
Multicore computing—the state of the art

Karl-Filip Faxén1(editor), Christer Bengtsson2, Mats Brorsson3,
H̊akan Grahn4, Erik Hagersten5, Bengt Jonsson6,

Christoph Kessler7, Björn Lisper8, Per Stenström9, Bertil Svensson10

December 3, 2008

Abstract

This document presents the current state of the art in multicore com-
puting, in hardware and software, as well as ongoing activities, especially
in Sweden. To a large extent, it draws on the presentations given at the
Multicore Days 2008 organized by SICS, Swedish Multicore Initiative and
Ericsson Software Research but the published literature and the experi-
ence of the authors has been equally important sources.

It is clear that multicore processors will be with us for the foresee-
able future; there seems to be no alternative way to provide substantial
increases of microprocessor performance in the coming years. While pro-
cessors with a few (2–8) cores are common today, this number is projected
to grow as we enter the era of manycore computing. The road ahead for
multicore and manycore hardware seems relatively clear, although some
issues like the organization of the on-chip memory hierarchy remain to be
settled. Multicore software is however much less mature, with fundamen-
tal questions of programming models, languages, tools and methodologies
still outstanding.

1 Introduction

The background of the current trend towards multicore computing is well known.
For many years, increases in clock frequency drove increases in microprocessor
performance. The increasing gap between processor speed and memory speed

1Swedish Institute of Computer Science, kff@sics.se
2Swedsoft
3Royal Institute of Technology
4Blekinge Institute of Technology
5Uppsala University
6Uppsala University
7Linköping University
8Mälardalen University
9Chalmers University of Technology

10Halmstad University

1



was bridged by caches and instruction level parallelism (ILP) techniques. Ex-
ploiting ILP means executing instructions that occur close to each other in the
stream of instructions through the processor in parallel. This can mean partial
overlap as in pipelining (fetching one instruction while decoding the previous
one and executing the one before that) or real side by side superscalar paral-
lelism. Modern ILP processors can have several tens of instructions in various
stages of processing at the same time.

Thus, for cache hits, latencies scaled with reductions in cycle time (a cache
hit was always the same number of cycles, typically two or three, even when
processor frequency increased) while misses were overlapped with other misses
as well as useful computation using ILP.

This situation did however end a few years back, and in the last three or
so years, clock frequencies have not increased at all. The main reason for that
is power, which increases more than linearly with clock frequency, and causes
problems with dissipating the heat generated in the circuit. There are also
fundamental physical limits in MOS transistor geometry that puts a lower limit
to switching speed while still allowing for physical shrinkage of the transistors.

For the reasons discussed above, performance improvements must come from
sources other than increased clock frequency. Mainly, this must be increased
transistor counts, as this is the major resource that is still projected to grow in
the future. Increased numbers of transistors have been used in different ways.

• First, increased second level cache sizes improve hit ratios and reduce
the performance losses due to cache misses. This approach is however
limited by the amount of performance lost in misses in the second level
cache (increasing the size of the first level cache is not a good trade-off
as it would force a reduction in clock frequency). If half of the execution
cycles are spent waiting for misses in the second level cache, increasing its
capacity can never make the program more than twice as fast.

• Second, ILP can be more aggressively exploited by wider issue capacity
and additional functional units. The downside is increased design com-
plexity and diminishing returns since there is only a limited amount of
exploitable ILP in single threaded code. That ILP has to be shared among
multiple issue and multi cycle instruction latencies. If the average instruc-
tion latency is two cycles and two instructions are issued each cycle, only
programs with an ILP of four or more will execute efficiently [12].

• A third possibility is to design an aggressive processor core and feed it
instructions from several threads while also exploiting ILP within each
thread. This technique is known as simultaneous multithreading (SMT)
[23] and has been used in processors from IBM (Power 5 and 6) as well
as Intel (where it is called Hyper Threading). This means that utilization
can be increased even for cores with more hardware resources (functional
units, . . . ) than can be efficiently exploited by a single thread and it
has the advantage that a thread that has an unusual amount of ILP can
exploit it using the abundant hardware resources of the core.

2



• A fourth possibility is to put multiple cores on a single die [17]. This orga-
nization has a similar programming model as SMT in that it is based on
thread parallelism rather than (only) ILP. The advantage of the multicore
organization is that multiple copies of a simpler core have big design com-
plexity advantages over a single complex SMT core. Also, communication
within an SMT core with a thousand functional units will necessarily have
long latency and the wiring will take a very large part of the chip area.
Many chips implement multiple identical SMT cores (the IBM Power 5
and 6) or have otherwise multithreaded cores (the Sun Niagara / Niagara
2).

2 State of the art and current challenges

2.1 Hardware

Currently, multicore processors are the norm for servers as well as desktops
and laptops, while penetration in the embedded sector is more uneven. There
are two broad classes of processors. First, there are those that contain a few
very powerful cores, essentially the same core one would put in a single core
processor. Examples include AMD Athlons, Intel Core 2, IBM Power 6 [14] and
so on. Second, there are those systems that trade single core performance for
number of cores, limiting core area and power. Examples include the Tilera 64,
the Intel Larrabee [19]and the Sun UltraSPARC T1 [13]and T2 [11] (also known
as Niagara 1-2).

For the future, there are a number of open issues.

2.1.1 Core count and complexity

This issue, where current commercial offerings are divided, hinges on the ex-
pected speedup from additional cores. For markets where a substantial fraction
of the software is not parallelized, such as desktop systems, speedup from extra
cores is less than linear and may frequently be zero. Hence a few copies of the
most powerful core that can reasonably be designed is the preferred alternative
and is realized by most chips in this domain.

If on the other hand the expected speedup from extra cores is assumed to
be linear the situation is different. In this regime, core design should follow the
KILL rule, formulated by Anant Agarwal: Kill If Less than Linear. This means
that any (micro) architectural feature for performance improvement (out of
order instruction issue, larger caches, hardware branch prediction, . . . ) should
be included if and only if it gives a relative speedup that is at least as big as
the relative increase in size (or power or whatever is the limiting factor) of the
core. That is, if a feature gives 10% speedup for a 5% area increase it should be
included, but if the price tag is a 15% area increase it should be left out. The
KILL rule has guided Tilera to a core design for the Tilera 64 that is a three
issue VLIW (Very Long Instruction Word) architecture.

3



State of the art There are currently two broad groups of designs. First, there
are the more conservative designs that start from a core that maximizes
single thread performance and then puts as many of those cores as fits on
a single die (or at least in a single package). Typical examples are the Core
2 Duo and Quad, the AMD Phenom x4, IBM Power 4-6, Sun UltraSPARC
IV. Second, there are more radical designs that trade less single thread
performance against better aggregate performance. Best known in this
category are probably the Sun UltraSPARC T1 and T2 (also known as
Niagara) with the Tile64 as another example.

Current challenges Which way this trade off is going to evolve is mainly a
function of the evolution of workloads. If highly parallel programs become
the norm, more and simpler cores are to be expected, and the other way
around.

2.1.2 Heterogeneity

In a multicore chip, the cores could be identical or there could be more than one
kind of core. There are two levels of heterogeneity depending on whether the
cores have the same instruction set or not. Hence there are three possibilities:

1. Identical cores, as in most current multicore chips from the Intel Core 2
to the Tilera 64.

2. Cores implementing the same instruction set but with different nonfunc-
tional characteristics.

3. Cores with different instruction sets like in the Cell processor where one
core implements the PowerPC architecture and 6-8 synergistic processing
elements implement a different RISC instruction set.

The Sun Niagara 1 chip shares one floating point unit among eight cores in a
software transparent way, a design that could be counted in the second category.

A homogeneous system has the advantage of being simpler to analyze and
resource allocate than a heterogeneous system, and is also simpler to design
since it is build out of just one kind of component which is duplicated across
the chip. On the other hand specialized hardware is more area and energy
efficient. Hence a truly heterogeneous system (the third option) offers a promise
of increased performance if the software challenges can be mastered, especially
in situations where the workload of the system is known in advance.

One potentially useful kind of heterogeneity is to have a small number of
very fast (wide issue, out of order) cores for parts of the computation with
limited parallelism and a large number of simpler cores designed according to
the KILL rule to exploit abundant parallelism when it is available. In addition,
as core counts grow and feature sizes shrink, process variations may also add
heterogeneity in the clock frequencies supported by different cores.

4



State of the art Most designs targeting desktops, laptops and servers are ho-
mogeneous, but in the embedded sphere, heterogeneity is more common,
evidenced by for instance the Cell processor and the typical architecture
of mobile phones.

Current challenges For heterogeneous systems, programming tools remain a
challenge as compared to on a homogeneous system.

2.1.3 Memory hierarchy

On chip bandwidth and processing power are large compared to off chip band-
width while on chip latencies are correspondingly small. Thus some form of
local memory is a ubiquitous feature of all multicore designs; otherwise it be-
comes impossible to feed more than a small fraction of the functional units that
fit on a chip with operands. The organization of this local memory is not clear,
though.

One possibility is to have explicitly addressed local memories, accessed either
with special instructions or appearing as a special part of the address space.
This design is realized in the Cell processor, where the synergistic processing
elements each has a 256 KB local memory which typically communicates with
system memory using DMA transfers.

Most multicore designs however provide some form of coherent caches that
are transparent to software. First level caches are typically private to each core
and split into instruction and data caches, as in the preceding generation of
single core processors. Then the options fan out.

