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Abstract

Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video

editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as

possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine.

Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive

evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results

with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption.

Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly

in-place computation using only the memory needed to store a group of pictures. After applying the multicore

optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video

sequence in real-time.
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1 Introduction
Currently, most of the popular video compression

technologies operate in both intra and inter coding

modes. Intra mode compression operates in a frame-by-

frame basis while inter mode achieves compression by

applying motion estimation and compensation between

frames and taking advantage of the temporal correla-

tion between frames. Inter mode compression is able

to achieve increased coding efficiency over intra mode

schemes. However, in video content production stages,

digital video-processing applications require fast-frame

random access to perform an undefined number of

real-time decompressing-editing-compressing interactive

operations, without a significant loss of original video

content quality. Intra-frame coding is desirable as well in

many other applications like video archiving, high-quality

high-resolution medical and satellite video sequences,

applications requiring simple real-time encoding like

video-conference systems or even for professional or

home video surveillance systems [1], and digital video

recording systems, where the user equipment is usually

not as powerful as the head end equipment.

There is another video encoding approach that may

be also considered as an inter coding approach but
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without the use of motion estimation/compensation. In

this approach, known as three-dimensional (3D) coding,

a video sequence is considered as a three-dimensional

data set where each pixel has two spatial and one tem-

poral coordinates. Most of the 3D encoders proposed in

the literature are based on the three-dimensional wavelet

transform (3D-DWT), mainly used in watermarking [2]

and video coding applications (e.g., compression of volu-

metric medical data [3], multispectral images [4], or 3D

model coding [5]). So, 3D-DWT-based encoders could be

an intermediate approximation between intra and inter

coding modes, because it avoids motion estimation and

compensation, and the decoding latency will depend on

the GOP size.

For example, Taubman and Zakhor presented a full-

color video coder based on a 3D subband coding with

camera pan compensation [6]. Podilchuk, et al. utilized

a 3D spatio-temporal subband decomposition and geo-

metric vector quantization [7]. Chen and Pearlman [8]

extended to 3D improved embedded zero-tree wavelet

(IEZW) for video coding the two-dimensional (2D)

embedded zero-tree wavelet (EZW) method [9] and

showed promise of an effective and computationally sim-

ple video coding system without motion compensation,

obtaining excellent numerical and visual results. In [10],

instead of the typical quad-trees of image coding, a tree

with eight descendants per coefficient is used to extend
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the set partitioning in hierarchical trees (SPIHT) image

encoder to 3D video coding. In [11], a fast SPIHT ver-

sion is presented using a Huffman-based entropy encoder

instead of a context-adaptive arithmetic encoder. How-

ever, the proposed image encoder has not been extended

to the 3D version. Also in [12], an extension of the fast

backward coding of wavelet trees (BCWT) image encoder

[13] is presented, reporting a coding speed of 32 frames

per second for a common intermediate format (CIF)

resolution video sequence. The BCWT image encoder

offers high coding speed, low memory usage, and a sim-

ilar rate/distortion (R/D) performance than the SPIHT

encoder. The key of the BCWT encoder is its unique one-

pass backward coding, which starts from the lowest level

of subbands and travels backwards. Maximum quantiza-

tion levels of descendants (MQD) map calculation and

coefficient encoding are all carefully integrated inside this

pass in such a way that there is as little redundancy as pos-

sible for computation and memory usage. A 3D zero-tree

coding through modified EZW has also been used with

good results in compression of volumetric images [14].

In this work, we present a fast 3D-DWT-based encoder

with a run-length core coding system. The proposed

encoder requires less memory than 3D SPIHT [10] and

has a good R/D behavior. Furthermore, we present an

in-depth analysis of the use of multicore strategies to

accelerate the 3D-DWT. Using these strategies, the pro-

posed encoder is able to compress a full high-definition

(HD) video sequence in real-time.

The rest of the paper is organized as follows: section 2

presents the proposed 3D-DWT-based encoder. In

section 3, a performance evaluation in terms of R/D,

memory requirements, and coding time is presented.

