggest that it is msDNA, and not some other potential prod-

uct of the RT, that mediates intestinal colonization of STm.

Previous attempts to evaluate the function of msDNA have used artificial systems, failing to

identify phenotypes for mutants lacking msDNA and to definitively identify the natural func-

tion of these molecules [23,43–47]. When an msDNA from one strain of E. coli with mis-

matched base pairs in the predicted DNA stem region is significantly overexpressed in a

heterologous strain of E. coli lacking its own retron, the frequency of spontaneous mutation

was increased due to sequestration of mismatch repair proteins [43,44,46]. Thus, the produc-

tion of msDNA was thought to increase mutation frequency. However, no previous work has

demonstrated that deletion of msDNA from a bacterium naturally producing msDNA

decreases mutation frequency. We hypothesize that substantial over-expression of any mis-

matched DNA could increase mutation frequency by the same mechanism. Thus, this previous

finding may not illuminate the true function of msDNA in the cell.

When mutants lacking the ability to make msDNA are grown without oxygen, 15% of all

proteins we could identify were in altered abundance. However, no dysregulated proteins were

identified during aerobic growth, consistent with the lack of identifiable phenotypes in the

presence of oxygen. Our proteomic data were generated using cultures grown for the same

duration of time under varying growth conditions. Some of the differences in protein abun-

dance may result because wild type and mutant that cannot make msDNA grow differently

during anaerobic conditions. However, our growth data suggest that the growth phase of the

wild type and mutants unable to make msDNA are not dramatically different at the times we

chose to collect samples for our analysis. Furthermore, the differences in protein abundance

between the msDNAmutant and the wild type during anaerobic growth that we re-tested

ΔSPI-1 (HA964) vs ΔSPI-1 ΔSTM3846 (JE25; n = 5; open squares) 4 days post-infection in the murine colitis
model as described in Fig 1. (B) Organ colonization of mice infected with either WT (JE67; n = 4; closed
circles) or ΔSTM3846mutant (JE23; n = 5; open squares) in the murine colitis model. (C) Mean of histologic
scores from indicated intestinal segments frommice in (B). Each point (in panels A, B) represents data from a
single mouse with median and interquartile range indicated. Statistical significance determined as in Fig 1.
PP—Peyer’s patches; SI—small intestine; LI—large intestine.

doi:10.1371/journal.pgen.1005472.g007
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appear to be functionally significant. We show that the growth of mutants that cannot make

msDNA, and that have reduced abundance of several alternate electron acceptor reductases

needed during anaerobic growth, cannot be rescued by addition of the cognate alternate elec-

trons. Furthermore, the msDNAmutant overproduces periplasmic nitrate reductase (NapA)

and a wild type level of a second nitrate reductase (NarG). We show that these proteins and

Fig 8. TheΔSTM3846mutant colonizes the non-inflamed intestine poorly in the murine typhoid
model. (A) Organ colonization of mice infected with either WT (JE67; closed circles; n = 5) or ΔSTM3846

mutant (JE23; open squares; n = 5). (B) Mean histologic score frommouse organs in (A). Each point
represents a single mouse with median and interquartile range indicated. Statistical significance betweenWT
and ΔSTM3846mutant as determined by a t-test is indicated by * (P<0.05).

doi:10.1371/journal.pgen.1005472.g008
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thus this pathway are functional, as the exogenous addition of the terminal electron acceptor

nitrate rescues the anaerobic growth of mutants unable to make msDNA. Prior reports suggest

that the DNA portion of msDNA can be engineered to act as a regulatory molecule by creating

an antisense sequence in the DNA loop [45]. Our data suggest that the natural function of

msDNAmay be to act as a regulatory molecule although we have not yet identified specific reg-

ulatory targets.

There are two known master regulators of anaerobic metabolism in facultative anaerobes:

fnr and arcA [48]. The transcriptional and protein profiles of anaerobically-grown Salmonella

mutants deficient in fnr and arcA are established [49,50]. With few exceptions, the proteins of

altered abundance in our proteomic data align poorly with genes regulated by either fnr or

arcA. However, it is difficult to draw meaningful comparisons across our proteomic data and

published transcriptional profiles of mutants grown in the absence of oxygen, because of pro-

tein profiles with transcript abundance are not directly comparable. Our data raise the possibil-

ity that regulation by msDNAmay represent an additional pathway to regulate the abundance

of proteins necessary for anaerobic metabolism. Further mechanistic study of the anaerobic