• Early dual core processors had private per core second level caches and
were essentially a double single core processor with a minimum of glue logic
and an essentially snooping coherence protocol. Some designs continue
with separate L2 caches, like the Tilera 64 where each core has a 64 KB
L2 cache. However, the glue logic is in this case anything but simple
and amounts to a directory based cache coherency protocol on a mesh
interconnect.

• Second level caches can be shared between the cores on a chip; this is the
choice in the Sun Niagara (a 3MB L2 cache) as well as the Intel Core 2
Duo (typically 2-6 MB).

• Separate L2 caches backed by a shared L3 cache as in the AMD Phenom
processor (512 KB L2 per core, shared 2MB L3) or the recent Intel Core
i7 (256 KB L2 per core, shared 8MB L3).

• A hierarchy where L2 caches are shared by subsets of cores. This pertains
to the four core Intel Core 2 Quad, which is essentially two Core 2 Duo in
a single package. Each of the chips have an L2 cache shared between its
two cores but the chips have separate caches.

5



The various cache designs have been historically dictated, like early dual core
chips which were two single core chips side-by-side leading to private L2 caches,
but also based on performance and manufacturing considerations (it is easier to
get a high yield on two smaller dies, as in the Core 2 Quad, than one large).
The performance trade off is the following:

With private L2 caches, the L1-L2 communication is local, and the inter-
core interconnect is located below the L2 cache, whereas with a shared L2 it
sits between the L1 and L2 caches. In the shared case, all L1 misses go over the
interconnect whereas in the private case only those that also miss in the L2 do
so. This requires a more expensive, low latency interconnect (often a crossbar)
which uses a lot of area that could otherwise be used for larger caches (or more
cores). Also, L2 access time is increased by the need to go over the interconnect.

On the other hand, private L2 caches might waste chip area by having the
same data occupy space in several caches, and accessing data in the L2 of
another core, something that is sometimes needed to achieve cache coherency,
becomes more expensive than accessing a shared L2 cache. Interestingly, there
are academic studies showing either approach to be superior. What seems clear,
however, it that it will be increasingly difficult to maintain a shared L2 cache
as the number of cores climb into the tens and hundreds, so the issue is not so
much it we will see L2 caches shared between all cores on a chip as it is whether
we will see them shared between subsets or whether the L2 cache will, just like
the L1, become part of the core.

State of the art Per core first level caches are the norm, to the point where
these are simply regarded as part of the core. Second level caches come
in both shared (Intel Core 2 Duo, IBM Power 4–6) and private (AMD
Phenom x4) varieties, as well as semi shared (Intel Core 2 Quad is really
two dies in a package, with the cores on each die sharing a second level
cache). Some systems, like the Phenom, complement private second level
caches with a shared third level cache.

Current challenges The main challenge ahead is scaling to manycore systems
with thousands of cores. Thus there is a need to both minimize the num-
ber of misses out of a core, since these will require traversing expensive
interconnects that will necessarily have delays in the tens of cycles in the
worst case, and to avoid misses out of the chip, which may, depending on
packaging technology, use scarce memory bandwidth.

2.1.4 Interconnect

The cores on a die must be connected to each other, and there are several
possibilities.

• Classical buses do not scale beyond a limited number of cores and are not
used in current designs beyond a few cores.

• Rings are used both in the Cell processor and in the Intel Larrabee and fit
well with snooping cache coherency protocols where memory transactions

6



need to be visible to every core unless they are entirely private to a single
core. Essentially, rings have emerged as better buses due to the lower
power and higher frequencies allowed by the shorter lines and simpler
arbitration logic inherent in the ring architecture.

• Crossbars are used in for instance the Sun Niagara processors and offer
low latency high band with interconnects that fit well with directory based
cache coherency protocols.

• Switched networks, typically 2-D meshes like in the Tilera 64 or possibly
(fat) trees.

• Hierarchical interconnects where groups of cores are interconnected in
some way and groups of groups are interconnected in a possibly differ-
ent way. For instance, cores could be interconnected in small groups using
buses or rings and those groups could communicate with each other over
a mesh.

It is quite clear that manycore processors will have neither buses, rings or cross-
bars. For buses, long lines give high power consumption and low speed. Cross-
bars scale as the square of the number of ports and thus become untenable.
Rings scale in terms of area and power, but since each transaction must pass all
cores, latency is linear in the number of cores and the interval in which cores
are allowed to inject transactions also increase linearly.

This arguments leaves switched networks and hierarchical interconnects as
the main contenders for the future. Note also that if cache coherency is to
be supported, the coherency mechanism interacts heavily with the interconnect
structure. A mesh network, for instance, fits naturally with a directory based
coherency mechanism, whereas a hierarchical system could have snooping in the
leaves using rings or buses and use directories between the groups.

State of the art Crossbars are often used in designs with few processors, but
rings and meshes are becoming more common.

Current challenges Rings and buses fit well with snooping cache coherence
protocols, but for meshes directory based protocols are needed, and they
have some scaling issues. Here hierarchical organizations might help.

2.1.5 Memory interface

Traditionally, off chip interfaces have been placed along the periphery of the
chip. This has the drawback that if the number of devices along the periph-
ery increases linearly (using larger chips or smaller features), the total number
of devices increases quadratically. Thus the memory bandwidth per core will
decrease as we move to chips with more cores. It then becomes attractive to
stack memory chips on top of processor chips and spread the connections over
the area of the chips, providing better scaling and also substantially improving
memory latency [15].

7



In this kind of technology, multiple dies are placed on top of each other
and connected using Through Silicon Vias (TSVs). These give fairly dense
signal connections between chips; pitches (distances between the connections)
of only 4–10 um have been reported [15] which allows for a 1024 bit bus in only
0.32mm2 (which is a really small fraction of the not unusual 200mm2 area of
a current chip). The chips are thinned to a few um in thickness; this has the
interesting consequence that vertical distances become smaller than horizontal
ones so that vertically aligned parts of different chips are closer together than
horizontally distant parts of the same chip. In the long run, this might violate
the assumption that in a multicore processor, all the other cores are closer than
main memory.

State of the art High end processors have up to four DDR2 interfaces for an
aggregate memory bandwidth of over 20GByte per second.

Current challenges The main challenge is to scale memory bandwidth with
the number of cores. The scaling requirement might be made somewhat
less strict if the increasing aggregate cache sizes that come with the scaling
of the number of cores can be used to decrease off-chip cache miss ratios;
see Section 2.2.5.

2.1.6 Number of threads per core

Cores could support different numbers of threads. Many multicore designs have
single threaded cores, like the Intel Core 2, the AMD Athlon based processors
and the Tilera 64 chip. Others have multithreaded cores like the Sun Niagara
(four threads per core in Niagara 1 and eight in Niagara 2), the IBM Power 5
and 6 (two threads per core) and the Cell processor (2 threads in the PowerPC
core).

Using multithreaded cores is a way of increasing the utilization of core re-
sources that are often idle when cache misses or (in complex core designs) branch
mispredictions occur. As such the performance improvements are bounded by
the amount of underutilization of the single threaded core. Typically, a dou-
bling of the number of threads in a core does not lead to a doubling of core
performance since the threads compete for core resources such as functional
units and, perhaps most importantly, cache space. Thus a multithreaded core
might have more cache misses than a single threaded one but still deliver better
performance by tolerating the misses better.

2.1.7 Instruction set extensions

Many techniques for meeting the challenge of ubiquitous parallelism involves
instruction set extensions, and there is also more traditional multiprocessor
support that is already implemented. In particular, instruction sets have for a
long time included atomic read-modify-write instructions such as test-and-set
which read a memory location and store a new value in it atomically, that is,
in such a way that accesses from other processors either happen before the read

8



or after the write. Such instructions are at the heart of the implementation of
traditional synchronization primitives like locks and semaphores.

More recently, nonblocking primitives such as compare-and-swap have been
added. These primitives are similar to the above atomic instructions, but per-
form the store only if a condition is true. For compare-and-swap, the condition
is that the value in the memory location is equal to a given value. This primi-
tive can be used for implementing for instance an increment of a shared counter
without locking by first reading the old value of the counter, then computing
the increment and finally updating the counter with the new value only if it has
not been changed in the meantime.

Transactional memory (see Section 2.3.1) is a generalization of nonblock-
ing synchronization that can benefit from hardware, and thus instruction set,
support. The same is true of thread level speculation, discussed in Section 2.3.2.

Cache coherent hared memory is a powerful way for processors to commu-
nicate, but it is also quite expensive since one core must write to its cache, for
which it needs to be the only core caching that memory location, then notify
the other core of the availability of data, then the other core must read the lo-
cation and move it into its own cache. For this reason, some processors, such as
the Tile-64, provide message passing instructions between registers in different
cores, bypassing the memory for lower latency [25].

State of the art Current processors typically support both atomic read-modify-
write instructions and nonblocking primitives of the read-modify-maybe-
write variety. These can be used to implement nonblocking operations
including software transactional memory. In addition, the Rock processor
from Sun, due to be released in 2009, implements transactional memory
[16].

Current challenges At this time, it is not clear what mark the multicore
issue will leave in instruction sets, especially whether extensions such as
transactional memory or message passing will become common. However,
it appears that message passing can give a significant latency reduction in
inter core communication.