Section 4 describes several optimization proposals based

onmulticore processing strategies applied to the 3D-DWT

computation while in section 4.2, we analyze their perfor-

mance. Furthermore, in section 4.3, we present a pipeline

strategy to speed up the proposed encoder. Finally, in

section 5, we show the performance of the improved

proposed encoder against other state-of-the-art encoders

while in section 6, some conclusions are drawn.

2 Encoding system
In this section, we present a 3D-DWT-based encoder

with low complexity and good R/D performance. As our

main concern is fast encoding process, no R/D optimiza-

tion, motion estimation/motion compensation (ME/MC)

or bitplane processing is applied. This encoder is based

on both 3D-DWT and run-length encoding (3D-GOP-

RL), and it is able to compress an ITU-D1 (576p30) video

sequence at 40 frames per second.

In Figure 1, the whole encoding system scheme is

shown. First of all, the 3D-DWT is applied to a group of

pictures (GOP) in such a way that a combination of a 2D

spatial DWT and a 1D temporal DWT is applied and the

temporal DWT absorbs motion in the GOP. The tempo-

ral DWT is carried out on the pixel values of the same

location along the time axis. Our 3D-DWT implemen-

tation, as how 3D-SPIHT and 3D-BCWT are done, uses

the Daubechies 9/7F filter for both spatial and temporal

domains because this filter has shown good results for

lossy compression [15].

After that, all wavelet coefficients are quantized, and

then, subband frames are passed from the lowest fre-

quency subband LLLn to the highest frequency subband

HHH1 to the run-length encoding system which com-

presses the input data, and we obtain the final bit-stream

corresponding to that GOP. As in the 3D-BCWT encoder

[12], only one pass is applied over the GOP to encode

the coefficients, but contrary to the 3D-BCWT encoder,

Figure 1 Overview of the proposed run length-based encoder.
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Table 1 Configuration parameters of the evaluated encoders

Parameters/ GOP Sequence Profile

Codec size type

3D-SPIHT [16] 16 I -

H.264 (JM16.1 version) [17] 15 IBBPBBP. . . High profile

H.263 [18] (ffmpeg-r25117) 15 IPPPPP. . . Profile 0

(No B frames supported in this version)

MPEG-2 (ffmpeg-r25117) 15 IBBPBBP. . . Main profile

MPEG-4 part 2 (ffmpeg-r25117) 15 IBBPBBP. . . Simple advanced profile

×264 (mingw32-lib×x264 r1713–1) [19] 15 IBBPBBP. . . High quality preset

×264 Intra (mingw32-lib×264 r1713–1) [19] - IIIII. . . High quality preset

the compressed bit-stream generated by our encoder is

ordered in such a way that the decoder obtains the bit-

stream in the correct order.

2.1 Fast run-length coding

In the proposed encoder, the quantization process is per-

formed by two strategies: one coarser and another finer.

The finer one is done by applying a scalar uniform quan-

tization to the wavelet coefficients using the Q parameter.

The coarser one is done by removing bit planes from

the least significant part of the wavelet coefficients. We

define rplanes as the number of less significant bits to

be removed, and we call significant coefficient to those

coefficients ci,j that are different to zero after discard-

ing the least significant rplane bits, in other words, if

ci,j ≥ 2rplanes.

In the proposed coding algorithm, the wavelet coeffi-

cients are encoded as follows: the quantized coefficients

in the subband buffer are scanned row by row (to exploit

their locality). For each coefficient in that buffer, if it is

not significant, a run-length count of insignificant sym-

bols at this level is increased (run lengthL). However, if

it is significant, we encode both the count of previous

insignificant symbols and the significant coefficient, and

run lengthL is reset.

A significant coefficient is encoded by means of a sym-

bol indicating the number of bits required to represent

that coefficient. An arithmetic encoder with two contexts

is used to efficiently store that symbol. As coefficients in

the same subband have similar magnitude, an adaptive

arithmetic encoder is able to represent this information in

a very efficient way. After that, the significant bits and sign

of the wavelet coefficient are raw-encoded to speed up the

execution time.

In order to encode the count of insignificant symbols,

we use a RUN symbol. After encoding this symbol, the

run-length count (run lengthL) is stored in a similar way

as in the case of significant coefficients. First, the number

of bits needed to encode the run value is arithmetically

encoded (with a different context). Afterwards, the bits are

raw-encoded.

