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Abstract 

Multicore processors have come to stay, fulfill Moore’s law and 

might very well revolutionize the computer industry. However, we 

are now in a transitional period before the new programming 

models, numerical algorithms and general computer architecture 

have been developed and the software has been rewritten. This 

paper focuses on the effects multicore based systems have on 

industrial computational fluid dynamics (CFD) simulations. The 

most significant finding was that five of the models ran faster when 

only one process was executed on each multicore node instead of 

two. In these cases the execution time was increased by between 

6.5% and 64% with a median increase of 10% when utilizing both 

cores. 
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1 Introduction 

Getting the most out of any computer system, and especially a 

new architecture, has always been a challenging task. When new 

hardware technologies are introduced and put to use it is not 

obvious that the application performance will increase – even if 

the technology is immensely superior. The existing applications 

have been optimized to run on the current systems and they might 

not at all be suitable for the next-generation high-performance 

computers. The latest major addition is the introduction of 

multicore systems. 

As suggested by James Peery et. al. [1], at Sandia national 

laboratory, the execution time might increase if more cores are 

utilized. Using Sandia key algorithms they showed that when 

using sixteen cores the performance was barely on par with two 

cores. According to Arun Rodrigues this is  an issue to which the 

industry has no known solution and that often is ignored [1]. The 

addition of a second core could theoretically double the computing 

capacity of a computer node [2], however in many cases the 

bottleneck moved to another component. As pointed out by [3] [4] 

[5] the most notable is the processor versus memory size and bus 

ratio, both when it comes to latency as well as bandwidth. 

Traditionally high performance computer designs have tried to 

balance three factors [6]: Compute power, memory and I/O-

capacity. According to Vaughan et. al. [7] the new generation of 

COTS distributed parallel computers (clusters) [8] [9] has added 

inter-node communication capacity as a crucial factor. For 

Multicore processors Vaughan’s addition should be split into two, 

namely intra-node and inter-node communication capacity due to 

the non-uniform inter-process communication architecture.  

In this paper we present a, first study on the effects multicore 

based systems have on industrial computational fluid dynamics 

(CFD) simulations. Do multicore processors facilitate a decrease in 

execution time within the CFD area or will the already long 

execution times increase? During our investigation we found that 

for five of our nine models there were configurations in which the 

execution times increased by 6.5% to 63% when utilizing two 

cores in each processor instead of one. Six configurations paged to 

the hard drive due to lack of memory and were excluded.  

2 Multicore Architecture and Issues 

Typical modern computer architecture is based on a 

microprocessor, system memory, busses and various other 

components. Very much like the schematic overview in figure 1. 

All information that goes from the main memory to the processor 

has to pass through the system bus (Front Side Bus/FSB), the 

memory controller and the memory bus.  

 

Figure 1: Architectural overview of a modern computer 

In this section we go through the four mos t important systems 

in a computer; processor, memory, I/O-capacity and inter-process 

capacity. The three first are proposed by [6] with the addition of 

inter-node communication suggested by [7], although we find 

inter-process capacity to be a better description. Over the last 30 

years the execution speed of a microprocessor has increased from 

5 MHz to approximately 4 GHz. During this time many new 

techniques that improves the processors were introduced, such as 

pipelining and speculative execution as well as advanced 

instruction level parallelism. The old recipe of creating a faster 

processor by raising the clock frequency relied on the possibility to 
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manufacture smaller components inside the processors. Advances 

in this field are no longer possible due to the laws of physics. 

The solution to higher speeds taken by almost all manufacturers 

is multiple processor cores on the same chip. 

2.1.Memory Challenge 

So far the memory architecture shown in figure 1 has not 

changed notably between the single and multicore processors. One 

of the major challenges of the multicore systems will be to design 

a system that can keep up with the tremendous computing power 

in a single multicore chip. This puts enormous pressure on, among 

other things, the FSB and the memory subsystem. At the moment 

the memory subsystem, on its own, is not fast enough to keep up 

with a single core processor; as a result it utilizes a two to four 

level memory hierarchy of increasingly faster memories closer to 

the processor. When extra cores are added some memory problems 

might be fixed by adding additional memory levels [3]. 

By comparing the historical capacity of processors using the 

SPEC-benchmark [10] with the FSB and memory bus [10] [11] we 

find that the difference has increased quite drastically over the 

years. Consider an application that was written for a system in 

1993 and perfectly optimized for that “balance”, would on a 

modern computer wait for memory approximately 50% of the 

time. It is a crude comparison and it is based on using one core in 

the modern multi core chip. 