2.2 Software

The multicore revolution is a software revolution. Not only does software need
to adapt to the new environment by being parallelized, but parallelization makes
the software more complicated, error prone and thus expensive. There is also
no consensus as to which programming model to use with a spectrum of pro-
posals from keeping the sequential model and using automatic parallelization to
programming with a low level threads interface. In the latter case, debugging
becomes much more difficult due to the inherently nondeterministic nature of
multithreaded programming.

9



2.2.1 Programming models

There are several programming models that have been proposed for multicore
processors. These models are not new, but go back to models proposed for multi
chip multiprocessors.

• Shared memory models assume that all parallel activities can access all
of memory. Communication between parallel activities is through shared
mutable state that must be carefully managed to ensure correctness. Var-
ious synchronization primitives such as locks or transactional memory is
used to enforce this management.

• Message passing models eschew shared mutable state as a communications
medium in favor of explicit message passing. Typically used to program
clusters, where the distributed memory of the hardware maps well to the
models lack of shared mutable state.

• In between these two extremes there are partitioned global address space
models where the address space is partitioned into disjoint subsets such
that computations can only access data in the subspace in which they run
(as in message passing) but they can hold pointers into other subsets (as
in shared memory).

Most models that have been proposed for multicores fall in the shared memory
class.

Programming models also differ in whether they are directed towards compu-
tation1 (parallelism only serves to enhance performance) or concurrency (par-
allelism is an essential part of the problem). The concurrency class can be
considered more general in that it is typically possible to write a computational
program in a concurrent language but not necessarily the other way around.

Kernel threads The lowest level shared memory programming model is ker-
nel threads, long lived concurrent activities sharing mutable state, closely cor-
responding to the long lived cores sharing memory. The long lived nature of
kernel threads comes from their implementation in the operating system, making
thread operations such as creation and destruction relatively expensive, forcing
them to be amortized over relatively long lifetimes. Because of this, it is often
impossible to find large enough parts of a computation that is entirely inde-
pendent of each other to allow the threads to be independent. Thus threads
typically needs to synchronize with each other or ensure mutual exclusion using
locks, condition variables or transactional memory.

Since kernel threads map so closely to the underlying hardware, they achieve
(in the hands of an expert!) the best performance of the different models,
and they are often used to implement the higher level models. In this way,
kernel threads is the “assembly language” of multicore programming. Typical

1By computational we mean not only numeric computation but every case were some
output is produced based on some inputs.

10



exponents of this model are pthreads that is commonly available in the Unix
derivative operating systems, and Windows threads under Windows.

The thread model is in essence concurrent and can be used for concurrent
as well as computational programming.

User level threads These are similar to kernel threads, but implemented
in libraries and language run time systems, making them much less expensive.
They can, depending on the implementation, have more or less exactly the same
semantics as kernel threads. In particular, they can be pre-emptive, so that an
infinite loop in one thread does not necessarily lead to nontermination of an
entire program.

Examples include threads in concurrent programming languages such as
Mozart and Erlang (where they are called processes).

The Erlang model differs from other models we have discussed by being based
on message passing rather than shared mutable state. Erlang was created as a
language for programming concurrent applications, notably telecoms equipment,
but has since been used for distributed processing. While it is not specifically
targeted towards multicore systems, recent implementation work has adapted
the run time system to this environment, and allowed legacy code to seamlessly
move to multicore platforms.

SPMD Single program multiple data (SPMD) is a programming model with
its origins in high performance computing. It sits between thread level program-
ming and task level programming in that there is a concept of threads, which
execute the same code potentially with different data (hence the name of the
model). These threads are implicit and similar to workers (see Section 2.2.4)
although they are visible in that per thread data is available. The most well
known example of this model is OpenMP.

Tasks Tasks differ from threads in that they are very light weight, always
implemented in user mode. In some implementations, task creation can be
accomplished in a few tens of cycles. Since they are cheap, they can be short
lived enough that they can often run completely independently of each other,
as for instance the iterations of a parallel loop.

Tasks are parallel, but in essence not concurrent. Thus they are not pre-
emptive and can typically be executed sequentially. That is, creating a new
task to perform a computation is semantically equivalent to performing the
computation in a procedure call.

This property is exploited by high performance implementations of the task
model such as Cilk, where most tasks are simply executed as procedure calls and
only as many as are necessary to keep the hardware busy are actually executed
in parallel. With version 3.0, OpenMP has also taken steps in the direction of
task parallelism in this sense, although its heritage is more thread (SPMD style)
oriented.

11



Data parallelism One of the major sources of parallelism in computational
programs is operations over the elements of collections of data.

RapidMind and Intel’s Ct are current examples of the data parallel paradigm,
but the ideas go back at least to Fortran 90 and High Performance Fortran.

Sequential programming If an automatic parallelizing compiler is available,
a multicore processor can be programmed just as if it were a sequential proces-
sor. This is often cited as the Holy Grail of compiler development, but like
its namesake, this grail is elusive. For most sequential programs, only a little
parallelism is found, and it is also difficult to utilize the parallelism efficiently.
Looking at SPEC CPU numbers (were automatic parallelization is allowed) one
sees that it has very little effect on average although it is effective for a few of
the programs.

Some commercial compilers like Intel’s icc provide automatic parallelization.

Domain specific programming languages Domain specific languages are
tailored to a specific problem domain and embody knowledge of that domain.
For instance, a constraint programming language embodies knowledge of con-
straint satisfaction algorithms and other issues pertaining to that domain. Sim-
ilarly, parser generators such as yacc can be seen as implementations of domain
specific programming languages for writing parsers.

In relation to parallel programming, domain specific languages offer the hope
that the parallel parts of a program can be problem independent (although
domain specific) and thus hidden in the implementation of the language so that
the user only writes sequential code. For instance, in a domain specific language
for event based systems, the user would write event handlers in a sequential
language and the system could transparently execute handlers for concurrently
occurring events in parallel.

2.2.2 Debugging

The difficulty of debugging multicore programs depends on the programming
model. At one extreme, the difficulty of debugging a sequential program that
is automatically parallelized is no greater than for a conventional sequential
program. At the other end of the spectrum, debugging an explicitly threaded
program is complicated by at least three factors:

1. The control state of the program is more complex since each thread has
its own point of control.

2. Multithreaded programs are in general nondeterministic, so errors can
manifest in one execution and be absent in another (so called Heisenbugs).
Needless to say, this complicates testing enormously.

3. Since multithreaded programs in general contain code for synchronization
that has no counterpart in sequential programs, that code can exhibit

12



various problems such as deadlocks that by definition do not occur in
sequential programs.

These issues pertain not only to correctness debugging, but also to performance
debugging; it is much more difficult to understand how to make a multithreaded
program go faster than it is in the case of single threaded programs.

The problems of debugging parallel programs have been attacked by moving
to higher level programming models, especially those that have an equivalent
sequential reading of the program, and by improved tool support for debugging
multithreaded applications.

Tools Tools can attack at least the last two points above by dealing with
nondeterminism and by reasoning about or observing the synchronization itself.
Low overhead instrumentation for trace collection makes it possible at least to
know what happened in a particular execution, and a simulator can give the user
precise control over timing, for instance by artificially inflating the time spent
in critical sections, making a thread very slow or very fast or simply inserting
(pseudo) random delays now and then during execution. If any of these antics
provoke an error, the exact same timing can be reproduced to find the source
of the error (for instance if a data structure was erroneously overwritten, which
lead to a much later memory reference exception ).

SICS spinn off Virtutech markets a full system simulator called Simics. Sim-
ics simulates the hardware and allows the user to test the entire software stack,
including operating system, and provides for repeatable (thus deterministic)
timing. Similarly, QuickCheck supports the user in randomized unit testing.

There are also tools that can find some synchronization related errors such
as too little synchronization (leading to race conditions in the code) or too much
synchronization (leading to deadlock). Race conditions are situations where the
result of a program varies unpredictably with the details of thread scheduling
and timing. A case in point is the Intel Thread Checker that uses a sophisticated
algorithm to find data races. Because of the underlying nondeterminism, the
Thread Checker is not guaranteed to find all races, not even all races that are
possible with a certain input.

For performance debugging, research at BTH has yielded tools that allow the
user to measure and predict parallel performance [3], in particular by profiling
the critical path of a multithreaded program which is nontrivial since the critical
path potentially moves between threads at synchronization points.

A similar approach is to move away from testing as a validation paradigm
towards static verification. Here much work has been done in Uppsala on verify-
ing properties of concurrent programs. While these techniques hold the promise
of providing answers that are valid for all possible executions, it is not trivial
to scale them to large programs and full programming languages.

Higher level models In task parallel models it is in general possible to run
the program sequentially by interpreting task creation as procedure call. This

13



yields a deterministic sequential semantics of the program. If it can be estab-
lished that every parallel execution is equivalent to the sequential execution, the
parallel debugging problem has been reduced to the sequential one.

This is the approach taken in for instance Cilk, which also provides tool
support for run-time checking of the equivalence condition [8]. In practice this
condition is related to dependencies between the parallel activities: If no location
that is written is accessed by a logically parallel activity, the sequential and
parallel executions are equivalent (of course, dependencies involving I/O must
also be checked). This tool differs from conventional race checkers in that it is
guaranteed to find all errors that are triggered by a particular input.

A similar tool, Embla, has been developed at SICS [7]. It differs from the
Cilk tool in not being tied to a specific language. Rather, it works on binaries
and is thus largely source language independent. It also differs by working
on sequential code and reporting opportunities for parallelization, rather than
taking a parallel program and checking whether it is correct.

Similarly, data parallel constructs have a semantics that is independent of
the execution order. In this case, the equivalence to sequential execution is
built-in.