Instead of using run-length count symbols, we could

have used a single symbol to encode each insignificant

coefficient. However, we would need to encode a larger

amount of symbols, and therefore, the complexity of

the algorithm would increase (most of all, in the case

of a large number of insignificant contiguous symbols,

which usually occurs in moderate-to-high compres-

sion ratios). However, the compression performance is

increased if a specific symbol is used for every insignif-

icant coefficient since an arithmetic encoder processes

more efficiently many likely symbols than a lower amount

of less likely symbols. So, for short run-lengths, we

encode a LOWER symbol for each insignificant coefficient

instead of coding a run-length count symbol for all the

sequence. The threshold to enter the run-length mode

and start using run-length count symbols is defined by

the enter run mode parameter. The formal description of

the depicted algorithm can be found in Algorithm 1.

Algorithm 1. Run-length coding of the wavelet coefficients

1: function RLW Code Subband(Buffer, L)

2: Scan Buffer in horizontal raster order

3: for each Ci,j in Buffer

4: nbitsi,j =
⌈

log2
(
∣

∣Ci,j

∣

∣

)⌉

5: if nbitsi,j ≤ rplanes

6: increase run lengthL
7: else

8: if run lengthL ≤ enter run mode

9: repeat run lengthL times

10: arithmetic output LOWER

11: else

12: arithmetic output RUN

13: rbits =
⌈

log2
(

run lengthL
)⌉

14: arithmetic output rbits

15: output bitnbits(i,j)−1

(
∣

∣Ci,j

∣

∣

)

. . .bitrplane+1

(
∣

∣Ci,j

∣

∣

)

16: output sign(ci,j)

17: end of function

Note: bitn(C) is a function that returns the nth bit of C
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Table 2 Memory requirements for evaluated encoders (kB)

Format/ QCIF CIF ITU-D1 Full-HD

Codec

H.264 35,824 86,272 227,620 489,960

×264 10,752 18,076 36,600 178,940

MPEG-2 4,696 6,620 9,164 32,820

MPEG-4 5,160 6,868 9,324 31,192

3D-GOP-RL 1,611 6,390 20,576 123,072

3D-SPIHT 10,152 34,504 118,460 645,720

3 Performance evaluation
In this section, we will compare the performance of our

proposed encoder (3D-GOP-RL) using the Daubechies

9/7F filter for both spatial and temporal domains and

a GOP size of 16 with the video encoders presented in

Table 1.

The performance metrics employed in the tests are

R/D performance, coding and decoding delay, and mem-

ory requirements. All the evaluated encoders have been

tested on an Intel PentiumMDual Core 3.0 GHz processor

(Santa Clara, CA, USA) with a 2-Gbyte RAMmemory.

The test video sequences used in the evaluation are the

Foreman (QCIF and CIF) 300 frames, container (QCIF

Table 3 Average peak signal-to-noise ratio (PSNR) (dB) with different bit rate and coders

Codec/Bit-rate H.264 ×264 ×264 MPEG-2 MPEG-4 H.263 3D 3D

Kbps/dB Intra SPIHT GOP-RL

Foreman (CIF)

3,040 45.46 45.32 39.95 40.74 41.38 40.41 40.32 41.05

1,520 42.28 41.74 35.29 37.10 37.90 36.38 36.42 36.48

760 39.75 38.61 31.43 34.09 35.15 35.15 33.35 33.01

380 36.85 35.29 28.15 31.59 32.81 29.86 30.78 30.41

190 34.14 31.75 25.07 29.32 30.53 28.45 28.53 28.36

Container (CIF)

3,040 47.64 47.16 37.97 43.59 42.70 40.41 47.82 45.88

1,520 43.69 43.36 33.04 40.43 41.41 36.38 43.99 40.57

760 42.00 39.85 29.22 37.19 38.44 35.15 39.54 35.54

380 38.46 36.38 25.88 34.48 36.01 29.86 35.20 31.66

190 35.40 33.00 23.27 32.05 33.85 28.45 31.10 28.75

Hall (CIF)

