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Multicore Curve-Based Cryptoprocessor with
Reconfigurable Modular Arithmetic Logic Units

over GFð2nÞ
Kazuo Sakiyama, Student Member, IEEE, Lejla Batina, Member, IEEE,

Bart Preneel, Member, IEEE, and Ingrid Verbauwhede, Senior Member, IEEE

Abstract—This paper presents a reconfigurable curve-based cryptoprocessor that accelerates scalar multiplication of Elliptic Curve

Cryptography (ECC) and HyperElliptic Curve Cryptography (HECC) of genus 2 over GFð2nÞ. By allocating � copies of processing

cores that embed reconfigurable Modular Arithmetic Logic Units (MALUs) over GFð2nÞ, the scalar multiplication of ECC/HECC can be

accelerated by exploiting Instruction-Level Parallelism (ILP). The supported field size can be arbitrary up to �ðnþ 1Þ � 1. The

superscaling feature is facilitated by defining a single instruction that can be used for all field operations and point/divisor operations. In

addition, the cryptoprocessor is fully programmable and it can handle various curve parameters and arbitrary irreducible polynomials.

The cost, performance, and security trade-offs are thoroughly discussed for different hardware configurations and software programs.

The synthesis results with a 0:13-�m CMOS technology show that the proposed reconfigurable cryptoprocessor runs at 292 MHz,

whereas the field sizes can be supported up to 587 bits. The compact and fastest configuration of our design is also synthesized with a

fixed field size and irreducible polynomial. The results show that the scalar multiplication of ECC over GFð2163Þ and HECC overGFð283Þ

can be performed in 29 and 63 �s, respectively.

Index Terms—Multiprocessor systems, processor architectures, reconfigurable hardware, arithmetic and logic units, public key

cryptosystems.

Ç

1 INTRODUCTION

SINCE Diffie and Hellman introduced the idea of Public-
Key Cryptography (PKC) [1] in the mid-1970s, public-

key cryptosystems have been an essential building block for
digital communication. PKC allows for secure communica-
tions over insecure channels without prior exchange of a
secret key. It can offer both key exchange and digital
signature. The most popular and most widely used PKCs
are RSA [2] and Elliptic Curve Cryptography (ECC) [3], [4].
In embedded systems, ECC is considered a more suitable
choice than RSA because ECC obtains higher performance,
lower power consumption, and smaller area on most
platforms. Another appealing candidate for PKC is Hyper-
Elliptic Curve Cryptography (HECC). Recently, many
software and hardware implementations of HECC have
been described, whereas more theoretical work has shown
that HECC is also secure for curves with a small genus [5].
Nevertheless, the performance is still much slower than one
for private-key cryptography, such as AES [6].

Implementing a fast PKC is a challenge for most
application platforms, varying from software to hardware.
For the choice of the implementation platform, several
factors have to be taken into account. Application-Specific

Integrated Circuit (ASIC) solutions provide the speed and
more physical security, but their flexibility is limited. For
that property, software solutions are needed; however, a
pure software solution is not a feasible option because of
low performance. Application-Specific Instruction set Pro-
cessor (ASIP) architectures based on hardware/software
codesign potentially allow an efficient design platform that
offers a trade-off between cost, performance, and security.

A considerable amount of work has been reported on
improving the performance of Elliptic Curve (EC) scalar
multiplication. The work can be classified into the following
categories: First, mathematical investigations have been
reported for various types of ECs, for example, Koblitz
curves [7]. Second, various algorithms for scalar multi-
plication have been proposed and criteria for improvements
include performance and side-channel security. One of the
best-known examples that meets both requirements is
Montgomery’s powering ladder [8]. Various types of
coordinates have been prepared as well as a number of
approaches to speed up finite-field arithmetic. Last,
architecture-level improvements can be considered from a
hardware implementation point of view.

The first contribution of this paper is the acceleration of
curve-based cryptosystems by deploying a superscalar
architecture. The solution is algorithm independent and can
be applied to any scalarmultiplication algorithm.We discuss
the improvement of the performances for ECC and HECC
over binary fields. Some previous work reported parallel use
ofmodular arithmeticunits to accelerate scalarmultiplication
[9], [10], [11], [12], [13], [14]. In the papers, point/divisor
doubling and addition operations are reformulated so that
they can take advantage of the parallel processing. On the
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other hand, our proposed architecture embeds an instruc-
tion scheduler that explores the highest level of paralle-
lism and assigns tasks for the processing units in an
optimal way. This way, the parallelism within the
operations can be found on the fly by dynamically checking
the data dependencies in the instructions.

