
Multicore Clusters for CFD Simulations
Comparative Study of Three CFD-Softwares

A. de Blanche, N. Namaki, S. Mankefors-Christiernin

Division of Automation and Computer Engineering
University West, Trollhättan, Sweden

Abstract

Multicore processors have come to stay, fulfill Moore’s law and

might very well revolutionize the computer industry. However, we

are now in a transitional period before the new programming

models, numerical algorithms and general computer architecture

have been developed and the software has been rewritten. This

paper focuses on the effects multicore based systems have on

industrial computational fluid dynamics (CFD) simulations. The

most significant finding was that five of the models ran faster when

only one process was executed on each multicore node instead of

two. In these cases the execution time was increased by between

6.5% and 64% with a median increase of 10% when utilizing both

cores.

Keywords: multicore, cluster, non-uniform inter-process

communication

1 Introduction

Getting the most out of any computer system, and especially a

new architecture, has always been a challenging task. When new

hardware technologies are introduced and put to use it is not

obvious that the application performance will increase – even if

the technology is immensely superior. The existing applications

have been optimized to run on the current systems and they might

not at all be suitable for the next-generation high-performance

computers. The latest major addition is the introduction of

multicore systems.

As suggested by James Peery et. al. [1], at Sandia national

laboratory, the execution time might increase if more cores are

utilized. Using Sandia key algorithms they showed that when

using sixteen cores the performance was barely on par with two

cores. According to Arun Rodrigues this is an issue to which the

industry has no known solution and that often is ignored [1]. The

addition of a second core could theoretically double the computing

capacity of a computer node [2], however in many cases the

bottleneck moved to another component. As pointed out by [3] [4]

[5] the most notable is the processor versus memory size and bus

ratio, both when it comes to latency as well as bandwidth.

Traditionally high performance computer designs have tried to

balance three factors [6]: Compute power, memory and I/O-

capacity. According to Vaughan et. al. [7] the new generation of

COTS distributed parallel computers (clusters) [8] [9] has added

inter-node communication capacity as a crucial factor. For

Multicore processors Vaughan’s addition should be split into two,

namely intra-node and inter-node communication capacity due to

the non-uniform inter-process communication architecture.

In this paper we present a, first study on the effects multicore

based systems have on industrial computational fluid dynamics

(CFD) simulations. Do multicore processors facilitate a decrease in

execution time within the CFD area or will the already long

execution times increase? During our investigation we found that

for five of our nine models there were configurations in which the

execution times increased by 6.5% to 63% when utilizing two

cores in each processor instead of one. Six configurations paged to

the hard drive due to lack of memory and were excluded.

2 Multicore Architecture and Issues

Typical modern computer architecture is based on a

microprocessor, system memory, busses and various other

components. Very much like the schematic overview in figure 1.

All information that goes from the main memory to the processor

has to pass through the system bus (Front Side Bus/FSB), the

memory controller and the memory bus.

Figure 1: Architectural overview of a modern computer

In this section we go through the four mos t important systems

in a computer; processor, memory, I/O-capacity and inter-process

capacity. The three first are proposed by [6] with the addition of

inter-node communication suggested by [7], although we find

inter-process capacity to be a better description. Over the last 30

years the execution speed of a microprocessor has increased from

5 MHz to approximately 4 GHz. During this time many new

techniques that improves the processors were introduced, such as

pipelining and speculative execution as well as advanced

instruction level parallelism. The old recipe of creating a faster

processor by raising the clock frequency relied on the possibility to

Processor

Core Core

Memory
Controller

Hub

Main Memory Graphics

MISC

Networking

Expansion slots

I/O Controller

Hard drive

Sound

Front Side Bus

manufacture smaller components inside the processors. Advances

in this field are no longer possible due to the laws of physics.

The solution to higher speeds taken by almost all manufacturers

is multiple processor cores on the same chip.

2.1.Memory Challenge

So far the memory architecture shown in figure 1 has not

changed notably between the single and multicore processors. One

of the major challenges of the multicore systems will be to design

a system that can keep up with the tremendous computing power

in a single multicore chip. This puts enormous pressure on, among

other things, the FSB and the memory subsystem. At the moment

the memory subsystem, on its own, is not fast enough to keep up

with a single core processor; as a result it utilizes a two to four

level memory hierarchy of increasingly faster memories closer to

the processor. When extra cores are added some memory problems

might be fixed by adding additional memory levels [3].