3,040 45.76 44.38 41.19 42.29 42.77 42.56 44.68 44.49

1,520 42.68 41.17 36.60 39.89 40.71 40.24 42.27 41.03

760 40.05 39.09 31.89 37.95 38.92 37.58 40.11 37.51

380 38.55 37.12 27.32 35.95 37.21 32.62 37.39 33.57

190 35.84 34.38 23.88 33.59 35.43 30.04 33.56 30.22

Mobile (ITU-D1)

6,400 41.86 40.26 35.56 37.82 38.66 38.05 38.24 36.32

3,598 40.66 38.62 32.53 36.09 37.11 36.10 35.07 33.85

2,100 38.71 37.26 30.12 34.37 35.84 34.55 32.53 32.22

1,142 36.90 35.13 27.87 32.58 34.46 32.63 30.52 30.44

542 35.34 31.57 25.65 30.68 32.16 30.00 28.82 28.74

Ducks (Full-HD) 50 fps

98,304 37.77 36.82 36.26 38.49 35.67 35.49 37.77 38.08

49,152 34.74 34.02 32.62 35.27 32.46 32.20 35.39 34.74

24,576 33.00 32.01 29.16 32.28 30.55 29.04 33.68 32.69

12,288 31.24 29.86 26.43 29.32 27.64 27.39 31.63 30.69

6,144 29.00 27.71 24.19 27.82 27.11 27.10 28.99 29.09
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and CIF) 300 frames, news (QCIF and CIF) 300 frames,

hall (QCIF and CIF) 300 frames, mobile (ITU D1 576p30)

40 frames, station2 (HD 1024p25) 312 frames, Ducks

(HD 1024p50) 130 frames, and Ducks (SHD 2048p50) 130

frames.

It is important to remark that the H.263, MPEG-2,

MPEG-4, and ×264 are evaluated by implementations

that are fully optimized, using CPU capabilities like mul-

timedia extensions (MMX2, SSE2Fast, SSSE3, etc.) and

multithreading, whereas 3D-SPIHT and 3D-GOP-RL had

non-optimized C++ implementations.

3.1 Memory requirements

In Table 2, the memory requirements of different

encoders under test are shown. Obviously, the H.263

encoder, only using P frames, requires to keep in mem-

ory just two frames to accomplish the ME/MC stage,

whereas encoders based on 3D-DWT like 3D-SPIHT and

3D-GOP-RL need to keep more frames in memory to

apply the time filter. The 3D-GOP-RL encoder running

over a GOP size of 16 frames uses up to 6 times less

memory than 3D-SPIHT, up to 22 times less memory

than H.264 for QCIF sequence resolution, and up to 6

times less memory than ×264 which is an optimized

implementation of H.264, for small sequence resolu-

tions. It is important to remark that 3D-SPIHT keeps

the compressed bit-stream of a 16-GOP size in mem-

ory until the whole compression is performed, while

encoders like MPEG-2, MPEG-4, H.263, H.264, 3D-GOP-

RL, and ×264 output the bit-stream inline. Block-based

encoders like MPEG-2 and MPEG-4 require less mem-

ory than the other encoders, specially at high-definition

sequences. Also, the memory requirements in the pro-

posed encoder (3D-GOP-RL) are doubled as the GOP size

is doubled.

3.2 R/D performance

Regarding R/D, in Table 3, we can see the R/D behav-

ior of all evaluated encoders for different sequences. As

shown, both H.264 and ×264 are the ones that obtain the

best results for sequences with high movement, mainly

due to the exhaustive ME/MC stage included in these

encoders, which is contrary to 3D-SPIHT and 3D-GOP-

RL that do not include anyME/MC stage. The R/D behav-

ior of 3D-SPIHT and 3D-GOP-RL is similar for images

with moderate-high motion activity, but for sequences

with low movement, 3D-SPIHT outperform 3D-GOP-RL,

showing the power of its tree encoding system. The pro-

posed encoder (3D-GOP-RL) has a similar behavior to

H.263 and MPEG-2 and a slightly lower performance

than MPEG-4. Also, we can see the improvement of

3D-GOP-RL and 3D-SPIHT when compared to ×264

in intra mode (up to 11 dB). This R/D improvement is

accomplished by exploiting only the temporal redundancy

among video frames when applying the 3D-DWT. It is

also interesting that the behavior of the 3D-DWT-based

encoder for high frame rate video sequences like Ducks.