The problem of sustaining a high memory throughput to several 

processors is not a new problem for multiprocessor systems  [12]. 

However, there is a difference between using multiple processors 

and multiple cores. 

2.2.Inter Process Communication Challenge 

All but the simplest parallel and distributed applications 

implement some level of inter-process communication. One 

problem that arises with the introduction of multicore clusters is 

that they have a non-uniform inter-process communication 

architecture. There are at least two different levels of 

communication costs involved when passing messages in a 

multicore cluster, either over the loopback interface or over the 

network. 

Consider an application with four processes that implements 

message passing. If designed in 2003 it would be written to work 

well on Pentium 4 processors and gigabit Ethernet. 

When executing a 16 process job on 4 computers each equipped 

with 2 dual core processors. The inter-process communication will 

be even more non-uniform with the additional two different levels 

of intra-node communications. Especially when compared to the 

16 single core computers that the application was designed to be 

executed over. In that case the link capacity would still be 1/16
th

 of 

gigabit Ethernet, since it scales linearly. 

2.3. I/O Utilization 

The fourth important subsystem in regards to system balance is 

the I/O-subsystem. However the CFD applications that we focus in 

this investigation are very light on the I/O side. They only read the 

input files in the beginning of the execution and write the output at 

the end. Therefore we do not have any focus on the I/O utilization. 

 

3 Computing Platform and Benchmark 

Applications 

 

The aim of this experiment is to investigate the effect multicore 

processors have on applications in the Computational Fluid 

Dynamics (CFD) domain. Or more precisely, to determine if the 

efficiency of a simulation increases when two simulation processes 

are executed on each dual core node compared to one process per 

node.  

3.1. High Performance Computing Platform 

The Intel Core 2 is a common processor in many high 

performance environments. The cluster used in this investigation 

consists of 180 identical computers based on the Core 2 E6550 

processor. The E6550 is manufactured using 65nm technology and 

has 291 million transistors . 

The Intel Core 2 processor has two processor cores, each core 

has 2*32KB of private L1 cache (data and instructions), at the next 

level the cores share a 4MB L2 cache. Having a shared L2 cache 

has its benefits as well as drawbacks. While it allow cache sharing 

between cores and allowing the entire cache to be used by one of 

the cores as well as decreasing the cache impact of moving 

processes between cores it make the cores compete for the cache 

resources the hit latency is longer than for separate caches [12]. 

The memory controller and front side bus (FSB) of the Core 2 

system are located off-chip, i.e. the architecture mimics that in 

figure 1. The transfer rate of the FSB has a maximum capacity of 

10.6 gigabyte/s while the memory sustains 5.33 gigabyte/s per 

channel. The upper limit for fetching data from memory is limited 

to 10.6 gigabyte/s. However, for this to be achieved there has to be 

no other transfers affecting the busses. If the data is saved on the 

circuits in the same memory bank, the maximum theoretical 

transfer speed is 5.33 gigabyte/s. 

The STREAM benchmark [13] [14] was used to measure the 

sustainable bandwidth of the memory system for reference 

purposes. During several executions with different sized matrixes 

of a size between 48 and 1800 megabyte, the sustained bandwidth 

never exceeded 4080 megabyte/s. When the matrix size was 

increased to span both memory channels the total sustained 

bandwidth was even decreased to 3900 megabyte/s. 

The cluster is connected by a hierarchy of gigabit switches. 

During the experiments the computers were connected by a single 

gigabit Ethernet switch. A more detailed description of the 

hardware can be found in table 1.  

Table 1: Cluster computer and network equipment 

specifications. 