By comparing the historical capacity of processors using the

SPEC-benchmark [10] with the FSB and memory bus [10] [11] we

find that the difference has increased quite drastically over the

years. Consider an application that was written for a system in

1993 and perfectly optimized for that “balance”, would on a

modern computer wait for memory approximately 50% of the

time. It is a crude comparison and it is based on using one core in

the modern multi core chip.

The problem of sustaining a high memory throughput to several

processors is not a new problem for multiprocessor systems [12].

However, there is a difference between using multiple processors

and multiple cores.

2.2.Inter Process Communication Challenge

All but the simplest parallel and distributed applications

implement some level of inter-process communication. One

problem that arises with the introduction of multicore clusters is

that they have a non-uniform inter-process communication

architecture. There are at least two different levels of

communication costs involved when passing messages in a

multicore cluster, either over the loopback interface or over the

network.

Consider an application with four processes that implements

message passing. If designed in 2003 it would be written to work

well on Pentium 4 processors and gigabit Ethernet.

When executing a 16 process job on 4 computers each equipped

with 2 dual core processors. The inter-process communication will

be even more non-uniform with the additional two different levels

of intra-node communications. Especially when compared to the

16 single core computers that the application was designed to be

executed over. In that case the link capacity would still be 1/16
th

 of

gigabit Ethernet, since it scales linearly.

2.3. I/O Utilization

The fourth important subsystem in regards to system balance is

the I/O-subsystem. However the CFD applications that we focus in

this investigation are very light on the I/O side. They only read the

input files in the beginning of the execution and write the output at

the end. Therefore we do not have any focus on the I/O utilization.

3 Computing Platform and Benchmark

Applications

The aim of this experiment is to investigate the effect multicore

processors have on applications in the Computational Fluid

Dynamics (CFD) domain. Or more precisely, to determine if the

efficiency of a simulation increases when two simulation processes

are executed on each dual core node compared to one process per

node.

3.1. High Performance Computing Platform

The Intel Core 2 is a common processor in many high

performance environments. The cluster used in this investigation

consists of 180 identical computers based on the Core 2 E6550

processor. The E6550 is manufactured using 65nm technology and

has 291 million transistors .

The Intel Core 2 processor has two processor cores, each core

has 2*32KB of private L1 cache (data and instructions), at the next

level the cores share a 4MB L2 cache. Having a shared L2 cache

has its benefits as well as drawbacks. While it allow cache sharing

between cores and allowing the entire cache to be used by one of

the cores as well as decreasing the cache impact of moving

processes between cores it make the cores compete for the cache

resources the hit latency is longer than for separate caches [12].

The memory controller and front side bus (FSB) of the Core 2

system are located off-chip, i.e. the architecture mimics that in

figure 1. The transfer rate of the FSB has a maximum capacity of

10.6 gigabyte/s while the memory sustains 5.33 gigabyte/s per

channel. The upper limit for fetching data from memory is limited

to 10.6 gigabyte/s. However, for this to be achieved there has to be

no other transfers affecting the busses. If the data is saved on the

circuits in the same memory bank, the maximum theoretical

transfer speed is 5.33 gigabyte/s.

The STREAM benchmark [13] [14] was used to measure the

sustainable bandwidth of the memory system for reference

purposes. During several executions with different sized matrixes

of a size between 48 and 1800 megabyte, the sustained bandwidth

never exceeded 4080 megabyte/s. When the matrix size was

increased to span both memory channels the total sustained

bandwidth was even decreased to 3900 megabyte/s.

The cluster is connected by a hierarchy of gigabit switches.

During the experiments the computers were connected by a single

gigabit Ethernet switch. A more detailed description of the

hardware can be found in table 1.

Table 1: Cluster computer and network equipment

specifications.