As it can be seen, all 3D-DWT-based encoders have a

similar behavior than the other encoders, even better

than ×264.

3.3 Encoding time

In Figure 2, we present the coding speed (excluding I/O)

of all evaluated encoders and for different sequence reso-

lutions. As it can be seen, MPEG-2 andMPEG-4 encoders

are the fastest ones due to their block-based processing

algorithm. Regarding 3D-DWT-based encoders, the pro-

posed encoder 3D-GOP-RL is up to seven times as fast as

3D-SPIHT and up to six times as fast as the×264 encoder.

Also, in Figure 3a, we present the total coding time

of a frame for different video sequence resolutions as a

Figure 2 Coding speed in frames per second for all evaluated encoders.
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Figure 3 Total coding and wavelet transform times of the 3D-GOP-RL encoder for different video sequence resolutions. (a) Total coding

time and (b) wavelet time.

function of the GOP size. As it can be seen, for low res-

olution sequences, there are nearly no differences in the

total coding time, but for high-resolution video sequences,

the total coding time will increase up to 40% as the GOP

size increases. Furthermore, it is interesting to see that

the required time to perform the 3D-DWT stage ranges

between 45% and 80% of the total coding time depending

on the GOP size, as seen in Figure 3b. So, improvements

in the 3D-DWT computation will drastically reduce the

total coding time of the proposed encoder.

4 3D-DWT optimizations
As 3D-DWT computation requires more than 45% and up

to 80% of the total coding time in the proposed encoder.

In this section, we present several parallel strategies to

improve the 3D-DWT computation time.

4.1 Multicore 3D wavelet transform

In the proposed encoder (3D-GOP-RL), the Daubechies

9/7 filter, proposed in [20], has been used to perform

the regular filter-bank convolution in order to develop

the parallel 3D-DWT algorithm. In [21], we proposed

the convolution-based parallel 2D-DWT using an extra

memory space in order to perform a nearly in-place com-

putation, avoiding the requirement of twice the image size

to store the computed coefficients. This strategy has been

also followed to develop the parallel 3D-DWT algorithm.

We want to remark that we use four decomposition

levels in order to compute the 3D-DWT, and the compu-

tation of each wavelet decomposition level is divided into

two main steps: in the first step, the 2D-DWT is applied

to each frame of the current GOP, and in the second step,

the 1D-DWT is performed to consider the temporal axis.
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Table 4 Amount of extra memory size

Frame size Processes Extra memory size Increment (%)

Pixel size GOP: 32

1 360 0.0110

2 720 0.0221

352 × 288 4 1,440 0.0443

6 2,160 0.0665

10 3,600 0.1109

1 1,288 0.0024

2 2,576 0.0049

1,280 × 640 4 5,152 0.0099

6 7,728 0.0148

10 12,880 0.0247

1 1,928 0.0016

2 3,856 0.0032

1,920 × 1,024 4 7712 0.0065

6 11,568 0.0098

10 19,280 0.0164

We have used the symmetric extension technique in order

to avoid the border effects on both the frame borders and

the GOP borders.

If we consider the first step (i.e., the 2D-DWT applied

to each video frame), the extra memory size depends on

both the row size or column size (the larger one), and

the number of processes in the parallel algorithm. The

extra memory stores, the frame row/column pixels, plus

the pixels are required to perform the symmetric exten-

sion. For the Daubechies 9/7 filter, we must extend the

row/column with four elements on both borders.

Table 4 shows the extra memory size (in pixels) and the

percentage of memory increase for several video frame

resolutions and number of processes used in the parallel

algorithm. Note that each process stores its own working

pixels which are not shared with other processes. The

worst case in Table 4, attending to memory increase, is a

very small value equal to 0.1109%. If the GOP size is larger

than the row or column size, the amount of required extra

memory is fixed by the GOP length. Percentage values in

Table 4 have been obtained considering a GOP size equal

to 32. In the second step of the 3D-DWT (i.e., the tem-

poral 1D-DWT), we perform the symmetric extension in

order to avoid the border effects in the temporal domain.

In all performed experiments, the maximum GOP size

considered is 128; therefore, the extra memory used in the

first step is enough to be reused in the second step.