Processor Intel Core 2, E6550 

Clock Frequency 2.33GHz 

# of cores 2 

Hyper threading  No 

Technology  65nm 

Transistors  291 Millions 

L1 Cache  

 

32 KB code and 32KB data 

L2 Cache 4MB cache shared between cores, non- 



 inclusive with L1 cache 

Front side bus Q35 

Frequency 1333MT/s 

Bandwidth 10.6 gigabyte/s 

Memory DDR2 

Size 2GB 

Specification PC2-5300 

# of channels 2, dual channel 

Frequency 667Mhz 

Bandwidth 2 * 5.33 gigabyte/s 

Measured 

Bandwidth 

4.08 gigabyte/s (STREAM [13]) 

3.2.Applications and Models Used 

Three applications were used in this investigation. Two 

commercial CFD applications; CFX [15] and Fluent [16] and the 

open source package Openfoam [17]. Nine CFD models, three per 

application, were used in the experiments. Since the behavior of 

these applications are dependent of the type of flow simulated so 

are the solution times. Three representative “real world” models 

were selected from two multinational high-tech companies for 

each of the two commercial applications. The CFX models ith 

Openfoam one real world and two research models from scientists 

were used together with Openfoam. Table 2 gives an overview of 

the models which have bearing on the aerospace domain. 

Table 2: Sizes and names of the nine models used in the 

evaluation. The Number of elements gives a first order 

approximation of the size of the model. 

Name CFX Fluent Openfoam 

M1 817 460 817 460 702 000 

M2 1 811 036 743 223 1 980 900 

M3 2 935 295 5 529 223 5 379 520 
 

 

 

The sizes of the models as well as the run-time differ between 

models. As an example the Fluent M1 require approximately 4 

hours to execute all the way through over eight nodes while Fluent 

model 2 require somewhere around 12 hours to complete and the 

M3 models need several days.  

Those knowledgeable in the area of computational fluid 

dynamics know that there are two basic ways to determine when a 

simulation should end, either by specifying the number of 

calculations (iterations) to run or by specifying some convergence 

criteria (transient) [18].  

When dealing with real world industrial applications and 

models one problem is that they are not well defined small units 

that execute in a minute. Real world CFD calculations are huge 

problems that often require tens of gigabytes of memory and take 

weeks to execute on a single computer. If all models in this 

investigation were to be executed all the way though it would 

require several years of runtime. In [19], Yang, et. al. however 

showed that a partly executed simulation fairly well matches a full 

execution of the code. Their empirical performance prediction 

results are constrained to cases where the problem and input sizes 

do not vary. 

To be able to perform this investigation we decided to limit the 

execution time of the experiments. It was decided that we would 

use the iteration method (mentioned above) to limit the execution 

time. Each model was executed, in parallel, over eight computer 

nodes, with one process per node. After 1000 seconds of 

execution, the executing iteration was extracted from the 

application log file. This iteration was then used as the stop criteria 

for all experiments with that particular model, ensuring the exact 

same number of iterations and execution behavior in all 

comparable runs for that model-application combination. In this 

way only the changes in the number of processes and hardware 

could be responsible for the changes in run-time.  

4 Experiment Setup 

To determine the usefulness of multicore processors within the 

engineering simulation domain, the nine (9) fluid simulations in 

table 2 and their corresponding applications were executed in two 

different setups, Single and Dual.  

Although utilizing the same hardware the difference between 

the two setups was that in the single setup each process is executed 

on one dual core node, as if it were a single core system, although 

the second core will execute various other system tasks. The dual 

setup on the other hand refers to when two processes are placed on 

each dual core computer node. 

This means that when executing a eight processes job the Single 

setup will use eight dual core nodes and place one process on each 

node, effectively only utilizing one of the cores for simulation 

purposes. The dual setup, however, would employ four computers 

and utilize both cores in all machines: using a total of eight cores. 

The models (table 2) were pre-partitioned into [2 4 6 8 16 32] 

partitions to be run in parallel by the same number of processes. 

This partitioning was done using the applications ’ default 

mechanisms. 

For the simulations where the amount of memory needed for the 

execution was greater than the available system memory (figure 3 

and table 6), thus forcing the systems to page to disk, was removed 

from the study. The reason behind this was that their execution 

times increase by several orders of magnitude. This threshold was 

reached earlier with the Dual setup since the node memory is 

shared between two processes. When adding more computer nodes 

and processes the amount of global memory effectively increases 

which in turn allow the applications to run entirely in memory. 

During the execution of the applications the run time was 

measured and the processor, memory and network loads were 

monitored. To calculate the runtime a timestamp were made before 

and after the execution of the pre-partitioned simulations. The 

timestamps were taken with the gettimeofday() system call which 

has a relatively high resolution (ms). Although compared with a 

runtime between 253 and 6388 seconds the error is negligible. 

The processor, memory and network loads were calculated as 

averages over 180 second intervals. These measurements were all 

made through the /proc kernel interface. One measurement set 

consumed ~8 ms of processor time, according to measurements 

done by strace [20].  