Processor Intel Core 2, E6550

Clock Frequency 2.33GHz

of cores 2

Hyper threading No

Technology 65nm

Transistors 291 Millions

L1 Cache

32 KB code and 32KB data

L2 Cache 4MB cache shared between cores, non-

 inclusive with L1 cache

Front side bus Q35

Frequency 1333MT/s

Bandwidth 10.6 gigabyte/s

Memory DDR2

Size 2GB

Specification PC2-5300

of channels 2, dual channel

Frequency 667Mhz

Bandwidth 2 * 5.33 gigabyte/s

Measured

Bandwidth

4.08 gigabyte/s (STREAM [13])

3.2.Applications and Models Used

Three applications were used in this investigation. Two

commercial CFD applications; CFX [15] and Fluent [16] and the

open source package Openfoam [17]. Nine CFD models, three per

application, were used in the experiments. Since the behavior of

these applications are dependent of the type of flow simulated so

are the solution times. Three representative “real world” models

were selected from two multinational high-tech companies for

each of the two commercial applications. The CFX models ith

Openfoam one real world and two research models from scientists

were used together with Openfoam. Table 2 gives an overview of

the models which have bearing on the aerospace domain.

Table 2: Sizes and names of the nine models used in the

evaluation. The Number of elements gives a first order

approximation of the size of the model.

Name CFX Fluent Openfoam

M1 817 460 817 460 702 000

M2 1 811 036 743 223 1 980 900

M3 2 935 295 5 529 223 5 379 520

The sizes of the models as well as the run-time differ between

models. As an example the Fluent M1 require approximately 4

hours to execute all the way through over eight nodes while Fluent

model 2 require somewhere around 12 hours to complete and the

M3 models need several days.

Those knowledgeable in the area of computational fluid

dynamics know that there are two basic ways to determine when a

simulation should end, either by specifying the number of

calculations (iterations) to run or by specifying some convergence

criteria (transient) [18].

When dealing with real world industrial applications and

models one problem is that they are not well defined small units

that execute in a minute. Real world CFD calculations are huge

problems that often require tens of gigabytes of memory and take

weeks to execute on a single computer. If all models in this

investigation were to be executed all the way though it would

require several years of runtime. In [19], Yang, et. al. however

showed that a partly executed simulation fairly well matches a full

execution of the code. Their empirical performance prediction

results are constrained to cases where the problem and input sizes

do not vary.

To be able to perform this investigation we decided to limit the

execution time of the experiments. It was decided that we would

use the iteration method (mentioned above) to limit the execution

time. Each model was executed, in parallel, over eight computer

nodes, with one process per node. After 1000 seconds of

execution, the executing iteration was extracted from the

application log file. This iteration was then used as the stop criteria

for all experiments with that particular model, ensuring the exact

same number of iterations and execution behavior in all

comparable runs for that model-application combination. In this

way only the changes in the number of processes and hardware

could be responsible for the changes in run-time.

4 Experiment Setup

To determine the usefulness of multicore processors within the

engineering simulation domain, the nine (9) fluid simulations in

table 2 and their corresponding applications were executed in two

different setups, Single and Dual.

Although utilizing the same hardware the difference between

the two setups was that in the single setup each process is executed

on one dual core node, as if it were a single core system, although

the second core will execute various other system tasks. The dual

setup on the other hand refers to when two processes are placed on

each dual core computer node.

This means that when executing a eight processes job the Single

setup will use eight dual core nodes and place one process on each

node, effectively only utilizing one of the cores for simulation

purposes. The dual setup, however, would employ four computers

and utilize both cores in all machines: using a total of eight cores.

The models (table 2) were pre-partitioned into [2 4 6 8 16 32]

partitions to be run in parallel by the same number of processes.

This partitioning was done using the applications ’ default

mechanisms.

For the simulations where the amount of memory needed for the

execution was greater than the available system memory (figure 3

and table 6), thus forcing the systems to page to disk, was removed

from the study. The reason behind this was that their execution

times increase by several orders of magnitude. This threshold was

reached earlier with the Dual setup since the node memory is

shared between two processes. When adding more computer nodes

and processes the amount of global memory effectively increases

which in turn allow the applications to run entirely in memory.

During the execution of the applications the run time was

measured and the processor, memory and network loads were

monitored. To calculate the runtime a timestamp were made before

and after the execution of the pre-partitioned simulations. The

timestamps were taken with the gettimeofday() system call which

has a relatively high resolution (ms). Although compared with a

runtime between 253 and 6388 seconds the error is negligible.

The processor, memory and network loads were calculated as

averages over 180 second intervals. These measurements were all

made through the /proc kernel interface. One measurement set

consumed ~8 ms of processor time, according to measurements

done by strace [20].