We have used the OpenMP [22] paradigm in order to

develop the parallel 3D-DWT algorithm. The multicore

platforms used in our tests are as follows:

• Intel Core 2 Quad Q6600 2.4 GHz, with four cores.
• HP Proliant SL390 G7 (HP, Palo Alto, CA, USA )

with two Intel Xeon ×5,660, each CPU with six cores

at 2.8 GHz.

4.2 Performance evaluation of the multicore 3D-DWT

In this section, we discuss the behavior of the parallel algo-

rithm described in the previous section. Figure 4 presents

the 3D-DWT computational times for a video frame res-

olution of 1, 280 × 640 varying the GOP size and the

number of processes. In the 3D-DWT, there is an inten-

sive use of memory; therefore, the improvement in the use

of the cache memory and data locality justifies efficien-

cies greater than 1. Values shown in Figure 4 correspond

to the executions on the multicore Q6600 platform. How-

ever, efficiencies greater than 1 are not observed for the

multicore HP Proliant SL390 due to the higher mem-

ory access performance respect to the multicore Q6600.

The HP Proliant SL390 architecture provides a high-

bandwidth memory access, through the Intel QPI Speed

64GT/s; therefore, the global performance improvement

Figure 4 3D wavelet algorithm. Compiler: GCC. Compiler flags: -O3 -fopenmp. Frame size: 1, 280 × 640. Multicore Q6600.
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is less significant than in the Q6600 platform. In Figure 5,

we also present the computational times for the multicore

HP Proliant SL390. The efficiencies obtained on both plat-

forms are similar. However, comparing data obtained from

video frames of different resolutions, we can conclude

that the behavior on the multicore Q6600 becomes worse

than on the multicore HP Proliant SL390, as the GOP size

increases, i.e., when the global memory size increases.

The GOP size is an important parameter in the 3D-

DWT computation, when applied to video coding because

the average video quality increases as we increase the GOP

size due to the minor GOP boundary effect. However, the

computational load and memory requirements increase.

Ideally, the GOP size would be equal to the total num-

ber of video frames. Since this is not possible due to the

device memory restrictions, we must select the GOP size

attending to both the video quality and the computational

time. As we can see in Figures 4 and 5, the computational

time increases as the GOP size increases. The minimum

GOP size in our algorithm is 16 due to the four wavelet

decomposition levels performed in the 3D-DWT (24).

In Figure 6, we present the computational time per

frame.

We can observe that the parallel algorithm improves its

behavior when both the number of processes and the GOP

size increase. We want to remark that upon setting the

GOP size equal to 256, for medium- and high-resolution

video frames, the results obtained are not good due to the

global memory size requirement. The optimal GOP size

values are 64 and 128. Setting the GOP size to 128 reduces

the border effects while setting the GOP size to 64 reduces

the memory requirements. Both GOP size values obtain

the best results in terms of computation time per frame,

as seen in Figure 6.

4.3 Overlapping the 3D-DWT stage and the coding stage

In section 4, we have analyzed the behavior of the par-

allel 3D-DWT for multicores, and we have presented a

parallel algorithm that obtains good efficiencies using up

to the maximum number of available cores (12 cores in

the HP Proliant SL390). Furthermore, we have reduced

the computational time of the 3D-DWT stage, but the

time of the coding stage has not been considered at this

time. So, in order to improve the global coding time, we

consider implementing a two-phase pipeline strategy con-

sidering both the 3D-DWT and the coding stage. Note

that there are no dependencies between these two stages

if the working frame of the GOP is not the same.

As we have said, in the pipeline strategy proposed, we

overlap the 3D-DWT computation and the coding stage,

where both stages process different GOPs. In Figure 7, we

show that the pipeline strategy developed. At each step, we

simultaneously compute the 3D-DWT of one GOP and

encode the GOP transformed in the previous step. At the

initial step, we only perform the 3D-DWT transform of

the first GOP, and the last GOP is encoded at the final step

without overlapping the task.

Firstly, in order to implement this pipeline procedure,

we consider a multicore algorithm with two processes: the

first one computes the 3D-DWT, and the second one com-

putes the coding stage. There exists an inherent penalty

in this type of algorithms at both the initial step and

the final step. This penalty causes that the computational

time reduction will be slightly lower than the optimal

value equal to 50%. Considering the optimal GOP size

values (64 or 128 frames), the ideal computational time

reductions are 46.9% and 48.5%, respectively. We want

to remark that our algorithm achieves these ideal values,

obtaining, therefore, efficiencies equal to 0.94 and 0.97,

respectively.