State of the art There are a number of different tools available for checking
properties of explicitly threaded programs, but these are quite slow and
their answers are valid only for a particular execution. Formal verification
works well for small program (fragments) but has yet to scale to large
systems.

Current challenges One major challenge is to scale static techniques to full
systems, as that would provide validation of all possible executions.

2.2.3 Programming languages

The programming models that have been proposed have been expressed in a
number of different languages and language extensions.

OpenMP The perhaps best known is OpenMP, which is a set of directives
added to a sequential base language. Today there are official bindings for
C/C++ and Fortran, but implementations for Java exist as well. OpenMP
was originally based on a programming model where the worker threads are
visible to the programmer. More recently, version 3.0 introduces tasks, and par-
tially reinterprets existing constructs as tasks, but the underlying threads are
still visible.

Cilk Cilk is a task parallel extension of C defined at MIT and recently com-
mercialized by the company Cilk Arts as the C++ extension Cilk++. Cilk adds
a few keywords to C and every Cilk program has a C-elision that is a pure C
program formed by removing the Cilk key words. If the Cilk program is de-
terministic, the semantics of its C-elision (seen as a C program) is identical to

14



the semantics of the Cilk program. The most important condition for being a
deterministic Cilk program is to be free of data dependencies between parallel
parts of the program.

X10 X10 is a programming language closely resembling Java that is under
development at IBM [4]. X10 aims at supporting parallelism not only at the
multicore level, but also across clusters. It has a memory model based on the
partitioned global address space model (see Section 2.2.1) so that each compu-
tation, object or array element has an associated place. A computation can only
operate on data in the same place, and computations can fulfill that requirement
by spawning computations in arbitrary places.

Erlang Erlang is the result of an effort at Ericsson for developing a language
suitable for implementing telecommunications applications. It is based on a
dynamically typed, strict functional core extended with processes and primitives
for message passing. Each process has its own address space; message passing
logically entails copying the contents of the message. For this reason, Erlang is
also suitable for programming clusters, but recent implementation efforts have
used shared memory to reduce copying, thus making it run more efficiently on
multicores.

State of the art Today, most multicore programming is done using either
threads (pthreads, Windows threads or Java threads), OpenMP or the
Intel TBB.

Current challenges New programming languages generally take quite long to
be widely adopted, and when it happens, it is often because of a change
in the computing environment. Thus Java adoption was driven by the
arrival of the web. Multicore is an even more disruptive technology change,
which could drive the adoption of new languages. However, the multicore
problem has a large legacy aspect, which was less true of the advent of
the web, which might push development in the direction of conservative
extensions of existing languages.

2.2.4 Load balancing and scheduling

Scheduling takes place on two different levels in a multicore system. First, the
operating system kernel is responsible for scheduling kernel threads on the cores
of the processor. Second, for some of the programming models, a user level
run-time system schedules more light-weight parallel activities on top of a few
heavyweight kernel threads, typically called workers. For the kernel threads
programming model, this second layer of scheduling is, if it exists at all, part of
the application.

Kernel level scheduling The goals of a kernel level scheduler are fairness,
good response time for interactive jobs and good throughput for non interactive

15



jobs, where a job is a set of threads that cooperate to perform a computation or
provide a service. The fairness goal (that all jobs should get a fair share of CPU
time) is typically achieved by a combination of time sharing (giving each thread
a small amount of CPU time, called a time slice, now and then) and space
sharing (giving each job a subset of the available cores). While space sharing
works at the level of jobs, time sharing works either at the level of individual
threads or, if the scheduler always give the threads of a job their time slices at
the same time. Of course, a scheduler can employ time and space sharing at
the same time.

Kernel level scheduling for multicore processors mainly differ from that of
traditional multiprocessors by taking the resource sharing of the cores into ac-
count. For instance, a group of cores may be sharing some level in the cache
hierarchy, with other groups not sharing. Threads can then either be sched-
uled on cores in the same group, minimizing communication latency, or spread
over several groups, maximizing aggregate cache size to minimize cache misses.
Depending on the characteristics of the group of threads, either choice may
be preferable. Similarly, with SMT or other forms of multithreaded cores, all
functional units are shared so that it might be advantageous to schedule for
instance a thread with mainly integer instructions together with a thread with
many floating point instructions, in addition to the cache related interactions.

User level scheduling The task and user level threading models are sup-
ported by user level schedulers in the run-time systems of the thread/task im-
plementations. For user level threads, the objectives are the same as for kernel
threads, but with an expectation of considerably lower cost.

For tasks, the issue of fairness is irrelevant since tasks are non preemptive
and can be executed sequentially using a stack. This simplifies the scheduler and
contributes to even lower overheads. Task schedulers attempt to simultaneously
achieve good load balance (avoiding idle cores), low overhead (avoiding running
the scheduler all the time) and good locality (avoiding cache misses when one
core needs data computed by another core). These are conflicting goals; from
the point of view of locality, the best schedule is typically to run all tasks on
a single worker whereas load balancing is best served by spreading the tasks
evenly over the machine.

OpenMP schedules loop iterations as tasks in this sense and defines three
scheduling policies:

• static, which assigns loop iterations to workers before the loop starts, thus
minimizing overhead and achieving good locality.

• dynamic, where workers obtain loop iterations from a shared counter,
optimizing for good load balancing.

• guided, which is similar to dynamic but where workers obtain larger chunks
of loop iterations in the beginning of the loop and smaller towards the end,
as a compromise between the three objectives.

16



Another class of scheduling algorithms often used for tasks is work stealing.
Here each worker maintains a local task pool where it pushes and pops tasks
in stack like, last in first out (LIFO) order. When a task pool becomes empty,
the associated worker attempts to steal tasks from a randomly chosen victim.
Typically, the oldest task in the pool is stolen, located at the base of the stack
rather than at the top where the victim does its own pushing and popping. This
fits well with recursive divide and conquer programs like quicksort where the
oldest task in the pool represents as much work as the rest of the tasks in the
pool. For programs where the tasks in the pool represent about equal amounts
of work, stealing half of the tasks has been proposed.

The dynamic nature of work stealing contributes to good load balancing
whereas the stealing of old tasks representing a lot of work gives reasonable
locality. If there are significantly more tasks than workers, stealing is infrequent,
leading to low overheads.

State of the art Work stealing schedulers are used for example in Cilk and the
Intel Thread Building Blocks and OpenMP with its schedulers is widely
used.

Current challenges Locality is very important and is strongly affected by
scheduling and remains a challenge as discussed in the next section. The
best scheduling method also depends heavily on the characteristics of ma-
chines and programs, leading to a need for considerable tuning of parallel
programs.

2.2.5 Locality

The interaction of local memory usage (cache miss rates), core counts and off-
chip bandwidth and latency is likely to be of paramount importance as core
counts scale in future multi- and many core processors. As on-chip computa-
tional performance increases with increasing core counts, either off-chip band-
width needs to scale as well or cache miss ratios needs to decrease. If not,
congestion will make cache misses slower until they have slowed down on-chip
processing speed enough to achieve equilibrium with the limited bandwidth.

Hardware vendors such as Intel are working on meeting the goal of band-
width scaling, but it will require substantial changes in packaging, typically
with memory chips stacked on top of processor chips in the same package, as
pioneered in the 80 core Intel Polaris prototype [24, 2]. This architecture gives
very short interconnections which helps limit power consumption.

In addition, cache miss rates can be reduced using for instance larger caches,
and indeed the total cache size on a multicore chip can easily be made to scale
with the number of cores. However, for core counts to scale with density in-
creases, the amount of cache per core stays constant. Thus the question becomes
whether the total amount of cache can be leveraged to decrease miss rates. This
in turn is possible if the code running on the cores share data so that data
brought in to the chip to service a cache miss in one core gets reused by other
cores before being evicted. This is known as constructive cache sharing.

17



For workloads where different processes are run on the cores (typical of
some server environments), there appears to be no straight forward way to
reach this goal (except that program text can be shared in an operating system
supporting shared libraries). If on the other hand the cores cooperate in running
a single application, that application can be written to exploit constructive cache
sharing. In the task based style of parallel programming, where a program is
divided into a number of tasks much larger than the number of cores, the task
scheduler is in a position to exploit constructive cache sharing since it controls
which tasks are executed concurrently on the various cores. In a recent study
[5], it was shown that this approach can in fact be quite effective.

State of the art The PDF scheduler [5] exploits constructive cache sharing,
and the Intel TBB is also moving in the direction of taking locality issues
into account [18]. There is quite a lot of work on 3D memory packaging
going on, but so far there is no commercial implementation.

Current challenges The work on exploiting constructive cache sharing has
just started, so there are many challenges. In particular, there is a trade
off between enhancing locality within a chip, between cores, as the PDF
scheduler does, and enhancing locality within cores (processors) as tradi-
tional work stealing does. In effect, PDF trades an increase in communi-
cation between cores for a decrease in off-chip communication.

2.3 Other issues

2.3.1 Transactional memory

In a programming model with explicit concurrent activities (like threads) which
share mutable state (for instance shared data structures), it is often the case that
operations on these structures are implemented using several memory references
that need to be executed without being interleaved with other accesses to the
same structure. Incrementing a counter is a simple example; first the old value
of the counter is loaded, then the new value is computed and finally the new
value is stored in the counter. If a second thread reads the old value between
the load and the store, and stores its new value after the sore of the first thread,
the update of the first thread is lost; the value of the counter is as if the first
thread had not incremented it.