5 Results

In order to investigate the effect multicore processors have on

our three applications and the nine models that were executed in a

Single and Dual core setups, see section 4. Figure 3 a-i) contain

graphs depicting the results from the experiments. The black lines

show the execution time of the Single setup, i.e. where one process

is placed on each node, and the dashed line represents the Dual

setup where two processes are placed on each dual core node.

At a first glance the results look as one would expect them too ,

the Single setup for the same number of processes out performs the

Dual setup, see figure 4. This was expected since the Single setup

use two times the number of computers and effectively has twice

the amount of memory, twice the level 2 cache (not applicable to

all multicore processors) and an extra core to use for running

operating system and other tasks, etc.

Figure 4: The number of percent by which the Single setup

outperforms the Dual setup for the same number of processes.

This was the case for all models, apart from Fluent model 2,

when divided into 32 processes as can be seen in figure 3 b). The

dual setup outperformed the single with 22 seconds out of 341, so

by ~6.5%. Fluent model 1 is not much larger and shows the same

behavior, although the s ingle setup still outperforms the dual with

3.5%, at 32 processes.

In table 4 the speedups (scalability) of the different applications

and models are listed. To compare both single and dual setups with

each other the speedup of the dual setup uses the same baseline as

the single. Thus all values for each model are normalized after the

single setup with the least amount of processes.

The speedup obtained when adding processes to the

computation does not follow the theoretically best possible of Ts/P

(time to execute simulation/number of processes) but for software

in the CFD area scalability in this range is considered

comparatively well [18] [21].

In table 3 we can see that when going from two Single to two

Dual processes, i.e. from two cores on different computers to two

on the same, Openfoam does not perform as good as the other two

applications. Openfoam M2 models also shows a strange plateau,

at 4 to 6 nodes as well as 8 to 16, where there is little to none

scalability. Although for eight nodes it shows a decent scalability.

Fluent M3 shows a similar, but not at all as bad, pattern between

eight and sixteen nodes.

Quoting the execution times and speedups based on the amount

of processes the problem is divided into is a straightforward

approach. However, when dealing with computer clusters and

multicore processors the speedups and execution times depending

on the amount of computers is of interest.

Table 3: The execution time (T) of the different setups

normalized to the equivalent lowest number single setup

execution, TN. The norm was given the value 100.

Model

Setup

Processes

2 4 6 8 16 32

Fluent M1

Single 100 53 39 32 17 13

Dual 110 58 42 34 19 13

Fluent M2

Single 100 57 48 34 22 18

Dual 116 62 50 35 24 17

Fluent M3

Single - 100 72 63 57 24

Dual - - 86 73 68 28

CFX M1

Single 100 54 39 34 22 17

Dual 130 69 49 41 32 24

CFX M2

Single 100 56 40 34 21 15

Dual - 85 57 44 27 24

CFX M3

Single 100 55 41 35 23 18

Dual - 80 60 44 29 24

OFoam M1

Single 100 47 31 24 - -

Dual 150 72 46 34 18 -

OFoam M2

Single 100 52 53 26 - -

Dual 163 85 88 44 43 -

OFoam M3

Single - 100 93 59 - -

Dual - 269 147 59 41 -

5.1.Dual core Processor Efficiency

Turning to the less obvious result, for some models/setups the

problem is actually solved faster when only one process instead of

two is executed on each dual core computer node. This occurred at

the higher number of computers and the speedup was between

6.5% and 64%, see table 4 for details. For the lower number of

computer nodes the Dual setup always outperform the Single –

given that there is enough resources to execute at all. E.g. the

Fluent M2 model required more than 4 gigabyte of ram and would

there for not execute on 2 machines or less. Then as more nodes

are added the time gap between the Single and Dual setups close

and for 5 of the 9 models the curves actually switch place, leaving

the Single setup to outperform the Dual for the higher number of

nodes.

Figure 5: The number of percent by which the dual setup

outperformed the single setup for the same number of

computers [2,4,8,16].