The previous conclusions are drawn considering that

the computational time for both phases, the 3D-DWT

stage and the coding stage, is similar. In Figure 8, we

analyze the behavior of the computational time for both

stages for the container (CIF) video sequence. As we

can observe, the assumption that computational times for

both stages are similar is only valid for very low com-

pression rates. We can extend the behavior showed in

Figure 5 3D wavelet algorithm. Compiler: ICC. Compiler flags: -fast -fopenmp. Frame size: 1, 920 × 1, 024. Multicore HP Proliant SL390.
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Figure 6 Computational time per frame. Compiler ICC, Compiler flags -fast -openmp, Multicore HP Proliant SL390. (a) Frame size 1,280 × 640. (b)

Frame size 1,920 × 1,024.

Figure 8 to the rest of the video sequences. Therefore, it

is necessary to apply the parallel optimizations presented

in section 4 in order to achieve ideal efficiencies. We want

to remark that the improvements are focused on the 3D-

DWT computation. To obtain the ideal efficiencies (using

more than two processes), we must achieve both goals,

reduce at maximum the 3D-DWT computational time in

the first step (at this step there is no overlapping), and

reduce the 3D-DWT computational time in the following

steps in order to obtain a time lower or equal to the coding

time (the other overlapped task).

Therefore, there are four different conditions in the par-

allel computation of the first GOP of a video sequence. In

the initial step, we only compute the 3D-DWT transform

of the first frame of the GOP. In the following steps, in

which there are overlapped tasks, we must adapt the 3D-

DWT computation in order to obtain the optimal number

of processes used in the 3D-DWT computation. In the

third stage, we compute the 3D-DWT using the optimal

number of processes obtained and the coding stage using

one process. As we have said, the fourth step is the com-

putation of the coding stage of the last GOP. Both the

Figure 7Multicore pipeline strategy.
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Figure 8 Computational time for the 3D-DWT and coding stages.

fork-join model of parallelism and the nested parallelism,

offered by OpenMP, are used to implement these four

discussed stages.

The fork-join parallelism refers to a method of spec-

ifying the parallel execution of a program whereby the

program flow diverges into two or more flows that can

be executed concurrently, and then, all flows come back

together into a single flow when all of the parallel work

is completed. In the nested parallelism, each flow can

diverge into a new flow with two or more processes. In

Figure 9, we show the structure of the parallel model

developed using the fork-join model and the nested par-

allelism. In the first step, we use the maximum number

of processes in order to accelerate at maximum the ini-

tial 3D-DWT computation. In the following steps (see

Figure 7), the flow diverges into two processes where the

first one computes the 3D-DWT of the following GOP

and the second one computes the coding stage of the pre-

vious GOP. The flow that computes the 3D-DWT must

adapt the number of processes in order to obtain a 3D-

DWT computational time lower than the computational

time of the coding stage. We set the number of processes

to compute the 3D-DWT of the second GOP equal to

half the maximum number of processes. In the following

steps, the algorithm varies in the number of processes,

depending on the measured time for both 3D-DWT and

coding tasks, until the optimal value is found. Once we

have obtained the optimal value of processes to compute

the 3D-DWT, this value remains unchanged for the rest

of the GOPs. The maximum number of processes used

to compute the 3D-DWT is equal to the number of cores

available minus one since this core (or process) is used to

compute the coding stage. As we can see in Figure 8, the

coding stage time is between two and four times lower,

depending on the bit rate. Therefore, the optimal number

of processes to compute the 3D-DWT depends on the bit

rate, varying between 2 and 6.

Using the proposed strategy, we increase the efficiency

of the pipeline structure up to 0.97 and up to 0.98 for GOP

sizes 64 and 128, respectively. Moreover, the optimal value

of processes is lower than the number of available pro-

cesses, specially for the HP Proliant SL390 platform. The

developed pipeline structure allows us to have idle cores,

depending on the compression rate, and therefore, we can

analyze the parallelization of the coding stage to improve

the results in the future work.