The second contribution of this research is the design of a
reconfigurable data path over binary fields. In order to
support multiple curve-based cryptosystems and various
field sizes for them, it is necessary to provide different field-
length modular operations, for example, 193 bits for ECC
and 97 bits for HECC. In [15], Satoh and Takano solve this
problem by using an r-bit� r-bit multiplier and applying
an algorithm originally used for software implementations.
In other words, the advantage of their solution is that the
operand size can be freely chosen, limited only by the size
of the memory for storing intermediate variables. The area
and time complexities of modular multiplications are
considered, respectively, as Oðr2Þ and Oðm2Þ, where n ¼
m � r is the field size. For high-speed modular multi-
plications, the parameter r needs to be large and the data
path delay of the multiplier becomes longer. In contrast, the
critical path delay is independent of the field size in our
solution, where an n-bit� d-bit digit-parallel multiplier is
used. Furthermore, the organization of the multiplier can be
reconfigured by changing the interconnections between
processing cores that have Modular Arithmetic Logic Unit
(MALU) and memory. The so-called coarse-grained recon-
figurable data path offers high-speed modular multiplica-
tions, efficient use of hardware resource for various field
sizes, and support for arbitrary field sizes by providing
enough MALU cores.

The third contribution of this paper is a fair comparison
between ECC and HECC. For HECC of genus 2, the field
size is two times smaller than the one for ECC for the same
level of security [16]. Our programmable architecture
enables one to use the same hardware design for the two
curve-based cryptosystems. Moreover, we also explore
different arithmetic operations in the MALU and examine
the effects on the level of the parallelism in ECC and HECC.
As a result, we discuss the trade-offs between cost,
performance, and security.

The remainder of this paper is organized as follows:
Section 2 gives a survey of relevant previous work and
some background information for implementations of
curve-based cryptography. In Section 3, the architecture of
our proposed cryptoprocessor is explained. The perfor-
mance is evaluated with a system-level simulation and the
results are reported in Section 4. The details of our
implementation are introduced in Section 5 and the results
are shown for various implementation options in Section 6.
Section 7 concludes the paper.

2 CURVE-BASED CRYPTOGRAPHY

Here, we consider some background information for curve-
based cryptography over binary fields: For hyperelliptic
curves, we are interested in genus 2 curves only. We
mention the basic algorithms and the structure of the
operations. Good references for the mathematical back-
ground are [17], [16], [18].

The main operation in any curve-based primitive is
point/divisor multiplication (aka scalar multiplication). The
general hierarchical structure for operations required for
implementations of curve-based cryptography is given in
Fig. 1a. Point/Divisor multiplication is at the top level. At
the next (lower) level are the point/divisor group opera-
tions. The lowest level consists of finite-field operations,
such as finite-field addition, multiplication, and inversion,
required to perform the group operations. The only
difference between ECC and HECC is the sequence of
operations in the middle level. The sequence for HECC is
more complex when compared with the ECC point
operations; however, HECC uses shorter operands. One
can also perform inversion with a chain of multiplications
[19] and only provide hardware for finite-field addition and
multiplication. The corresponding hierarchy is illustrated in
Fig. 1b. The hierarchy uses several copies of operation units
at the lowest level to accelerate point/divisor group
operations and inversions. We use this structure for our
cryptoprocessor.

2.1 ECC over a Binary Field

ECC relies on a group structure induced on an EC. A set of
points on an EC (with one special point added, that is, the
so-called point at infinity O), together with a point addition
as a binary operation, has the structure of an abelian group.
As we consider a finite field of characteristic 2, that is,
GFð2nÞ, a nonsupersingular EC E over GFð2nÞ is defined as
the set of solutions ðx; yÞ 2 GFð2nÞ �GFð2nÞ of the equation

y2 þ xy ¼ x3 þ ax2 þ b; ð1Þ

where a; b; x; y 2 GFð2nÞ and b 6¼ 0, together with O. The
inverse of the point P ¼ ðx1; y1Þ is �P ¼ ðx1;�y1Þ. The sum
P þQ of the points P ¼ ðx1; y1Þ and Q ¼ ðx2; y2Þ (P;Q 6¼ O

and P 6¼ �Q) is the point R ¼ ðx3; y3Þ. Here,
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Fig. 1. Scheme of the hierarchy for ECC/HECC operations.