The solution to the problem involves the concept of mutual exclusion; while
one thread operates on a shared object, no other thread may access it. The
standard way to achieve mutual exclusion is to use locks which ensure that a
thread that attempts to access a shared object while another thread operates
on it will be delayed until the operation is completed. A lock can be locked or
unlocked; the lock operation makes an unlocked lock locked, but applied to an
already locked one it waits until the lock is unlocked, then it locks it, while the
unlock operation simply makes a lock unlocked.

Locks solve the problem of mutual exclusion, but they create problems of
their own. For instance, if threads uses multiple locks, as is often necessary,

18



deadlock may occur. Also, in systems where threads have different priorities, a
high priority thread can preempt a lower priority thread holding a lock that the
high priority thread itself needs. An intermediate priority thread can then cause
the low priority thread to not run, which means that the high priority thread
is blocked, effectively waiting for the medium priority thread. This problem is
known as priority inversion.

In recent years, transactional memory (TM) has emerged as an alternative
to locks [9, 20]. In a TM system, operations on shared objects are performed
speculatively, without checking if another thread is also accessing it. When the
operation is complete, a check is made as to whether another thread accessed
the object while the operation was in progress, in which case the operation is
aborted so that it appears never to have been started. Otherwise it is commit-
ted and the updates it has performed are made permanent. Transactions are
implemented by keeping track of the set of memory location read and written
by each transaction and checking that writes in one transaction do not overlap
with accesses in another transaction.

Transactional memory can be implemented in hardware as in the original
proposal by Herlihy and Moss [9], in software as pioneered by Shavit and Touitou
[20] or in some combination [6]. A hardware approach has the best performance,
but suffers from a limitation in the size of transactions that can be supported
since the set of locations read or written is kept track of in hardware buffers that
are of fixed size. Transactions that are too big will always abort. Thus in effect
the size of the hardware buffers is visible to the application and becomes part
of the ISA. A software implementation keeps the administrative information in
memory and even though memory is also of finite size, it is in general “large
enough”.

State of the art Hardware transactional memory is an active research topic
and is implemented in the Rock processor from Sun, due to be available in
servers in 2009. A few implementations of software transactional memory
is available in prototype form, for instance from Intel [10].

Current challenges The exact semantics of TM systems need to be estab-
lished, including the interaction with non transactional references. Hard-
ware transactional memory also has its own performance issues [1] that
need to be addressed, and its integration with software TM must also be
studied.

2.3.2 Thread level speculation

Thread level speculation (TLS) [21, 22]is to the synchronization problem what
transactional memory is to the mutual exclusion problem. That is, computa-
tions that might be dependent are speculatively executed in parallel and if a
dependence violation (the logically earlier computation makes a memory ref-
erence that overlaps with one that the logically later computation has already
performed) is detected, the logically later computation is aborted and later
restarted. If such aborts are infrequent, TLS can achieve good performance.

19



The main advantages of TLS are that it is applicable in cases where static
dependence analysis is unavailable, where the complexity of the code has pre-
vented the analyzer from finding available parallelism or where there sometimes,
but not very often, actually exist dependencies (for instance, in just one itera-
tion of an otherwise parallel loop). This disadvantages are the need for hardware
support and a relatively narrow zone of applicability: On the one hand, TLS
is not needed if static detection of parallelism is successful or the parallelism
is explicit. On the other hand, if the parallelism (lack of dependencies) is not
there, TLS is not effective. On the third hand, TLS may have a role to play in
parallelizing some portions of a program that are not otherwise automatically
(or manually) parallelizable, thus mitigating the impact of Amdahl’s Law: If a
fraction f of the execution time of a program cannot be parallelized, no parallel
machine will achieve a speedup that is better than 1

f .

State of the art No commercial hardware implements TLS and there appears
to be no plans in that direction (in contrast to TM). Research has demon-
strated a certain potential, but the real size of that potential is unclear.

Current challenges Achieving a scalable implementation is a challenge, as is
how to minimize the number of aborts and restarts.

2.3.3 Fault tolerance

As feature sizes shrink (transistors become smaller, wires thinner), it will become
more and more difficult to get chips with no defects. Today, DRAM chips are
pushing the envelope in device density and are using redundancy to tolerate
some manufacturing defects. The same techniques could be applied to multicore
processors, and for instance Sun appears to do that already, selling both 8 core
and 6 core versions of the UltraSPARC T1 processor with the 6 core version
(sometimes) being an 8 core with one or two defective cores.

As core counts increase, we can expect cores to fail dynamically. The ques-
tion then becomes whether the computation can proceed on fewer cores. Clearly,
this depends on the failure mode. A core that starts interacting in random ways
with its environment is much more difficult to deal with than one that just stops
interacting which is again more difficult that dealing with one that signals its
ill health explicitly (for instance because it has started to accumulate parity
errors).

On a chip with many cores, redundancy could be used to achieve a high
degree of tolerance, at least for the last category above.

Also, process variations are likely to make the maximum clock frequency of
cores vary, an effect that must be taken into account when scheduling. This
effect would favor dynamic (on-line) scheduling algorithms over static (off-line)
ones.

State of the art Defective cores are sometimes disabled at manufacture, but
no current multicore processor can continue executing if a core ceases to
function properly at run-time.

20



Current challenges Dealing with run-time failures is a big challenge, espe-
cially in a cache coherent system. Performance variations in cores due to
manufacturing and temperature variations must also be dealt with as they
complicate load balancing.

3 Swedish multicore related activities

This section presents some of the work that is ongoing in Sweden, both from an
academic and industrial perspective.

3.1 The Swedish Multicore Initiative

The Swedish Multicore Initiative is a concerted effort to address the engineering
and strategic issues related to multicore processor technology for the software
intensive systems industry in Sweden. The Initiative ties together all parties
interested in advancing this technology with the main objective of drastically
reducing the cost of software production for multicores.

The vision of the Initiative is to make multi/many-core microprocessor tech-
nology as easy to use for the Swedish software intensive industry as single-core
microprocessors.

The main objectives of the Initiative therefore include:

• To make Swedish software-intensive industry internationally competitive
in utilizing multi/many-core technology

• To make graduates from Swedish universities internationally competitive
in utilizing multi/many-core technology

• To make Swedish research internationally competitive in advancing state-
of-the-art in utilizing multi/many-core technology

Our belief is that this can only be achieved through a focused collaboration
between industrial and academic organizations. To facilitate this, the Initiative
will form a virtual center which acts as a one-stop shop for competence in
utilizing multi/many-core technology. This center could be seen as a Swedish
counterpart to international industrial/academic partnerships such as the one
at UC Berkeley and University of Illinois UC (with Microsoft, Intel US) and
at Stanford University (with AMD, HP, Intel, NVidia and Sun). The center
naturally connects to international competence networks through its members.
One example is the strong link to the HiPEAC Network of Excellence supported
by EU under FP7.

3.1.1 Activities

The Swedish Multicore Initiative has a number of activities to meet its objec-
tives:

21



• Dissemination of research results and best practices:

– Multicore day: A state-of-the-art annual seminar for industry and
academia highlighting technology advances, research results and hands-
on solutions to current problems. It will be held in September yearly.

– Swedish Multicore Workshop: An annual workshop for academia and
industry to present and discuss recent research results. The first
workshop will be organized by Blekinge Institute of Technology in
November 2008.

– Best practices workshop: An annual workshop for industry and academia
to present and discuss best practices in multicore software develop-
ment. First BP workshop will be arranged in February 2009.

• Research and educational program to set the agenda for research and edu-
cational efforts in multi/many-core technology from a Swedish perspective.
Working groups will be formed to initially focus on

– A technology roadmap from a Swedish industrial perspective

– Curriculum development

– Coordination and marketing of Swedish multicore competence

• Collaborative research between academic and industrial groups.

3.2 Academic work in Sweden

In this section we discuss academic work on multicore related issues in a roughly
north to south order.

3.2.1 Uppsala university

At the Department of Information Technology, Uppsala University, the UP-
MARC center has recently been formed to make a coordinated attack on the
challenges of developing methods and tools to support software development
for multicore platforms. UPMARC brings together research groups in comple-
mentary areas of computer science: computer architecture, computer networks,
parallel scientific computing, programming language technology, real-time and
embedded systems, program verification and testing, and modeling of concurrent
computation. Research directions span over programming language constructs,
program analysis and optimization, resource management for performance and
predictability, verification and testing, and parallel algorithm construction and
implementation. UPMARC has recently been awarded a ten year Linnaeus
grant from the Swedish Research Council, as a witness of scientific excellence.
This funding is a very good foundation for performing basic research, which
should be complemented by more applied research efforts, in collaboration with
industrial and scientific applications in multicore computing. We are actively

22



building up such collaborations, and any funding for these efforts is welcome
and can take advantage of existing research activities.

Research in UPMARC will use the development of a number of concrete par-
allel software bases as drivers for research and test-beds for ideas. We plan to use
applications in high-performance computing (e.g., climate simulation), in mobile
phones (e.g., protocol processing), in programming language implementations
(e.g., runtime system implementations), in embedded control applications (e.g.,
target tracking or robot control), and also other areas. These efforts per se can
not be funded by the UPMARC grant, but we seek collaboration schemes to
realize them.

The planned research in UPMARC is structured into a number of research
directions. We have a very strong track record in each of them, and will use our
expertise to address challenges for multicore software development. developing
principles for algorithm construction in key application areas, considering the
new trade-offs for multicores in comparison with previous multi-computers.