Also, it is important to remark that upon joining the pre-

sented parallel strategies and the overlapping technique,

we nearly reached the ideal speedups, where the bound of

the speedup is determined by the computational time of

the coding stage. Typical values of the speedup achievable

are between 3 and 5.

5 Global performance evaluation
After analyzing both the performance of the multicore

approach for the 3D-DWT computation and the afore-

mentioned pipeline structure, we will present a com-

parison of the proposed encoder against the other test

encoders in terms of coding delay.

In Figure 10, we present the coding speed (excluding

I/O) in frames per second of all evaluated encoders and

for different sequence resolutions. Now, our proposal uses

the previously presented multicore optimization to per-

form the 3D-DWT in section 4. As it can be seen,MPEG-2

and MPEG-4 encoders still are the fastest ones. However,

now, the 3D-GOP-RL encoder is up to four times as fast as

.
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Figure 9 Fork-join with nested parallelism strategy.
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Figure 10 Coding speed in frames per second after multicore optimization of proposed encoder.

the non-multicore version of the proposed encoder, being

able to compress a full-HD sequence in real-time.

Although, the multicore version of the 3D-GOP-RL

encoder has been speeded up to four times, now, the bot-

tleneck in the encoder is the coding stage after computing

the 3D-DWT transform, specially at low compression

rates, where there are lots of significant coefficients to

encode. Considering the overlapping strategy presented

in section 4.3, the 3D-DWT computation is hidden and

the total coding time will be due only to the coding stage,

except for the first GOP. Of course, that extra memory for

the second GOP is required in this approach. As it can

be seen in Figure 11, using this technique, the proposed

encoder is the fastest one for full-HD video resolutions.

Remark, that the optimizations performed are due only

to multicore strategies while other encoders like ×264,

H.263, MPEG-2, and MPEG-4 are fully optimized imple-

mentations, using CPU capabilities like multimedia exten-

sions (MMX2, SSE2Fast, SSSE3, etc.) and multithreading.

6 Conclusions
In this paper, we have presented the 3D-GOP-RL, a fast

video encoder based on 3D wavelet transform and effi-

cient run-length coding.We have compared our algorithm

against 3D-SPIHT, H.264, ×264, H.263, MPEG-2, and

MPEG-4 encoders in terms of R/D, coding delay, and

memory requirements.

Regarding R/D, our proposal has a similar behavior to

MPEG-2 and H.263 and a slightly lower performance than

MPEG-4. When compared with 3D-SPIHT, our proposal

has a similar behavior for sequences with medium and

high movements but lower performance for sequences

Figure 11 Coding speed in frames per second for all evaluated encoders after multithreading approach.
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with low movement, like that of the container. However,

our proposal requires six times less memory than the

3D-SPIHT. Both 3D-DWT-based encoders (3D-SPIHT

and 3D-GOP-RL) outperform ×264 in intra mode (up to

11 dB), exploiting only the temporal redundancy among

video frames when applying the 3D-DWT. It is also impor-

tant to see the behavior of 3D-DWT-based encoders when

applied to high frame rate video sequences, which is

obtaining even better PSNR than ×264 in inter mode.

In order to speed up our encoder, we have presented an

exhaustive analysis of the parallel strategies to compute

the 3D-DWT transform. As we have seen, the paral-

lel algorithm obtains good efficiencies, with the proper

parameter setting, using the available cores, up to 12 in

the multicore HP Proliant SL390 and up to 4 in the mul-

ticore Q6600. Even more, we have applied multithreading

strategies to hide the 3D-DWT computational time. Using

these strategies, the proposed encoder (3D-GOP-RL) is

the fastest encoder for full-HD video resolutions, being

able to compress a full-HD video sequence in real-time.

The fast coding/decoding process and the fact of avoid-

ing the use of motion estimation/motion compensation

algorithms make the 3D-GOP-RL encoder a good can-

didate for applications where the coding/decoding delay

is critical for proper operation or for applications where

a frame must be reconstructed as soon as possible. 3D-

DWT-based encoders could be an intermediate solution

between pure intra encoders and complex inter encoders.

In the future work, we intend to apply parallel strategies

to speed up the encoder even more, but this time, we are

focusing on the coding stage.
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