5 Results 

In order to investigate the effect multicore processors have on 

our three applications and the nine models  that were executed in a 



Single and Dual core setups, see section 4. Figure 3 a-i) contain 

graphs depicting the results from the experiments. The black lines 

show the execution time of the Single setup, i.e. where one process 

is placed on each node, and the dashed line represents the Dual 

setup where two processes are placed on each dual core node. 

At a first glance the results look as one would expect them too , 

the Single setup for the same number of processes out performs the 

Dual setup, see figure 4. This was expected since the Single setup 

use two times the number of computers and effectively has twice 

the amount of memory, twice the level 2 cache (not applicable to 

all multicore processors) and an extra core to use for running 

operating system and other tasks, etc. 

 

Figure 4: The number of percent by which the Single setup 

outperforms the Dual setup for the same number of processes. 

This was the case for all models, apart from Fluent model 2, 

when divided into 32 processes as can be seen in figure 3 b). The 

dual setup outperformed the single with 22 seconds out of 341, so 

by ~6.5%. Fluent model 1 is not much larger and shows the same 

behavior, although the s ingle setup still outperforms the dual with 

3.5%, at 32 processes.  

In table 4 the speedups (scalability) of the different applications 

and models are listed. To compare both single and dual setups with 

each other the speedup of the dual setup uses the same baseline as 

the single. Thus all values for each model are normalized after the 

single setup with the least amount of processes. 

The speedup obtained when adding processes to the 

computation does not follow the theoretically best possible of Ts/P 

(time to execute simulation/number of processes) but for software 

in the CFD area scalability in this range is considered 

comparatively well [18] [21]. 

In table 3 we can see that when going from two Single to two 

Dual processes, i.e. from two cores on different computers to two 

on the same, Openfoam does not perform as good as the other two 

applications. Openfoam M2 models also shows a strange plateau, 

at 4 to 6 nodes as well as 8 to 16, where there is little to none 

scalability. Although for eight nodes it shows a decent scalability. 

Fluent M3 shows a similar, but not at all as bad, pattern between 

eight and sixteen nodes.  

Quoting the execution times and speedups based on the amount 

of processes the problem is divided into is a straightforward 

approach. However, when dealing with computer clusters and 

multicore processors the speedups and execution times depending 

on the amount of computers is of interest. 

Table 3: The execution time (T) of the different setups 

normalized to the equivalent lowest number single setup 

execution, TN. The norm was given the value 100. 

 

Model 

 

Setup 

Processes 

2 4 6 8 16 32 

 

Fluent M1 

Single 100 53 39 32 17 13 

Dual 110 58 42 34 19 13 

 

Fluent M2 

Single 100 57 48 34 22 18 

Dual 116 62 50 35 24 17 

 

Fluent  M3 

Single - 100 72 63 57 24 

Dual - - 86 73 68 28 

 
CFX M1 

Single 100 54 39 34 22 17 

Dual 130 69 49 41 32 24 

 
CFX M2 

Single 100 56 40 34 21 15 

Dual - 85 57 44 27 24 

 
CFX M3 

Single 100 55 41 35 23 18 

Dual - 80 60 44 29 24 

 

OFoam M1 

Single 100 47 31 24 - - 

Dual 150 72 46 34 18 - 

 

OFoam M2 

Single 100 52 53 26 - - 

Dual 163 85 88 44 43 - 

 

OFoam M3 

Single - 100 93 59 - - 

Dual - 269 147 59 41 - 

5.1.Dual core Processor Efficiency 

Turning to the less obvious result, for some models/setups the 

problem is actually solved faster when only one process instead of 

two is executed on each dual core computer node. This occurred at 

the higher number of computers and the speedup was between 

6.5% and 64%, see table 4 for details. For the lower number of 

computer nodes the Dual setup always outperform the Single – 

given that there is enough resources to execute at all. E.g. the 

Fluent M2 model required more than 4 gigabyte of ram and would 

there for not execute on 2 machines or less. Then as more nodes 

are added the time gap between the Single and Dual setups close 

and for 5 of the 9 models the curves actually switch place, leaving 

the Single setup to outperform the Dual for the higher number of 

nodes. 