(a) Conventional hierarchy. (b) Proposed hierarchy using a single

finite-field operation at the lowest level.



� ¼
y1 þ y2
x1 þ x2

;

x3 ¼�2 þ �þ x1 þ x2 þ a;

y3 ¼ðx1 þ x3Þ�þ x3 þ y1:

ð2Þ

This operation is called point addition. For P ¼ Q, the
point doubling formulas are

� ¼
y1
x1

þ x1;

x3 ¼�2 þ �þ a;

y3 ¼ðx1 þ x3Þ�þ x3 þ y1:

ð3Þ

The point at infinity O is the neutral element, similar to the
number 0 in ordinary addition. Thus, P þO ¼ P and P þ
ð�P Þ ¼ O for all points P .

The scalar multiplication, that is, the multiplication of a
point P on the curve with a scalar k is the main operation
for ECC. The scalar multiplication kP can be computed as a
combination of sequential point doublings and point
additions. There are several computation sequences to
compute point doubling and addition, including the
recommendation in IEEE P1363 [20]. The selection of the
sequences also has a great impact on the performance and
cost of curve-based cryptosystems. The sequences are
generally implemented as a controller block (for example,
Finite-State Machine (FSM)) in hardware design. The
number of modular multiplications and the required
memory size vary according to the sequence. Moreover,
some sequences imply parallelism in point doubling/
addition. In this sense, hardware/software codesign, where
the arithmetic is executed on hardware acceleration units
while the sequences run in software, is an attractive choice
for curve-based cryptoprocessors because it offers the
equivalent performance of an ASIC while maintaining the
flexibility to support a wide range of curve options.

2.2 HECC of Genus 2

Let GFð2nÞ be an algebraic closure of the field GFð2nÞ. Here,
we consider a hyperelliptic curve C of genus g ¼ 2 over
GFð2nÞ, which is given in the form

C : y2 þ hðxÞy ¼ fðxÞ in GFð2nÞ½x; y�; ð4Þ

where hðxÞ 2 GFð2nÞ½x� is a polynomial of degree degðhÞ �
g and fðxÞ is a monic polynomial of degree degðfÞ ¼ 2gþ 1.
Also, there are no solutions ðx; yÞ 2 GFð2nÞ �GFð2nÞ that
simultaneously satisfy (4) and the equations 2vþ hðuÞ ¼ 0

and h0ðuÞv� f 0ðuÞ ¼ 0. These points are called singular
points. For the genus 2, in the general case, the following
equation is used:

y2 þ ðh2x
2 þ h1xþ h0Þy ¼

x5 þ f4x
4 þ f3x

3 þ f2x
2 þ f1xþ f0:

A divisor D is a formal sum of points on the
hyperelliptic curve C, that is, D ¼

P
mPP , and its degree

is degðDÞ ¼
P

mP . Let Div denote the group of all divisors
on C and Div0 the subgroup of Div of all divisors with
degree zero. The Jacobian J of the curve C is defined as the
quotient group J ¼ Div0=P . Here, P is the set of all
principal divisors, where a divisor D is called principal if

D ¼ divðfÞ for some element f of the function field of C
(divðfÞ ¼

P
P2C ordP ðfÞP ). The discrete logarithm problem

in the Jacobian is the basis of security for HECC. We use the
Mumford representation, according to which each divisor is
represented as a pair of polynomials ½u; v�, where u is monic
of degree 2, degðvÞ < degðuÞ, and ujf � hv� v2 (the so-called
reduced divisors). For implementations of HECC, we need
to implement the multiplication of elements of the Jacobian,
that is, divisors with some scalar.