Fig 9. Enteropathogenic E. coli is dependent on the retron reverse transcriptase to persist within the
murine intestine. Five C57Bl/6 mice were infected with an equivalent mixture of EPECO127:H6 (JE301) or
the ΔRTmutant (JE304; ΔE2348C_3890) by gavage. Feces were collected every two days and mice
euthanized at day 10 post-infection. Intestinal contents were removed and intestinal tissue washed in PBS
then contents and tissue were homogenized, diluted, and plated separately. Organs were weighed and the
abundance of WT and mutant determined per gram of tissue. (A) Fecal shedding of WT (closed circles) and
ΔRTmutant (open squares) throughout infection and (B) in intestinal contents (luminal bacteria) and washed
tissue (tissue adherent bacteria) after 10 days competitive infection. Competitive index and statistical
significance were determined as for Fig 1 with * P < 0.05. The horizontal line represents the lower limit of
bacterial detection.

doi:10.1371/journal.pgen.1005472.g009
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regulation of gene and protein expression is critical to understanding the behavior of Salmo-

nella in intestinal colonization.

Recent evidence suggests that Salmonella exploits the host inflammatory response to gain a

competitive advantage in the intestinal lumen [10–13]. Reactive oxygen species produced by

neutrophils oxidize thiosulfate to tetrathionate, a compound that Salmonella, but not resident

microflora, uses as a terminal electron acceptor [10]. Epithelial-derived nitrate also contributes

to the growth of Salmonella in the anaerobic conditions of the intestine by acting as a preferred

electron acceptor in these conditions [31]. Some nutrients, such as ethanolamine, are used only

during the neutrophilic inflammatory response [13]. We have shown that some of these pro-

cesses in STm are altered in mutants unable to produce msDNA, along with many other pro-

teins with less clearly defined roles in pathogenesis.

We also observed a defect in intestinal persistence of an EPEC mutant lacking its retron RT.

Salmonella enterica and E. coli are close phylogenetic relatives and both cause diarrheal illness

in susceptible hosts, but there are critical differences in the retron between organisms. The RT

of EPEC O127:H6 is located in a different genomic context than the retron of STm and has a

GC content of 51.8%, similar to the average GC content of 50.6% [51] suggesting that this gene

was not acquired recently. This GC content in the EPEC retron is in contrast to the GC content

of the retron of STm, 30.6% compared with the average GC content of 52.4% [4,52]. Unlike

STm, the retron of EPEC O127:H6 lacks an additional ORF. The predicted secondary struc-

tures of msDNA from EPEC and STm are similar, however EPEC msDNA is predicted to have

mismatched base pairs in the DNA stem [4]. Despite these differences, we report that EPEC

mutants lacking the retron RT also have a phenotype during colonization of the intestine.

Critical differences also exist between the pathogenesis of EPEC and STm diarrheal diseases.

In the intestine, Salmonella lives both in the lumen and invades the epithelium, replicating

intracellularly and inducing a profound neutrophilic inflammatory diarrhea [53]. In contrast,

EPEC attaches to the intestinal epithelium below the intestinal mucus in these regions of the

gastrointestinal tract and remains extracellular [54]. Although our understanding of the molec-

ular mechanism of the development of diarrhea during EPEC infection is incomplete, this

infection causes a secretory diarrhea [32]. Thus, the mechanism of EPEC-induced diarrhea is

substantially different than the inflammatory diarrhea caused by non-typhoidal salmonellae.

Our data suggest that retron RTs are critical for colonization of the intestine by both of these

pathogens, yet the phenotypes of these mutants in Salmonella versus EPEC during infection

are different. While the role of retron reverse transcriptases and msDNA in intestinal coloniza-

tion by enteric pathogens is likely to be ubiquitous, we hypothesize based both on our data and

on the differences in diseases between these two organisms, that the processes regulated and

the regulatory targets themselves are likely to be different.

We show that a natural function of msDNA is to regulate protein abundance, the first

reported natural function of any msDNAmolecule. STm mutants unable to make msDNA

poorly colonize the murine intestine. This colonization defect is due to altered abundance of

numerous proteins, including those necessary for central anaerobic metabolism, a process

known to be necessary for the ability of STm to colonize the intestine of mammals. We

observed that an EPEC mutant lacking its retron reverse transcriptase has a reduced ability to

persist in the murine intestine, suggesting that the presence and function of msDNAmay be

broadly applicable to other enteric pathogens. Retrons are also widespread in non-pathogenic

eubacteria (Reviewed in [3]) including most isolates of the environmental bacteriumMyxococ-

cus xanthus [35]. msDNA is present in high copy per cell [1], suggesting that the regulatory

function of this molecule is critical for the lifestyle of the host bacterium. It is puzzling that this

molecule appears to have a function under only certain conditions despite the fact that it is pro-

duced in abundance. One possible explanation for this phenomenon is that msDNA may sense
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environmental changes in order to regulate gene expression. This hybrid RNA-DNA molecule

represents an exciting new class of bacterial regulatory molecules with broad application to the

understanding of the lifestyles of pathogens and non-pathogens alike.