 

Figure 5: The number of percent by which the dual setup 

outperformed the single setup for the same number of 

computers [2,4,8,16]. 
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 Figure 3: Run times of the 9 models when executed in 

[2 4 6 8 16 32] parallel processes. The black line 

(single) show the run time when one process is 

executed on each dual core computer. The dashed 

line (dual) show the runtime when two processes are 

executed on each dual core computer, i.e. one process 

per processor core. 

 



The Single node executions that outperformed their Dual 

counterparts are listed in table 4 together with the speedup 

gained. Using Fluent model 3 as an example, the application 

actually solves the problem faster if you divide it into 8 parts and 

run it on 8 dual core processors compared to dividing it into 16 

parts and running one process on each core on 8 dual core nodes. 

Hence, if there are 8 dual core nodes it will take 8% longer time 

to execute the problem if you utilize both cores instead of just 

one. The same applies to all CFX models when executed on 16 

computers as well as for Openfoam model M2 when executed on 

8 computer nodes. For the Openfoam model M2 the speedup 

gained, when executing one process per computer instead of two 

was as high as 63%. 

Table 4: The following models execute faster when executed 

with one process on each dual core computer than when 

executed with two processes on each computer.  

Model # of computers Speedup for single 

Fluent M3 8 8% 

CFX M1 16 10% 

CFX M2 16 11% 

CFX M3 16 6,5% 

OF M2 8 64% 

 

Based on the results presented one can draw the conclusion 

that the generally most time efficient solution is to execute the 

CFD simulations according to the Single scheme. E.g. executing 

only one process on each computer; leaving the second core 

virtually unused. For the lower amount of processes the Single 

setup require two times the computers that the Dual setup. This 

effectively doubles the hardware investments, but using two 

times the processes also doubles the software license costs. This 

issue was investigated in [22] [23] where the conclusion was that 

the cost of adding hardware is preferred to the cost of the added 

software licenses. 

For Fluent and CFX the advantage seems to decrease as the 

number of processes increase but then raise again at 16+ 

processes, this statement is true for all but Fluent M2. As 

Openfoam goes the difference is even larger, here the Single 

setup outperformed the Dual for all number of processes  with 

between 29% and 40% (on average 32%), although this does not 

include the Openfoam M3 Single 2 and Dual 4 simulations since 

they did not fit completely into memory. 

6 Analysis and Discussion 

The most notable results from the investigation are those 

presented in figure 5 and table 4 – In these cases the application 

and model combinations execute faster with one core inactive on 

each compute node, i.e. when one process (P) is executed on 

each one of the dual core computer nodes (N) compared to when 

two processes are executed on the same number of nodes. 

The main issue is to determine if this behavior is dominated 

by hardware bottlenecks  or the software scalability. If an 

underlying mathematical or programming intricacy causes 

behavior, the application should behave the same as long as the 

number of processes are constant. If all resource demands are 

satisfied the Dual(P) and Single(P) runs would execute in the 

same amount of time. Since this is not the case to try to identify 

the resource(s) that Dual(P) uses more of than Single (P). We 

now continue with a more detailed analysis looking the three 

candidate resources suggested in section 2 above. 

6.1. Network Usage 

The investigated applications at hand communicate on a 

process to process basis. All processes can communicate with all 

other processes as well as carry out collective MPI operations, 

such as broadcasts and scatter-collect operations. A process in a 

Single setup that sends a message to another process will always 

send it thru the switch (1). Where Switch represents the amount 

of traffic traversing the switch, N is the number of nodes, P is 

the number of processes and M is the average number of 

Megabytes transmitted by each process to each other process. 

    

SwitchSingle = (N
2
-P)

 
* M 

      (eq. 1) 

A process in a Dual setup, however, will carry out a portion 

of its communication over the loopback interface but the larger 

part still goes through the switch. 

    

SwitchDual = (N
2
-2P) * M 

      (eq. 2) 

When comparing Eq. 1 and 2 it is obvious that the switch is 

subject to a higher utilization in the Single setup then in the 

Dual. However, in the Dual setup both processes on a computer 

node share the same network connection as well as the internal 

busses. The average load on each computer node is calculated as 

(switch/N)*(P/N). Nevertheless, consumed bandwidth is quite 

low. The Fluent M2 in 16 process Single configuration had the 

highest measured computer node communication 7.77 

megabyte/s. It is one out of ten configurations that had a node 

communication of more than 5 megabyte/s i.e. 40 megabit/s. All 

CFX and Openfoam models had a per node communication less 

than 2.5 Megabyte/s.  