2.3 Algorithms for Our Implementations

In our implementations, the scalar multiplication of ECC
is achieved by two different computation sequences: The
first is from the recommendation of the IEEE P1363 and
the second is based on the idea of the Montgomery’s
powering ladder of López and Dahab (denoted as
ECC_M in this paper) [21]. With regard to the scalar
multiplication of HECC, we use the formulas of Byramjee
and Duquesne [22]. All of the sequences use projective
coordinates and we apply the binary nonadjacent form
(NAF) or the windowed NAF method for scalar multi-
plication [16], [23], except for ECC_M. This way, the
scalar is decomposed as an NAF and scalar multiplication
is performed with a lower cost than the binary method.
Modular inversion is performed with a chain of modular
multiplications repeatedly [19]. The total number of
modular multiplications required for the modular inverse
is fblog2ðn� 1Þc þ wðn� 1Þ � 1þ ðn� 1Þg. Since we need
only one modular inversion for each scalar multiplication of
ECC and HECC, the inversion cost is not a serious
bottleneck. The details will be discussed in Section 6.

As our data path performs one basic operation, ABþ C
or AðBþDÞ þ C, over a binary field, we have rewritten the
sequences of point/divisor doubling and addition to obtain
an optimal usage of our new data path. For example, the
formulas for the mixed addition of HECC includes
48 operations of AðBþDÞ þ C instead of six squarings,
34 multiplications, and a lot of additions. Note that our
strategy for refining the sequences also minimizes the
number of intermediate variables to save hardware re-
source. As a result, scalar multiplication can be performed
with at most 16 and 32 registers, respectively, for ECC
(including ECC_M) and HECC.

3 ARCHITECTURE OF THE CURVE-BASED

CRYPTOPROCESSOR

3.1 System Architecture

The proposed architecture of the curve-based cryptoproces-
sor is composed of the main controller, several MALU cores,
and the Register Files (RFs) that store intermediate variables
and share them with the MALU cores. The block diagram of
the cryptoprocessor is illustrated in Fig. 2. The hardware
configuration of the cryptoprocessor is flexible to provide
from the smallest to the fastest implementation, depending
on the target application. Some components can be added or
removed, as will be explained in the next sections.

The main CPU communicates with the cryptoprocessor
through memory-mapped I/O (for example, a Static RAM
(SRAM) interface) and has three types of 32-bit inputs and
outputs: One of them is a signal that tells the controller to
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stop sending instructions when the instruction buffer is full.
A 32-bit I/O passes data backward and forward between
the main CPU and the cryptoprocessor and a 32-bit output
is used to send instructions. The data transfer between the
main CPU and the cryptoprocessor is controlled by a Data
Bus Controller (DBC). If the intermediate variables for
ECC/HECC operations are stored in the SRAM attached to
the main CPU, then the cryptoprocessor can be constructed
without use of the RFs. However, the I/O transfer overhead
becomes the bottleneck of the performance. Hence, the RFs
have to be embedded in the cryptoprocessor for the purpose
of reducing the data transfer overhead. This way, the path
through the DBC is only activated when an initial point and
the curve parameters are sent to the RFs or when the result
of a scalar multiplication is retrieved.

Instructions are sent to the MALU cores either from the
main CPU or from preset microcodes in the �-code RAM.
When the main CPU is in charge of dispatching instruc-
tions, the Instruction Bus Controller (IBC) block can be
detached from the cryptoprocessor. In this case, typically,
the throughput of issuing instructions is not high enough
for the MALU cores to be utilized effectively. However, if
the �-code RAM is used for assisting the main CPU, then the
IBC can handle one instruction per cycle. For instance, the
sequence of point doubling is stored in the �-code RAM and
the main CPU calls it a single instruction. Thus, multiple
MALU cores can be activated in parallel without any
instruction stalls. During point/divisor multiplications, the
IBC keeps on reading instructions from the �-code RAM
and stores them in an Instruction Queue Buffer (IQB),
unless the IQB is full. The IBC checks if there is Instruction-
Level Parallelism (ILP) by checking the data dependency of
instructions in the IQB and forwards them to the MALU(s)
(see Section 3.6).

3.2 Architecture of the MALU Core

The data path plays an important role in accelerating scalar
multiplication. One way to implement an efficient data path
is to use a specific irreducible polynomial, for example, a
trinomial such as P ðxÞ ¼ x193 þ x15 þ 1. In this case,
modular multiplications can be implemented efficiently
and the squaring operation only needs several modular

adders if it is implemented separately from the multiplier.

The critical path delay of the squarer is low enough to use it

as a one-cycle operation. Likewise, the modular inversion

can be efficiently implemented [24]. Therefore, three

different modular operations can be used for the data path.