• In the scientific and high-performance computing community, parallel pro-
gramming and parallel algorithms have been central tools for more than
twenty years. With multicore platforms becoming mainstream, many ap-
plications, if not most, need to be adapted. This includes systems software
as well, i.e. operating systems, communication subsystem and execution
environments for parallel languages. We have been working on parallel
algorithms and programs for scientific applications and communication
systems for the last 20 years. Leveraging on our expertise we will focus
on the following long term challenges:

– New scientific applications that scale up to a large number of cores,
i.e. hundreds or thousands of cores.

– How to design protocols and communication algorithms for multi-
cores.

• Developing techniques for making the most efficient use of system re-
sources, including processor cores, memory units, communication band-
width, in order to meet requirements of performance and predictability.
We will develop techniques by which the wide variety of resources can be
abstracted, modeled, managed and analyzed. Our research will focus on
two challenges.

– Efficient management of shared resources for performance: we will
develop techniques for modeling resources, as a basis for identifying
bottleneck, code transformation, and self-adapting run-time resource
allocation techniques.

– Predictability of timing and resource-consumption: we will develop
techniques to predict bounds on timing and resource usage e.g. energy-
consumption.

23



• Developing programming language constructions and paradigms, that al-
low the software developer to express the potential parallelism of an al-
gorithm, at the same time as shielding her from the added complexity
of concurrency. Here, we plan to continue our work on the efficient im-
plementation of Erlang-style concurrency on multicores, and investigate
how message-passing concurrency compares to and can be combined with
atomicity constructs. We will develop annotations and contracts, which
allow programmers to specify properties of software components at a sig-
nificantly higher level then is currently possible, and accompanying pro-
gram analysis and testing techniques for checking these annotations. We
will also build a framework for formulating and proving correctness of op-
timizing transformations. A long-term goal is to build a library of trans-
formations along with their formally machine-checked correctness criteria.

• Developing techniques for analyzing vital correctness properties of concur-
rent programs, by developing and combining techniques in formal verifi-
cation, static analysis, and testing.

3.2.2 Mälardalen university

The Multicore research at Mälardalen University is mainly carried out by the
Programming Languages group2, with some planned activities in the Real-Time
Systems Design group3. These are the main planned activities:

Parallelization of legacy telecom software This is a topic of great interest
for Swedish telecom industry, where many millions of lines of code are invested
in the current, mainly single-core systems. Automatic parallelization of this
code, to make it run on multicore processors, would relieve the industry from
the huge effort of rewriting the code by hand. Automatic parallelization is
very hard in general, but telecom code has certain characteristics that may
make the problem more tractable. We have previously studied the problem in
a project with Ericsson, and some possible parallelization methods have been
suggested. We want to continue this research, but would then need further
funding. Such funding has been sought from SSF, together with BTH, Chalmers,
SICS, Ericsson, and Enea.

WCET Analysis for Multicore and MPSoC systems Worst-Case Exe-
cution Time (WCET) analysis finds upper bounds for the largest possible exe-
cution time of a piece of code on a certain hardware. This information is crucial
when verifying the timing properties of safety-critical real-time systems. Such
systems are found in applications such as automotive, and WCET analysis is
thus highly relevant to Swedish industry. The Programming Languages group is
one of the world-leading groups in this area. Current WCET analysis methods

2http://www.mrtc.mdh.se/index.php?choice=research groups&id=0009
3http://www.mrtc.mdh.se/index.php?choice=research groups&id=0006

24



and tools, as well as almost all scientific literature in the area, concern exclu-
sively single-core systems. The introduction of multiple-core systems changes
the rules of the game completely. Scientifically, WCET analysis for multicore
systems is almost unchartered territory. However, it not hard to see that timing
predictability of code running in such systems can be drastically reduced, due to
unpredictable access times to shared resources such as buses and shared memo-
ries. Within the EU FP7 NoE ARTIST-DESIGN on embedded systems design
there is a Timing Analysis activity, lead by the MDH group, whose purpose is to
initiate research in this area. This research will have to be cross-disciplinary and
preferably involve also researchers in computer architecture and system design.
The NoE only supports networking activities: funding to do the actual research
must be sought elsewhere, for instance nationally.

Real-Time Scheduling for Multicore Systems The Real-Time Systems
Design group performs research on different aspect of real-time scheduling meth-
ods. They are now moving into the area of real-time scheduling for multicore
systems.

3.2.3 Royal Institute of Technology and Swedish Institute of Com-
puter Science

Royal Institute of Technology (KTH) and SICS have a joint research group in
multicore technology. The work focus on programming models and support for
resource management on manycore processors.

Programming models for manycore processors Manycore (more than
10-20 cores) processors require a radically different mindset than what is mostly
used on today’s multicore processors. With just a few cores, it is hard, but still
feasible to reason about threads of control and their interaction. With many-
cores, this is no longer feasible. We advocate the use of safe task-based paral-
lelism. With this model programmers reason about tasks, small pieces of code
that may be executed independently of other tasks given that data dependencies
are still observed. In a safe program, there are no dependencies between concur-
rently executing tasks. All execution orders (schedules) of a safe task parallel
program have the same semantics, including a canonical sequential execution.
Thus all program development and correctness debugging can be done in the
sequential domain while performance debugging is done in the parallel domain.

Our work involves tools for analyzing and exposing data dependences and
efficient implementations of task-based parallelism.

• Embla is a dynamic data dependence analyzer (profiler) that can be used
to discover opportunities for parallel execution in sequential programs. It
is based on the Valgrind instrumentation infrastructure and is independent
of the source language of the analyzed program. Since Embla is used with
a sequential program, the results are safe with respect to the inputs used
for the analysis run, in contrast to tools for explicitly parallel programs.

25



Thus Embla supports the development of task parallel programs that are
safe by construction.

• Wool is a simple implementation of task scheduling which differs from
other widely used alternatives like OpenMP, Cilk or TBB by requiring no
compiler support and having a simple direct style C-based API.

Resource management on manycore processors Manycore processors
contain numerous resources that must be managed in run-time robustly and
efficiently. In general applications, the workload of processors will vary greatly
over time. Typically, the workload will consists of bursts of self-similar na-
ture. In such systems, it is important to control the hardware so that enough
resources are available for the workload, but not more, for energy-savings rea-
sons. In previous work we have integrated simple periodic shutdown strategies
in a commercial-grade operating system with the purpose of switching cores of
a small-scale multicore processor (8 cores) on and off to adapt to the current
workload needs with up to 80% energy savings as a result.

This work will continue taking many more resource variabilities and fault-
tolerance into account.

3.2.4 Linköping university

Optimized On-Chip Pipelining of Memory-Intensive Computations
on Cell BE Memory-intensive computations, such as stream-based sorting or
data-parallel operations on large vectors, cannot utilize the full computational
power of modern multi-core processors such as Cell BE because the limited
bandwidth to off-chip main memory constitutes a performance bottleneck. We
apply on-chip pipelining to reduce the memory transfer volume, and develop
algorithms for mapping task graphs of memory-intensive computations to Cell
that also minimize on-chip buffer requirements and communication overheads.
(Contact: C. Kessler)

Context-aware composition of parallel programs from components
Programming parallel systems is difficult. Components are a well-proven con-
cept to manage design and implementation complexity, but are often more gen-
eral than necessary and hide too many design decisions such as scheduling or
algorithm selection, which should better be bound later (e.g. at run-time) when
more information about available resources or problem sizes is known. We inves-
tigate context-aware composition, a powerful optimization technique that can
be seen as a generalization of current auto tuning methods for domain-specific
library functions. (Contact: C. Kessler)

High-level parallel programming for Cell BE Exploiting the full perfor-
mance potential of heterogeneous multi-core processors such as Cell BE is diffi-
cult, as several sources of parallelism (inter-core, SIMD, and DMA parallelism)
must be coordinated explicitly and at a low level of abstraction. We apply the

26



skeleton programming approach to reduce this complexity to, basically, that
of ordinary sequential programming wherever the computation structure fits
a specific pattern for which generic parallel code parameterizable in problem-
specific code is available. Our implementation BlockLib for Cell BE achieves
the efficiency of hand-tuned code. (Contact: C. Kessler)

Low-latency, low-power and low-silicon-cost architecture for predictable
real-time computing So far, there is no perfect architectural solution for
low-latency, low-power, and low-silicon-cost real-time computing. Requirements
for such applications tend to go beyond the capacity that current silicon tech-
nology and classical general-purpose computer architecture can offer. An ex-
ample is the data recovery signal processing for long-term evolution (LTE).
Many real-time computing applications are predictable, which allows to use
template-based, domain-specific programming models and tools. We develop
a reconfigurable multi-core architecture and programming tool chain aimed at
accelerating multimedia, telecommunication and other vector computing appli-
cations. (Contact: D. Liu)

Automatic parallelization of mathematical models Equation-based object-
oriented mathematical modeling languages such as Modelica allow to express
simulation problems at a high level of abstraction. We extract parallelism over
time steps and over the system directly from the high-level model, and also
exploit parallelism in the numerical methods used for simulating models. This
includes task graph mapping, pipelining and replication techniques. The results
are also applicable to single-assignment programs in general. Our implemen-
tation in the OpenModelica open source compiler achieves a speedup of 6.1 on
8 cores for a flexible-shaft mechanical model. Code generation for Cell BE is
under way. (Contact: P. Fritzson)

Large-scale parallel simulation of mechanical applications on multi-
core clusters Research on accelerating mechanical system simulations by par-
allelization is a long-term cooperation between SKF (Göteborg) and Linköping
University. Current emphasis is on detailed modeling and simulation of con-
tact problems on large multi-core clusters. Current research problems include
improved hybrid scheduling and increasing the amount of parallelism in simu-
lations. (Contact: D. Fritzson, P. Fritzson)

3.2.5 Chalmers Multi-core Initiative

Software development productivity is a first-class citizen. Unfortunately, writing
software to take advantage of multicore computers is a difficult, time-consuming,
and error-prone process that will cut down software development productivity
by orders of magnitudes. While there is an educational gap to fill, which we
as well as all other universities are addressing, this does not solve the problem
in the long-term. What is needed is to encapsulate multicore computers in a

27



way so that they expose a clean abstraction that a software developer is used
to. The missing link is what this abstraction should be and how it should
be implemented. This is the key research questions that we at Chalmers are
committed to address.