-10 0 10 20 30 40

2

4

6

8

16

32

P
ro

ce
ss

e
s

Fluent M1

Fluent M2

Fluent M3

CFX M1

CFX M2

CFX M3

OpenFoam M1

OpenFoam M2

OpenFoam M3

-100,00 -50,00 0,00 50,00 100,00

Fluent 1

Fluent 2

Fluent 3

CFX 1

CFX 2

CFX 3

OpenFoam 1

OpenFoam 2

OpenFoam 3

2

4

8

16

A

d

B

e

C

f

G

h

I

 Figure 3: Run times of the 9 models when executed in

[2 4 6 8 16 32] parallel processes. The black line

(single) show the run time when one process is

executed on each dual core computer. The dashed

line (dual) show the runtime when two processes are

executed on each dual core computer, i.e. one process

per processor core.

The Single node executions that outperformed their Dual

counterparts are listed in table 4 together with the speedup

gained. Using Fluent model 3 as an example, the application

actually solves the problem faster if you divide it into 8 parts and

run it on 8 dual core processors compared to dividing it into 16

parts and running one process on each core on 8 dual core nodes.

Hence, if there are 8 dual core nodes it will take 8% longer time

to execute the problem if you utilize both cores instead of just

one. The same applies to all CFX models when executed on 16

computers as well as for Openfoam model M2 when executed on

8 computer nodes. For the Openfoam model M2 the speedup

gained, when executing one process per computer instead of two

was as high as 63%.

Table 4: The following models execute faster when executed

with one process on each dual core computer than when

executed with two processes on each computer.

Model # of computers Speedup for single

Fluent M3 8 8%

CFX M1 16 10%

CFX M2 16 11%

CFX M3 16 6,5%

OF M2 8 64%

Based on the results presented one can draw the conclusion

that the generally most time efficient solution is to execute the

CFD simulations according to the Single scheme. E.g. executing

only one process on each computer; leaving the second core

virtually unused. For the lower amount of processes the Single

setup require two times the computers that the Dual setup. This

effectively doubles the hardware investments, but using two

times the processes also doubles the software license costs. This

issue was investigated in [22] [23] where the conclusion was that

the cost of adding hardware is preferred to the cost of the added

software licenses.

For Fluent and CFX the advantage seems to decrease as the

number of processes increase but then raise again at 16+

processes, this statement is true for all but Fluent M2. As

Openfoam goes the difference is even larger, here the Single

setup outperformed the Dual for all number of processes with

between 29% and 40% (on average 32%), although this does not

include the Openfoam M3 Single 2 and Dual 4 simulations since

they did not fit completely into memory.

6 Analysis and Discussion

The most notable results from the investigation are those

presented in figure 5 and table 4 – In these cases the application

and model combinations execute faster with one core inactive on

each compute node, i.e. when one process (P) is executed on

each one of the dual core computer nodes (N) compared to when

two processes are executed on the same number of nodes.

The main issue is to determine if this behavior is dominated

by hardware bottlenecks or the software scalability. If an

underlying mathematical or programming intricacy causes

behavior, the application should behave the same as long as the

number of processes are constant. If all resource demands are

satisfied the Dual(P) and Single(P) runs would execute in the

same amount of time. Since this is not the case to try to identify

the resource(s) that Dual(P) uses more of than Single (P). We

now continue with a more detailed analysis looking the three

candidate resources suggested in section 2 above.

6.1. Network Usage

The investigated applications at hand communicate on a

process to process basis. All processes can communicate with all

other processes as well as carry out collective MPI operations,

such as broadcasts and scatter-collect operations. A process in a

Single setup that sends a message to another process will always

send it thru the switch (1). Where Switch represents the amount

of traffic traversing the switch, N is the number of nodes, P is

the number of processes and M is the average number of

Megabytes transmitted by each process to each other process.

SwitchSingle = (N
2
-P)

* M

 (eq. 1)

A process in a Dual setup, however, will carry out a portion

of its communication over the loopback interface but the larger

part still goes through the switch.

SwitchDual = (N
2
-2P) * M

 (eq. 2)

When comparing Eq. 1 and 2 it is obvious that the switch is

subject to a higher utilization in the Single setup then in the

Dual. However, in the Dual setup both processes on a computer

node share the same network connection as well as the internal

busses. The average load on each computer node is calculated as

(switch/N)*(P/N). Nevertheless, consumed bandwidth is quite

low. The Fluent M2 in 16 process Single configuration had the

highest measured computer node communication 7.77

megabyte/s. It is one out of ten configurations that had a node

communication of more than 5 megabyte/s i.e. 40 megabit/s. All

CFX and Openfoam models had a per node communication less

than 2.5 Megabyte/s.