However, this dedicated approach makes the data path

inflexible in the size of the operand (that is, the field size).
In contrast, our proposed MALU core is a flexible

processor that executes a single operation on a finite field

over GFð2nÞ, for example, AðxÞBðxÞ þ CðxÞ (modP ðxÞ).

Also, the irreducible polynomial P ðxÞ can be chosen

arbitrarily. The core, as illustrated in Fig. 3, decodes an

incoming instruction in the FSM, loads operands from the

RF, executes the finite-field operation by the data path (the

MALU), and writes back the result into the RF. All

operations necessary for scalar multiplication of the curve-

based cryptography can be processed by using the single

core iteratively, including modular inversions.
In order to exploit parallelism in scalar multiplications,

multiple MALU cores can be instantiated in the cryptopro-

cessor. The intermediate variables are then shared with the

MALU cores through the data bus. The RF architecture is

discussed in detail in Section 3.4, since it is one of the most

critical blocks in multicore systems. Another advantage of

our multicore system is that wider field sizes can be

supported by reconfiguring the data path. That is, our

proposed core has additional ports that are used for

interconnecting MALUs in neighboring cores by setting

the configuration register. Thus, we can construct a new

data path that can handle larger operands. The details are

explained in Section 3.3.

3.3 Reconfigurable Data Path

In this section, the architecture for the MALU is explained.

The MALU is a data path that is based on an MSB-first

bit-serial polynomial-basis GFð2nÞ multiplier, as illustrated

in Fig. 4a. This is a hardware implementation that

computes AðxÞBðxÞ (mod P ðxÞ), where AðxÞ ¼
Pn�1

i¼0 aix
i,

BðxÞ ¼
Pn�1

i¼0 bix
i, and P ðxÞ ¼ xn þ

Pn�1
i¼0 pix

i. The inter-

mediate result T ðxÞ ¼
Pn

i¼0 tix
i is stored in a register. The

case for the digit-serial multiplier is shown in Algorithm 1.

1272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 9, SEPTEMBER 2007

Fig. 2. Block diagram for the system architecture with the curve-based

cryptoprocessor.

Fig. 3. Block diagram for the architecture of the MALU core for GFð2nÞ

operations. Interconnections are determined by the configuration

register.



Algorithm 1. Bit-serial MSB-first modular

Multiplication over GFð2nÞ.

INPUT: AðxÞ ¼ an�1x
n�1 þ � � � þ a1xþ a0,

BðxÞ ¼ bn�1x
n�1 þ � � � þ b1xþ b0,

P ðxÞ ¼ xn þ pn�1x
n�1 þ � � � þ p1xþ p0

OUTPUT: AðxÞBðxÞ mod P ðxÞ

1. T ðxÞ ¼ 0;

2. For ði ¼ n� 1; i � 0; i ¼ i� 1Þ then

3. mi ¼ tn;

4. T ðxÞ ¼ ðT ðxÞ þ aiBðxÞ þmiP ðxÞÞx;

5. Return T ðxÞ=x;

The MALU XORs three inputs, which are aiBðxÞ,

miP ðxÞ, and T ðxÞ, and then outputs the next intermediate

result T ðxÞ by computing

T ðxÞ ¼ ðT ðxÞ þ aiBðxÞ þmiP ðxÞÞx; ð5Þ

where mi ¼ tn. By providing T ðxÞ as the next input and

repeating the same computation n times, one can obtain the

result AðxÞBðxÞ (see [25]). Moreover, by providing BðxÞ þ

DðxÞ in place of BðxÞ and XORing the result with CðxÞ, the

operation form AðxÞðBðxÞ þDðxÞÞ þ CðxÞ (mod P ðxÞ) can

also be supported.
The proposed data path is scalable in the digit size d

(vertical direction in Fig. 4b). The corresponding algorithm

can be obtained by loop unrolling Algorithm 1, as shown in

Algorithm 2. In this case, one operation finishes in dn=de

cycles. Thus, the appropriate digit size can be parameterized

in the data path design and can be determined by
exploring the best combination of cost and performance.

Algorithm 2. Digit-serial MSB-first modular

Multiplication over GFð2nÞ.