Materials and Methods

Bacterial strains

All bacterial strains, plasmids, and primers used for mutant construction are listed in S2 Table,

S3 Table). All Salmonella strains are derivatives of ATCC 14028s. Enteropathogenic E. coli

O127:H6 strain E2348/69 [55], a generous gift of M. Donnenberg, is the genetic background

for all EPEC mutants described here. Mutants were constructed using a modification of the

lambda-red recombination technique and antibiotic resistance cassettes removed as previously

described [56,57] [58]. All Salmonellamutations were moved into a clean genetic background

by P22 transduction [59]. Standard cloning protocols were used to generate complementing

plasmids [60].

All bacterial cultures were grown at 37°C aerobically with vigorous agitation or standing in

an anaerobic chamber with internal atmosphere of 5% H2, 5% CO2, and 90% N2 (Bactron I,

ShelLab). For anaerobic growth experiments, bacteria were grown overnight aerobically then

transferred into the anaerobic chamber and diluted 1:100 into media pre-equilibrated for at

least 18 hours. Alternate electron acceptors (Sigma-Aldrich) sodium nitrate, sodium fumarate,

sodium thiosulfate, and sodium tetrathionate were added to LB to a final concentration of

40mM. Sodium chloride (Sigma-Aldrich) at a final concentration of 40 mM served as a nega-

tive control. DMSO (Sigma-Aldrich) was added to LB to a final concentration of 0.1% (v/v).

Bacteria were grown in Luria-Bertani (LB) broth or LB or MacConkey (Difco) agar supple-

mented with the following antibiotics as appropriate: kanamycin (50 mg/L), nalidixic acid (50

mg/L), carbenicillin (100 mg/L), streptomycin (100 mg/L), and chloramphenicol (20 mg/L).

All experiments were performed on at least three separate occasions. Bacterial generation

number was calculated using the following equation: [log10(CFU final)—log10(CFU start)]/

log10(2).

Mouse infections

Ethics Statement: This study was performed in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The

Institutional Animal Care and Use Committees of Texas A&M University and North Carolina

State University approved all animal experiments (protocol numbers 2012–084 and 2011–167

(TAMU) and 14–132-B (NCSU)). All experiments that utilized mice were performed using

8–12 week old female C57BL/6J mice (Jackson Laboratories). For competitive infection experi-

ments, mice were infected by gavage with an equivalent ratio of WT and mutant bacteria. The

competitive index was determined by dividing the ratio of WT to mutant bacteria in the

selected organ by that ratio in the inoculum. For single infections, mice were infected with

either WT or mutant bacteria. The harvested tissue was weighed, homogenized, and CFU was

determined per gram of tissue collected.

Salmonella infections were performed as previously described [15]. For the murine colitis

model, mice were administered 20 mg streptomycin in 75 μL sterile water by gavage. Twenty-

four hours after treatment, mice were infected with approximately 108 CFU of Salmonella in

100 μL volume by gavage. Feces were collected 24 hours after infection. Mice were euthanized

by carbon dioxide asphyxiation at 96 hours post-infection and organs harvested, homogenized,

serially diluted, and plated on LB agar with appropriate antibiotics for enumeration of CFU.
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For the murine typhoid model, mice were treated with 75 μL sterile water by gavage. Mice were

then infected and euthanized as above.

EPEC mouse infections were performed essentially as previously described [61]. Mice were

infected with approximately 108 CFU in 100 μL volume by gavage. Feces were collected every

other day for 9 days. Mice were euthanized 10 days post-infection. The aboral 5 cm of small

intestine, the entire cecum, and the entire colon were collected. Intestinal contents were

exposed through a longitudinal incision. The intestinal segment was placed into sterile PBS

and vigorously agitated to remove intestinal contents. Intestinal tissue was washed in sterile

PBS to remove remaining ingesta. Intestinal contents and tissue were homogenized separately,

serially diluted, and plated on MacConkey agar and LB agar with appropriate antibiotics to

enumerate CFU.