The Chalmers Multicore Initiative is committed to do research on a produc-
tive abstraction that enables software developers to focus on delivering function-
ality and delegates how to exploit the performance of multicores to underlying
libraries and architectural abstractions. Our approach to do that builds upon
our competences in

• Programming language and program analysis (Sheeran, Hughes, Claessen)

• Parallel algorithms and shared data structures (Papatriantafilou, Tsigas)

• Computer Graphics (Assarsson)

• Computer architecture (Stenstrom, McKee)

At the core abstraction exposed to the software developer, we are research-
ing domain-specific language implementations and associated program testing
methodologies that abstract away architectural details to developers. Core val-
ues directly addressed are enhanced software development productivity. To
implement such abstractions, it is important to leverage libraries and system
software components that can be proven to execute correctly in a multicore
environment. Our long-term research on lock-free (synchronization-free) data
structures is leveraged here. Finally, the basic architecture of a multicore must
expose a more productive interface to the software. Our current focus on trans-
actional memory is key to such a direction.

3.2.6 Blekinge Tekniska Högskola

The Parallel Architectures and Applications for Real-Time Systems (PAARTS)
research group, http://www.bth.se/tek/PAARTS/, at BTH has almost 20 years
of experience of parallel applications, multiprocessors, and multicore systems.
Several of the research projects have been done in close cooperation with indus-
try. Examples of industrial partners are Ericsson AB, UIQ Technology AB,
Vodafone (now Telenor) AB, Danaher Motion Särö AB, and Sony-Ericsson
AB. The PAARTS group currently consists of three full professors, four as-
sistant/associate professors, three lecturers, and four PhD students. The group
is part of the BESQ Research Center, http://www.bth.se/besq/, which consists
of five full professors, 18 assistant/associate professors, and 24 PhD students.

The PAARTS research group is mainly working on the following topics:

• Methods, guidelines, and tools for cost-effective development of parallel
applications for multiprocessors and multicore systems. This includes
techniques for handling conflicts and trade offs between performance,
maintainability, and availability.

28



• Tools and methods for visualization, performance prediction, and perfor-
mance debugging of multithreaded applications. In this area a prototype
tool has been developed that visualizes the parallel execution of a mul-
tithreaded program, shows all synchronizations and thread interactions,
and predicts the performance for an arbitrary number of processors.

• Methods and techniques for migrating and porting of sequential appli-
cations to multiprocessor and multicore systems. We have worked with
both user-level application as well as kernel-level real-time operating sys-
tem code.

• Parallel computer architectures and multicore architectures, with a focus
on the cache and memory system. For example, novel coherence protocols
and update strategies have been developed. Current interests are novel
synchronization and data management techniques such as transactional
memory.

• NP-hard resource allocation algorithms, e.g. scheduling. In this area
focus is on mathematical techniques for establishing optimal performance
bounds on NP-hard resource allocation problems, thus making it possible
to compare the performance of heuristic resource allocation techniques
with the optimal result.

• Real-time multimedia applications. In this area the focus is on techniques
for parallel real-time ray tracing of dynamic scenes and real-time streaming
video applications in mobile terminals with various resource constraints
such as power and bandwidth.

3.2.7 Halmstad University

Within CERES, the Centre for Research on Embedded Systems at Halmstad
University, research on embedded highly parallel computing for high-performance
applications has been going on for twenty years. The research is and has been
performed in close collaboration with Swedish industry developing advanced
telecommunication and radar system equipment (i.e., Ericsson and Saab). Col-
laboration also takes or has taken place with parallel processor developers such
as Ambric, XPP and Clearspeed and with academic institutions such as UC
Berkeley and MIT.

Currently, the main activities are within the project EPC – Embedded Par-
allel Computing, with Combitech, Ericsson and Saab Microwave Systems as
industrial partners. Two of the main tasks in the project are the following:

A Domain-specific Approach for Software Development on Manycore Plat-
forms For complex real-time systems, such as baseband processing platforms,
we see a need for tunable code parallelization- and mapping tools, allowing
programmers to take the system’s real-time properties into account during the
optimization process. Therefore, complementary to fully automatized multicore
compilers, we are proposing an iterative code parallelization- and mapping tool

29



that allows the programmer to tune mapping by: analyzing the result of a par-
allel code map using performance feedback giving timing constraints, clustering
and core allocation directives as input the tool Such a tool would allow the pro-
grammer early in the development process to explore the run time behavior of
the system and to find successively better mappings. We believe that this itera-
tive, machine assisted workflow helps keeping the application software portable
and supports the user to make trade-offs concerning throughput, latency and
compliance with real-time constraints on different platforms. The tool is based
on well defined dataflow models of computation for modeling applications and
manycore targets, as well as the base for our intermediate representation for
manycore code-generation.

High-Level Programming of Coarse-Grained Reconfigurable Architectures
Reconfigurable computing devices have evolved over the years from gate-level ar-
rays to a more coarse-grained composition of functional blocks or even program
controlled processing elements. From a programming perspective, the program-
ming methods are moving from low-level structural descriptions to high level
languages. We believe that coarse-grained reconfigurable processor arrays are
well suited to cope with the increasing demands of high-performance embedded
systems because of their ability to adapt according to the application require-
ments. Being basically reconfigurable, these architectures offer the possibility
to modify their structure for supporting new functionality in the future. From
the programming perspective, the programming models are to be based on com-
putation models with the inherent semantics for separating computations from
communication. A promising approach is to use programming models with the
abstractions of processes to express concurrency and logical channels for spec-
ifying communication, in order to describe the functionality of the arrays of
processors. Based on the findings, we intend to perform some experiments by
adopting selected well-known computation models to program some example
coarse-grained architectures. In particular, we currently work with the CSP-
and pi-calculus based language occam-pi in order to produce code for the Am-
bric processor array.

Involved researchers: Bertil Svensson, Verónica Gaspes
Involved PhD students: Jerker Bengtsson, Zain-ul-Abdin

3.3 Industrial work

The Swedish system industry is in general software intensive and as such a re-
ceiver of multicore work. In this report, we will not look in detail on their specific
challenges. However, there are also suppliers of multicore related technologies,
some of which we will briefly discuss here.

3.3.1 Nema Labs AB

Nema Labs (www.nemalabs.com) mission is to offer tools that allow software
developers to concentrate on delivering functionality and to leave the task of
reliably threading of legacy and new code to leverage on the performance of

30



multicores to intelligent tools. While tools and methods to parallelize C/C++
code are available, they either reduce software development productivity by
offering a too low level of abstraction (e.g by using OpenMP) or by not leveraging
the performance potential of multicores (auto-parallelizers). By contrast, Nema
Labs roadmap realizes tools that allow software developers to thread legacy
C/C++ code fast and reliably by using a sequential abstraction with the help
of automatic threading in an iterative fashion.

Nema Labs is a spin out of research at Chalmers University of Technol-
ogy. It is offering a roadmap of threading tools that innovates on top of auto-
mated C/C++ source code threading products to accelerate reliable threading
of legacy code. The first product, called FASThread (Fast Automated Soft-
ware Threader), will be released in early 2009 as a Linux plug-in for the Eclipse
Integrated Development Environment (IDE), and will provide developers a fa-
miliar setting for threading their C programs with a few simple, automated
steps. Shortly thereafter, plug-ins for other IDEs and operating systems will be
released followed by a C++ version as well.

3.3.2 Acumem AB

The move to multicore architectures often results in lower-than-expected per-
formance. Limited per-thread cache capacity, memory bandwidth bottlenecks
and inefficient thread interactions ruins the potential performance, but only a
handful of experts are capable of understanding and fixing such problems.

This lead to the creation of the start-up company Acumem, partly based on
the work by Professor Erik Hagersten and his research team at Uppsala Uni-
versity. Many years ago they saw the need for tools that enable non-experts to
work efficiently with multicores, but it can be equally important to provide tools
to make the performance experts more productive, since they can be expected
to get their hands full with performance problems over the next decade.

One part of Acumem’s core technology is a sampler that efficiently captures
sparse architecturally-independent runtime information from native execution –
the application’s fingerprint. A second part is a modeling technology that mod-
els a given multicore’s behavior based on a fingerprint. These two parts together
gives an unprecedented insight into what really goes on inside a multicore with
high accuracy and high efficiency.