INPUT: AðxÞ ¼ an�1x
n�1 þ � � � þ a1xþ a0,

BðxÞ ¼ bn�1x
n�1 þ � � � þ b1xþ b0,

P ðxÞ ¼ xn þ pn�1x
n�1 þ � � � þ p1xþ p0

OUTPUT: AðxÞBðxÞ mod P ðxÞ

1. T ðxÞ ¼ 0;

2. For ði ¼ ddnde � 1; i � 0; i ¼ i� dÞ then
3-1. mi ¼ tn; qi ¼ tnþ1;

4-1. T ðxÞ ¼ ðT ðxÞ þ aiBðxÞ þmiP ðxÞÞx;

3-2. miþ1 ¼ tn; qiþ1 ¼ tnþ1;

4-2. T ðxÞ ¼ ðT ðxÞ þ aiþ1BðxÞ þmiþ1P ðxÞÞx;
..
.

3-d. miþd�1 ¼ tn; qiþd�1 ¼ tnþ1;

4-d. T ðxÞ ¼ ðT ðxÞ þ aiþd�1BðxÞ þmiþd�1P ðxÞÞx;

5. Return T ðxÞ=x;

The field size n is determined by the key length. A larger
field size can also be obtained by interconnecting several
MALUs in the horizontal direction. Hence, various im-
plementation options can be chosen with the MALU. For
instance, the cryptoprocessor can support arbitrary field
sizes up to 587 bits when using six copies of the MALU
cores, each of which supports a field size of 97 bits.

The schematic circuit diagram illustrated in Fig. 5
describes how the MALUs are reconfigured for supporting
different field sizes. When each of the MALUs is used
independently without interconnections for the purpose of
parallel processing, cfg1 is set to zero so that a d-bit vector
m ¼ ðmiþd�1; � � � ;miþ1;miÞ in Algorithm 2 can be used for
the modular reduction in its own core. More precisely, the
vector m determines whether the irreducible polynomial
should be XORed with the intermediate result so that the
degree of T ðxÞ can be at most n or degðT Þ � n. This way, the
LSBs of T ðxÞ can always be 0 because they are provided by
another d-bit vector q ¼ ðqiþd�1; � � � ; qiþ1; qiÞ (see Algo-
rithm 2) of the neighboring core. This corresponds to the
1-bit left-shift operation.

On the other hand, when supporting a wider field-sized
data path by interconnecting several MALU cores, each
vector m is exchanged with one from the neighboring core.
For instance, � copies of the MALU over GFð2nÞ with digit
size d, that is, MALUn�d, can be reconfigured as one
MALUð�ðnþ1Þ�1Þ�d. Suppose that � ¼ 3 in Fig. 5 and the
MALU1, MALU2, and MALU3 are reconfigured to make a
data path for the triple field size (more precisely 3nþ 2).
The configuration signals in the MALU1, MALU2, and
MALU3 should be set to 0, 1, and 1, respectively.

3.4 Architecture of the RF

If the MALU supports the operation AðxÞðBðxÞ þDðxÞÞ þ
CðxÞ (mod P ðxÞ), then four different operands need to be
read from the RF and the result is written back to the RF
after completing the execution. When using three MALU
cores, for instance, 12 read and three write operations occur
for three parallel executions. This heavy memory access was
one of the bottlenecks in our previous multicore cryptopro-
cessor [26]. In order to reduce the memory-access cycles,
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Fig. 4. Block diagram for one MALU—extension of the digit size. (a) The

building block corresponding to Algorithm 1. (b) GFð2nÞ multiplier with

the digit size d.



especially in read operations, a multiport RF is implemen-

ted, as illustrated in Fig. 6a.
The multiport RF supports four simultaneous read

operations at four different addresses per cycle (4R). This

allows one to read all of the necessary operands for the

operation form AðxÞðBðxÞ þDðxÞÞ þ CðxÞ in a single cycle.

This way, the number of the read-access cycles can be

reduced by 3/4 or 75 percent. The read cycle is reduced to

only three cycles for three parallel executions. The write

operation can be done unless those read operations are

executed (1W).
Note that one RF can be shared with multiple MALU

cores. Only when supporting a wider field size should

multiple RFs be allocated in the cryptoprocessor. In

addition, the required number of entries in the RF differs

from ECC to HECC in that ECC needs 16 registers, whereas

HECC uses 32 registers, as mentioned previously. This

difference can be a problem when the cryptoprocessor

needs to support both cryptosystems. A simple solution is

to prepare 32 entries in each RF (denoted as RFn�32 in

Fig. 6a). Another solution is to make one 32-entry RF from

two 16-entry RFs, as shown in Fig. 6b. The figure illustrates

how RFn�32 can be configured with RF1n�16 and RF2n�16.