Histopathology

Samples from mouse ileum, cecum, and transverse colon were collected 96 hours post-infec-

tion and fixed in formalin. All tissues were routinely processed and stained with hematoxylin

and eosin. All histologic analyses were performed by a veterinary pathologist blinded as to

infection group. Tissues were scored (0–4) for each of the following parameters: polymorpho-

nuclear cell (PMN) infiltration, mononuclear leukocyte infiltration, crypt abscess, submucosal

edema, villus blunting, and epithelial damage as described [13,15,62,63].

msDNA isolation

msDNA was isolated from aerobic late log phase cultures normalized by OD600. Bacteria were

lysed as for plasmid isolation (Qiagen Mini-prep) and msDNA isolated from the filtered frac-

tion with subsequent ethanol precipitation. msDNA was visualized using a native polyacryl-

amide gel with in-gel ethidium bromide staining.

Invasion assays

Cell lines were purchased from American Type Culture Collection (ATCC) and used within 15

passages. HeLa cells (human cervical adenocarcinoma epithelial, ATCC CCL-2) were grown as

recommended by ATCC. HeLa cells were seeded in 24-well plates at 5 x 104 cells/well approxi-

mately 24 h prior to infection.

Late-log phase cultures were prepared by inoculating 10 ml LB broth with 0.3 ml overnight

shaking culture. Flasks were grown at 37°C with agitation for 3 hours. Bacteria were collected

by centrifugation at 8000 x g for 90 seconds, resuspended in an equal volume of Hanks’ buff-

ered saline solution (HBSS, Mediatech) and added directly to mammalian cells seeded in

24-well plates for 10 minutes. The multiplicity of infection was approximately 50. Non-inter-

nalized bacteria were removed by aspiration. Monolayers were washed three times in HBSS

and were then incubated in growth media until 30 min post-infection. Thereafter, gentamicin

was added at 50 μg/ml from 30–90 min p.i. to kill extracellular bacteria and reduced to 10 μg/

ml from 90 min post-infection For enumeration of intracellular bacteria, monolayers were

washed once in phosphate-buffered saline, and then solubilized in 0.2% sodium deoxycholate

and serial dilutions were plated on LB agar.

Motility assays

Swimming motility was performed as previously described [64]. Swimming was assayed on

plates containing 0.3% Difco Bacto Agar (LB agar base 25g/L). Plates were incubated either in

open air or in the anaerobic chamber overnight prior to use for swimming assays. Overnight
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cultures of bacterial strains were grown at 37°C with agitation and cell numbers normalized by

optical density. An aliquot of each normalized culture was transferred into the anaerobic cham-

ber. The WT, ΔSTM3846, and Δmsdmutants (3 μl each) were spotted onto the same swimming

agar plate and incubated at 37°C aerobically or anaerobically for 5 hours. The diameter of the

cell spread was measured and compared with that of the WT on the same plate. Each assay was

performed in triplicate on three independent occasions (anaerobic) or in four replicates on two

independent occasions (aerobic).

Data analysis

Statistical analysis was performed using GraphPad Prism 6. All data were log transformed

prior to analysis. Statistical significance was set at P< 0.05 and was determined using a t-test

or ANOVA where indicated.

Proteomic analysis

Aerobic overnight cultures of the wild type and the ΔSTM3846 and Δmsdmutants were diluted

1:100 and incubated either aerobically or in an anaerobic chamber (Coy) for 4 hours on three

independent occasions. Bacteria were pelleted and supernatants discarded. Cell pellets were

resuspended in 100 mMNH4HCO3, pH 8.0 and lysed by vigorous vortexing in the presence of

0.1 mm silica/zirconia beads. Proteins were denatured and reduced with 8M urea and 5 mM

dithiothrietol, respectively, for 30 minutes at 60°C. The proteins underwent enzymatic diges-

tion for 3 hours at 37°C with 1/50 enzyme/protein (w/w) ratio of sequencing-grade trypsin.

The resultant peptides were desalted for mass spectrometric (MS) analysis using C18 solid

phase extraction cartridges (50 mg, 1 mL, Discovery, Supelco). The cartridges were activated

with methanol, followed by equilibration with 0.1% TFA before loading the samples. The car-

tridges were then washed with 5% acetonitrile (ACN)/0.1% TFA and eluted with 80% ACN/

0.1% TFA. Eluted peptides were concentrated in the vacuum centrifuge and diluted to a con-

centration of 0.5 mg/mL with water for the MS analysis.

Digested peptides were loaded into capillary columns (75 μm x 35 cm, Polymicro) packed

with C18 beads (3 μm particles, Phenomenex) connected to a custom-made 4-column LC sys-

tem [65]. The elution was performed using the following gradient: equilibration in 5% B sol-

vent, 5–8% B over 2 min, 8–12% B over 18 min, 12–35% B over 50 min, 35–60% min over 27

min and 60–95% B over 3 min. (solvent A: 0.1% FA; solvent B: 90% ACN/0.1% FA) and flow

rate of 300 nL/min. Eluting peptides were directly analyzed either on an Orbitrap (LTQ Orbi-

trap Velos, Thermo Scientific, San Jose, CA) mass spectrometer using chemically etched nanos-

pray emitters [66]. Full scan mass spectra were collected at 400–2000 m/z range and the ten

most intense ions were submitted to low-resolution CID fragmentation once (35% normalized

collision energy), before being dynamically excluded for 60 seconds.