Based on these numbers it is highly unlikely that the single

process per machine performs faster than two processes per

machine depends on the network resources. The increase in

network utilization might impact the execution time in a

negative way but not at all on the scale observed.

6.2. Memory Footprint

The investigated applications use a technique called bulk

synchronous parallel [24], as do the majority of the industrial

simulation codes in the CFD and FEM areas. This means that

these applications at the global level hold a large matrix in

memory of #E number of elements, where each element has a

size of Esize in memory. The total memory size of the matrix is

then #E * Esize. Considering the inherent memory footprint M of

the application, one could naively expect the memory usage per

process to scale according to eq. 3 below, where P is the total

number of processes.

M + (#E * Esize/P)

 (eq. 3)

However, all three applications use some optimization

schemes to obtain higher performance. To avoid using the

network too much some boundary data is stored with several

processes. Instead of communicating, which in best case results

in the introduction of network latencies and in the worst case

bandwidth depletion, some elements are calculated and stored

locally by several processes. The memory demands can thus

more correctly be described by eq. 4, where Δ represents the

amount of redundant information stored for optimization

reasons.

M + (#E * Esize/P+Δ)

 (eq. 4)

As can be seen in figure 9 the amount of memory does not

decrease linearly with the number of processes. For many of the

cases the per computer memory usage actually increases with the

number of nodes. Evidently RAM-memory shortage cannot

explain why the applications execute faster when only one

process is placed on each dual core computer instead of two.

6.3.Memory Bandwidth

Despite that each process is identical in both execution and

memory demands regardless of it being executed by itself on a

compute node or together with an additional process, there is an

important difference in technical context. Even if the memory

allocated for two processes still easily can be fitted into the main

memory (see above), the number of memory accesses will be

(more than) doubled.

At the same time there is a major difference between the

single and dual setup due to the shared L2 cache of the Intel

Core2duo architecture. In the Single setup each process has a 4

megabyte L2 cache while in the Dual setup it has to be shared

between the two processes, and the processes works on two

different datasets. Thus, while the number of memory accesses

increases by a factor of two or more (inter process

communication among other things will create some extra load),

the available L2 cache will in practice decrease by a factor of

two. It is consequently reasonable to suspect that this change

will give raise to additional delays not present in the single

execution setup. When the STREAM benchmark was used to

measure the sustained bandwidth it never exceeded 4080

megabyte/s, see section 3.1 for more details.

7 Conclusion

In this paper we investigated the impact multicore processor

based clusters has on the execution of industrial simulations,

namely computational fluent dynamics (CFD). Almost all new

cluster installations are equipped with multicore processors, but

according to our results it is far from trivial to determine if this is

in fact a blessing or a curse.

The most significant finding was that five of the models, ran

faster when only one process (P) were executed on each

multicore node (N). When two processes were executed on each

node the execution time was increased by between 6.5 and 64%

with a median increase of 10% in these cases. In general the

trend is that at a low number of nodes two processes per

computer, i.e. one process per core, outperforms once process

per node, but as the number of nodes and processes increase the

gap closes and eventually the single placement strategy wins.

We evaluated four different possibilities, application

scalability as well as processor, memory and inter process

communication capacity as suggested by [6] as well as [7].

Application scalability was ruled out early since there were no

scalability issues with the number of processes that were

executed with one per computer node instead of two. The inter

process communication capacity were also ruled out as a major

contributor. Turning to the memory and memory bandwidth

utilization it is obvious that the shared FSB and L2 cache of the

Intel Core2duo architecture affects the performance. In the

Single setup each process has a 4 megabyte L2 cache which in

the Dual setup is shared and they work on two different datasets.

Ultimately we draw the conclusion that it is not obvious that

utilizing more than one core of a dual core processor is

beneficial. Furthermore we know that there are several cases

where it is a great deal better to only use one core, especially

when factoring in the per process license costs. The reason

behind this (technical) behavior is still unknown although it is

likely that it is linked to the memory hierarchy, and it is highly

unlikely that it depends on the inter-process communication or

the processor utilization.

8 References

[1] N. Singer, ”More chip cores can mean slower supercomputing,” Sandia

National Laboratories, January 2009.