Based on these numbers it is highly unlikely that the single 

process per machine performs faster than two processes per 

machine depends on the network resources. The increase in 

network utilization might impact the execution time in a 

negative way but not at all on the scale observed.  

6.2. Memory Footprint 

The investigated applications use a technique called bulk 

synchronous parallel [24], as do the majority of the industrial 

simulation codes in the CFD and FEM areas. This means that 

these applications at the global level hold a large matrix in 

memory of #E number of elements, where each element has a 

size of Esize in memory. The total memory size of the matrix is 

then #E * Esize. Considering the inherent memory footprint M of 

the application, one could naively expect the memory usage per 

process to scale according to eq. 3 below, where P is the total 

number of processes. 

 

M + (#E * Esize/P) 

      (eq. 3) 

However, all three applications use some optimization 

schemes to obtain higher performance. To avoid using the 

network too much some boundary data is stored with several 

processes. Instead of communicating, which in best case results 

in the introduction of network latencies and in the worst case 

bandwidth depletion, some elements are calculated and stored 

locally by several processes. The memory demands can thus 

more correctly be described by eq. 4, where Δ represents the 

amount of redundant information stored for optimization 

reasons. 

 

M + (#E * Esize/P+Δ) 



      (eq. 4) 

As can be seen in figure 9 the amount of memory does not 

decrease linearly with the number of processes. For many of the 

cases the per computer memory usage actually increases with the 

number of nodes. Evidently RAM-memory shortage cannot 

explain why the applications execute faster when only one 

process is placed on each dual core computer instead of two.  

6.3.Memory Bandwidth 

Despite that each process is identical in both execution and 

memory demands regardless of it being executed by itself on a 

compute node or together with an additional process, there is an 

important difference in technical context. Even if the memory 

allocated for two processes still easily can be fitted into the main 

memory (see above), the number of memory accesses will be 

(more than) doubled.  

At the same time there is a major difference between the 

single and dual setup due to the shared L2 cache of the Intel 

Core2duo architecture. In the Single setup each process has a 4 

megabyte L2 cache while in the Dual setup it has to be shared 

between the two processes, and the processes works on two 

different datasets. Thus, while the number of memory accesses 

increases by a factor of two or more (inter process 

communication among other things will create some extra load), 

the available L2 cache will in practice decrease by a factor of 

two. It is consequently reasonable to suspect that this change 

will give raise to additional delays not present in the single 

execution setup. When the STREAM benchmark was used to 

measure the sustained bandwidth it never exceeded 4080 

megabyte/s, see section 3.1 for more details. 

7 Conclusion 

In this paper we investigated the impact multicore processor 

based clusters has on the execution of industrial simulations, 

namely computational fluent dynamics (CFD). Almost all new 

cluster installations are equipped with multicore processors, but 

according to our results it is far from trivial to determine if this is 

in fact a blessing or a curse. 

The most significant finding was that five of the models, ran 

faster when only one process (P) were executed on each 

multicore node (N). When two processes were executed on each 

node the execution time was increased by between 6.5 and 64% 

with a median increase of 10% in these cases. In general the 

trend is that at a low number of nodes two processes per 

computer, i.e. one process per core, outperforms once process 

per node, but as the number of nodes and processes increase the 

gap closes and eventually the single placement strategy wins. 

We evaluated four different possibilities, application 

scalability as well as processor, memory and inter process 

communication capacity as suggested by [6] as well as [7]. 

Application scalability was ruled out early since there were no 

scalability issues with the number of processes that were 

executed with one per computer node instead of two. The inter 

process communication capacity were also ruled out as a major 

contributor. Turning to the memory and memory bandwidth 

utilization it is obvious that the shared FSB and L2 cache of the 

Intel Core2duo architecture affects the performance. In the 

Single setup each process has a 4 megabyte L2 cache which in 

the Dual setup is shared and they work on two different datasets. 

Ultimately we draw the conclusion that it is not obvious that 

utilizing more than one core of a dual core processor is 

beneficial. Furthermore we know that there are several cases 

where it is a great deal better to only use one core, especially 

when factoring in the per process license costs. The reason 

behind this (technical) behavior is still unknown although it is 

likely that it is linked to the memory hierarchy, and it  is highly 

unlikely that it depends on the inter-process communication or 

the processor utilization. 
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