Acumem has developed their first product, SlowSpotterTM, on top of the
core technology. It finds application SlowSpotsTM – places in the code that
can be modified to improve the application’s performance. About 20 different
types of SlowSpotsTM, related to multithreaded execution and cache usage,
are identified and fixes suggested at a level of detail allowing for non-experts
to perform the optimization. A second product SlowSpotter-ProTM is targeting
the performance experts with an aim at improving their productivity. The freely
available SpotLiteTM can tell if an application has SlowSpotsTM and classifies
them according to type.

The Acumem tools are included in HP’s multicore toolkit and AMD’s ans
Sun’s recommended 3rd party performance tools. Other close partners include

31



Microsoft, Intel and SGI.

4 Glossary

This section provides a glossary of terms used in this report, most of them
related to multicore. It should not be taken as exhaustive.

anti dependence A dependence between a read of a memory location or reg-
ister and a subsequent write to the same memory location or register.
Causes serialization of the accesses to avoid unintended overwrite before
read of the old value. Can be eliminated by renaming (see register renam-
ing).

architecture (also instruction set (architecture), ISA)

cache A smaller faster memory containing a subset of the information stored
in a larger slower memory. Information read from the larger memory is
placed in the cache so that subsequent references can be serviced more
quickly.

cache hit A cache access where the referenced address currently is in the cache.

cache miss A cache access where the referenced address is currently not in the
cache.

core (also processor core) The fundamental building block of a multicore pro-
cessor, consisting of functional units, control logic, one or more register
sets and first level caches for data and instructions. Sometimes also a
second level cache is included in each core.

DRAM Slow, high capacity memory with read latency of a few tens of nanosec-
onds. Used to build the main memory of current computers.

dual core processor A processor with two cores.

first level cache (also L1-cache) The cache closest to the processor in a mul-
tilevel cache hierarchy.

flow dependence A dependence between a write to a memory location or
register and a subsequent read of the same memory location or register.
Causes serialization of the accesses to ensure that the correct value is read.

functional unit A hardware circuit realizing a limited set of related opera-
tions, for instance arithmetic and logical operations, floating point arith-
metic, or shifts.

multilevel cache hierarchy A set of caches organized so that the smallest
(and fastest) cache is accessed first, and if the access misses, the next
larger cache is accessed and so on. Typical processors today have two
levels of cache, but three level caches are found in some processors such
as the AMD Agena quadcore processor.

32



out of order issue In an out-of-order issue processor, the instructions do not
necessarily execute in the order they have in the program. Instead, when
they have been fetched from memory and decoded they are placed in a
buffer in the processor (called an instruction window) and executed when
their operands are available, increasing the amount of instruction level
parallelism the processor can exploit. A modern out-of-order core can
have on the order of a hundred instructions in its instruction window.

output dependence A dependence between two writes to the same memory
location or register. Causes serialization of the accesses to ensure that the
correct value is stored for later reads. Can be eliminated by renaming (see
register renaming).

quad core processor A processor with four cores.

register A small fast memory structure capable of storing one word (currently
typically 64 bits) in a processor core.

register file A hardware structure containing a collection of registers, at least
as many as specified by the architecture but often more than that in
processors implementing register renaming.

register renaming An implementation technique for allowing parallel execu-
tion of several instructions that use the same register for storing differ-
ent values by directing writes to the same (logical) register by different
instructions to different physical registers. Eliminates anti and output
dependencies on registers.

second level cache (also L2-cache) The second closest cache to the processor
(with the first level being the closest). Misses in the first level cache are
serviced by the second level cache.

superscalar A superscalar processor executes instructions that appear close to
each other in the instruction stream in parallel. Most of today’s processors
are superscalar.

task A unit of parallel execution in some programming models. Different tasks
in the same program typically share data, but synchronization is restricted
so that it does not prohibit a simple stack based sequential execution order;
a simple example of how to achieve this result is to only synchronize at
task creation and termination. In some contexts, the term task is used
to refer to a unit of parallel execution with arbitrary synchronization,
although this report uses the term thread for this purpose.

thread A unit of concurrency in some programming models. Different threads
in the same program typically share data and use explicit synchronization
to coordinate their activities.

33



VLIW A very long instruction word machine an instruction set where each
instruction specifies a number of different operations to be performed in
parallel, each with their own operands. The programmer (or compiler) is
responsible for ensuring that the operations are independent.

worker In programming models with light weight parallelism, such as the task
parallel model, the light weight parallel activities are scheduled on top
of a few (typically one per core or hardware thread) heavyweight threads
called workers by the parallel run-time system.

This concludes the glossary.

References

[1] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in hard-
ware transactional memory. SIGARCH Comput. Archit. News, 35(2):81–91,
2007.

[2] Shekhar Borkar. Thousand core chips: a technology perspective. In DAC
’07: Proceedings of the 44th annual conference on Design automation, pages
746–749, New York, NY, USA, 2007. ACM.

[3] M. Broberg, L. Lundberg, and H. Grahn. VPPB: A visualization and
performance prediction tool for multithreaded Solaris programs. In Inter-
national Parallel Processing Symposium, pages 770–776, 1998.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: an object-oriented approach to non-uniform cluster comput-
ing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and appli-
cations, pages 519–538, New York, NY, USA, 2005. ACM.

[5] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis,
Anastassia Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos
Hardavellas, Todd C. Mowry, and Chris Wilkerson. Scheduling threads for
constructive cache sharing on cmps. In SPAA ’07: Proceedings of the nine-
teenth annual ACM symposium on Parallel algorithms and architectures,
pages 105–115, New York, NY, USA, 2007. ACM.

[6] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. Hybrid transactional memory. SIGPLAN
Not., 41(11):336–346, 2006.

[7] Karl-Filip Faxén, Konstantin Popov, Sverker Jansson, and Lars Alberts-
son. Embla—data dependence profiling for parallel programming. In Fatos
Xafa and Leonard Barolli, editors, CISIS 2008: Proceedings of the Second

34



International Conference on Complex, Intelligent and Software Intensive
Systems, pages 780–785. IEEE Computer Society, 2008.

[8] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy
races in cilk programs. In SPAA ’97: Proceedings of the ninth annual ACM
symposium on Parallel algorithms and architectures, pages 1–11, New York,
NY, USA, 1997. ACM.

[9] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA ’93: Proceedings of the 20th
annual international symposium on Computer architecture, pages 289–300,
New York, NY, USA, 1993. ACM.

[10] October 2008. software.intel.com/en-us/articles/intel-c-stm-compiler-
prototype-edition-20.

[11] Tim Johnson and Umesh Nawathe. An 8-core, 64-thread, 64-bit power
efficient sparc soc (niagara2). In ISPD ’07: Proceedings of the 2007 inter-
national symposium on Physical design, pages 2–2, New York, NY, USA,
2007. ACM.

[12] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for
superscalar and superpipelined machines. In ASPLOS-III: Proceedings of
the third international conference on Architectural support for programming
languages and operating systems, pages 272–282, New York, NY, USA,
1989. ACM.

[13] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Nia-
gara: A 32-way multithreaded sparc processor. IEEE Micro, 25(2):21–29,
2005.

[14] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. Ibm power6
microarchitecture. IBM J. Res. Dev., 51(6):639–662, 2007.

[15] Gabriel H. Loh. 3d-stacked memory architectures for multi-core proces-
sors. In ISCA ’08: Proceedings of the 35th International Symposium on
Computer Architecture, pages 453–464, Washington, DC, USA, 2008. IEEE
Computer Society.

[16] Mark Moir, Kevin Moore, and Dan Nussbaum. The adaptive transactional
memory test platform: a tool for experimenting with transactional code for
Rock (poster). In SPAA ’08: Proceedings of the twentieth annual sympo-
sium on Parallelism in algorithms and architectures, pages 362–362, New
York, NY, USA, 2008. ACM.

[17] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The case for a single-chip multiprocessor. In ASPLOS-
VII: Proceedings of the seventh international conference on Architectural

35



support for programming languages and operating systems, pages 2–11, New
York, NY, USA, 1996. ACM.

[18] A Robison, M Voss, and A Kukanov. Optimization via reflection on work
stealing in TBB. In Proc. of Parallel and Distributed Processing, 2008.

[19] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–15, New York, NY,
USA, 2008. ACM.

[20] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 204–213, New York, NY, USA, 1995. ACM.

[21] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In ISCA ’95: Proceedings of the 22nd annual international
symposium on Computer architecture, pages 414–425, New York, NY, USA,
1995. ACM.

[22] J. Steffan and T Mowry. The potential for using thread-level data specu-
lation to facilitate automatic parallelization. In HPCA ’98: Proceedings of
the 4th International Symposium on High-Performance Computer Archi-
tecture, page 2, Washington, DC, USA, 1998. IEEE Computer Society.

[23] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous mul-
tithreading: maximizing on-chip parallelism. In ISCA ’95: Proceedings of
the 22nd annual international symposium on Computer architecture, pages
392–403, New York, NY, USA, 1995. ACM.

[24] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P. Iyer, A. Singh, A. Singh, T. Jacob, A10, S. Jain, A11, S. Venkataraman,
A12, Y. Hoskote, A13, N. Borkar, and A14. An 80-tile 1.28tflops network-
on-chip in 65nm cmos. In Solid-State Circuits Conference, 2007. ISSCC
2007. Digest of Technical Papers. IEEE International, pages 98–589, 2007.

[25] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Ed-
wards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown
III, and Anant Agarwal. On-chip interconnection architecture of the tile
processor. IEEE Micro, 27(5):15–31, 2007.

36