[2] J. Held, J. Bautista och S. Koehl, ”From a Few Cores to Many: A Tera-
scale Computing Research Overview,” Intel white paper, 2006.

[3] L. A. Polka, H. Kalyanam, G. Hu och S. Krishnamoorthy, ”Package

Technology to Address the Memory Bandwidth Challenge for Tera-scale
Computing,” Intel Technology Journal, vol. 3, nr 11, 2007.

[4] L. Liu, Z. Li och A. H. Sameh, ”Analyzing memory access intensity in

parallel programs on multicore,” i International Conference on
Supercomputing, Island of Kos, Greece., 2008.

[5] S. K. Moore, ”Multicore is bad news for supercomputers,” IEEE Spectrum,
November 2008.

[6] R. Buyya, High Performance Cluster Computing, New Jersey, USA:
Prentice Hall, 1999.

[7] F. Vaughan, D. Grove och P. Coddington, ”Communication Performance
Issues for Two Cluster Computers,” i Proceedings of the Twenty-Sixth

Australasian Computer Science Conference, Adelaide, Australia, 2003.

[8] T. Sterling, D. Becker, D. Savarese och J. Dorband, ”Beowulf: A Parallel
Workstation For Scientific Computation,” i Proceedings of the 24th
International Conference on Parallel Processing, Oconomowoc, US, 1995.

[9] A. Boklund, C. Jiresjö och S. Mankefors, ”The Story Behind Midnight, a
Part Time High Performance Cluster,” i Proceedings of the 2003
international conference on Parallel and Distributed Processing

Techniques and Applications, Las Vegas, USA, 2003.

[10] J. L. Hennessy och D. A. Patterson, Computer Architecture: A Quantitative
Approach, 4 red., US: Morgan Kaufman Publishers, 2006.

[11] Intel, ”Intel Museum,” [Online]. Available: www.intel.com/museum/.

[12] L. Peng, J.-K. Peir, T. K. Prakash, Y.-K. Chen och D. Koppelman,
”Memory Performance and Scalability of Intel's and AMD's Dual-Core
Processors: A Case Study,” i Performance, Computing, and
Communications Conference, New Orleans, USA, 2007.

[13] J. D. McCalpin, ”Sustainable Memory Bandwidth in Current High
Performance Computers,” 1995. [Online]. Available:
http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html.

[14] C. Hristea, D. Lenoski och J. Keen, ”Measuring memory hierarchy

performance of cache-coherent multiprocessors using micro benchmarks,” i
ACM/IEEE conference on Supercomputing, San Jose, USA, 1997.

[15] Ansys, ”CFX application,” [Online]. Available:
http://www.medeso.se/software/ansyscfx.html.

[16] Ansys, ”Fluent application,” [Online]. Available:
http://www.fluent.com/software/fluent.

[17] OpenCFD, ”Openfoam Application,” [Online]. Available:

http://www.opencfd.co.uk/openfoam/.

[18] S. Perzon och L. Davidson, ”On CFD and transient flow in vehicle
aerodynamics,” SAE Technical paper, 2000.

[19] L. T . Yang, X. Ma och F. Mueller, ”Cross-Platform Performance Prediction

of Parallel Applications Using Partial Execution,” i Proceedings of the
ACM/IEEE Super Computing Conference, 2005.

[20] M. Frye, ”Debugging code with strace,” RedHat Magazine, August 2005.

[21] A. Boklund, C. Jiresjö, S. Mankefors-Christiernin, N. Namaki, L.

Gustavsson-Christiernin och M. Ebbmar, ”Performance of Network
Subsystems for Technical Simulation on Linux Clusters”, Conference on
Parallel and Distributed Computing and Systems, Phoenix, USA, 2005.

[22] Boklund, N. Namaki, S. Mankefors-Christiernin, J. Gustafsson och M.

Lingbrand, ”Dual Core Efficiency for Engineering Simulation
Applications”, Parallel and Distributed Processing Techniques and
Applications, Las Vegas, USA, 2008.

[23] A. de Blanche, S. Mankefors-Christiernin, ”Minimizing Total Cost and
Maximizing Throughput - A Metric for Node versus Core Usage in Multi-
Core Clusters,” i International conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, USA, 2010.

[24] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach
using BSP and MPI, Oxford: Oxford University Press, 2004.