Tandem mass spectra were searched with MSFG+ against Salmonella enterica serovar

Typhimurium 14028s and common contaminant sequences (downloaded from NCBI, all in

forward and reversed orientations), using the following parameters: (i) partial tryptic digestion,

(ii) 50 ppm parent mass tolerance, (iii) methionine oxidation as a variable modification. The

peptides were filtered with a MSGF probability score [67]� 1x10–9. Peak areas for each peptide

were retrieved using the MultiAlign tool [68], and to ensure the quality of peptide-to-peak

matching, the data was filtered with a Statistical Tools for AMT tag Confidence (STAC)

score� 0.7 and uniqueness probability� 0.5 [69]. Additionally, proteins were required to

have at least 2 peptides and at least one peptide with STAC� 0.9. Peptide abundance values

were log transformed and rolled-up into proteins using Qrollup tool, available in DAnTE [70].

Abundance values for each protein across all 32 conditions (WT, mutants, anaerobic, aerobic
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conditions, biological replicates, and technical replicates) were used to calculate a Z-score for

each measurement where missing values were filled with 19.5. The Z-score transformation

enables comparisons of trends across conditions and proteins to identify relevant abundance

changes.

Supporting Information

S1 Fig. The Δmsdmutant has a mild invasion defect in cultured epithelial cells. (A) Invasion

efficiency of ΔSTM3846 (HA1444) and Δmsd (JE135) mutants into HeLa cell monolayers nor-

malized to the efficiency of the WT (HA420) at 1 hour post-infection. (B) Fold-replication of

the ΔSTM3846 and Δmsdmutants 7 hours post-infection/1 hour post-infection normalized to

fold-replication of the WT. Error bars represent the mean +/- SD. Invasion was measured on

five separate occasions, and intracellular replication on three separate occasions. � P<0.05.

(TIF)

S2 Fig. Anaerobic growth curves of ΔSTM3846 and Δmsdmutants. Anaerobic growth curves

were performed as described (Fig 2) using mutants lacking plasmids (HA1444 and JE135).

(TIF)

S3 Fig. Motility of msDNA-deficient mutants does not depend on the presence of oxygen.

Normalized overnight cultures of WT (HA420), ΔSTM3846 (HA1444), and Δmsd (JE135) were

spotted onto swimming agar either in the presence of oxygen or in an anaerobic chamber. Cell

spread was measured 5 hours post-inoculation and compared with that of the WT growing on

the same plate. Bars represent the mean +/- SD. Anaerobic swimming was measured in tripli-

cate on three separate occasions and aerobic swimming measured in quadruplicate on two

separate occasions. (�) significant difference between WT and the mutant. (��) significant dif-

ference between mutants. P<0.05.

(TIF)

S4 Fig. The persistence defect of the EPEC ΔRT mutant is reversed by complementation in

trans. Two groups of five C57BL/6 female 8–12 week old mice were infected with 108 CFU of

an equivalent mixture of EPEC O126:H7 (JE301) and ΔRT mutant (ΔE2348C_3890) bearing

the empty plasmid (JE472; closed circles) or complementing plasmid (JE470; open boxes).

Mice were euthanized 10 days post-infection and organs harvested to determine CFU. Data

presented are the composite of two independent experiments. Each data point represents a sin-

gle animal and the median and interquartile ranges are indicated. Competitive index and statis-

tical significance determined as described for Fig 1. � P<0.05 (WT vs mutant) and �� P< 0.05

(between infection groups.

(TIF)

S1 Table. Comparison of the proteomes of wild type (HA420), ΔSTM3846 (HA1444) and

Δmsd (JE135) mutants during both aerobic and anaerobic growth. The mean Z-score for

each bacterial strain in a given condition is shown (WT n = 6, ΔSTM3846 mutant n = 6, Δmsd

mutant n = 4). SD denotes the standard deviation of Z-scores for a bacterial strain in a given

condition. Cells highlighted in blue indicate decreased protein abundance relative to the wild

type, while cells highlighted in red indicate increased protein abundance relative to wild type.

(XLSX)

S2 Table. Bacterial strains and plasmids utilized in this study.

(XLSX)
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S3 Table. Primers utilized to construct mutants and complementing plasmids.

(XLSX)
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