As will be investigated in detail in Section 5, both solutions

have drawbacks and advantages.

3.5 The MALU Instruction

We now design a new instruction called MALU(). It is worth

mentioning again that this is the only instruction that

operates on the data path:
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Fig. 5. Block diagram for the reconfigurable data path—extension of parallelism and the field size. Depending on the setting of the interconnections,

various data paths can be reconfigured, for example, � copies of the MALU over GFð2nÞ with digit size d or one MALU over GFð2�ðnþ1Þ�1Þ with digit

size d.

Fig. 6. Hardware architecture of the RFs. (a) Four-ported RF supporting four reads and one write (4R1W) to support simultaneous reading of four

operands. A 32-entry n-bit RF ðRFn�32Þ. (b) A pair of RFn�16 can be configured as RFn�32 by setting the signal cfg2 ¼ 1.



MALUð&R; &A; &B; &C; &DÞ :

RðxÞ ¼ AðxÞðBðxÞ þDðxÞÞ þ CðxÞ ðmod P ðxÞÞ:
ð6Þ

Here, &A, &B, &C, &D denote the addresses for four inputs of
the instruction and&Rdenotes the addresswhere the result is
stored.As illustrated in Fig. 7, thewhole procedure to execute
MALU() starts from an instruction fetch and decode (IF/D).
Then, variables forAðxÞ,BðxÞ, CðxÞ, andDðxÞ are loaded via
the RF (R) for the succeeding execution stage. The result is
stored to theRF (W) in the last step.Whenperformingparallel
processing, the write operations from every MALU core
should be sequential in order to escape memory-write
conflicts. More precisely, in order to keep data integrity
between the RFs, only one data item can bewritten to the RFs
within a cycle: This is a consequence of the way in which the
4R1WRF is embedded in our cryptoprocessor. From another
viewpoint, the operands fordifferentMALUcores can also be
read sequentially, which means that one RF can be shared
with multiple MALU cores.

The number of instructions that can be issued in parallel
decides consecutive write cycles. In total, an l-way parallel
execution takes lþ 1 cycles, in addition to the execution
cycles that depend on the MALU configuration.

3.6 Dynamic Scheduling for Multicore Architecture

ILP is exploited for all MALU() instructions as long as two
or more instructions are buffered in the IQB. Here, we
introduce our strategy to find ILP. The instruction has four
source operands and outputs the result to the RF; that is,
MALU(&R, &A, &B, &C, &D) deals with five types of
addresses for the operation AðxÞðBðxÞ þDðxÞÞ þ CðxÞ
(mod P ðxÞ). They are expressed as

MALU : &R ¼ &A; &B; &C; &D: ð7Þ

The MALU instruction also refers to the P ðxÞ that is stored
in the RF. To include out-of-order executions, two types of
dependencies need to be checked between two instructions:
MALU

i and MALU
j (i and j are labels indicating the order of

instruction in the IQB). For all i and j that satisfy
0 � i < j < ILPD, where ILPD is the size of the instruction
window to exploit ILP, one can determine the number of
instructions to be issued in parallel by checking the
following dependencies:

Read-After-Write (RAW) dependency check for in-

order execution (&Ri ¼ &A
j or &R

i ¼ &B
j or &R

i ¼ &C
j or

&R
i ¼ &D

j): If the result of the instruction MALU
i; Ri is used as

the input of the instruction MALU
j, then MALU

j cannot be

issued until or before MALUi completes its operation. In other
words, if the condition in parentheses above is false, then
MALU

j can be issued with MALU
i.

However, when the parallel issue of MALU
i and MALU

j

includes an out-of-order execution, the next condition has to
be verified as well.

RAW dependency check for out-of-order execution
(&Rj ¼ &A

i or &Rj ¼ &B
i or &Rj ¼ &C

i or &Rj ¼ &D
i): As a result

of checking the conditions for an in-order execution, it is
possible that the instruction MALU

j can be issued, whereas
some preceding instructions cannot. In this case, we need to
check if the result of the instruction MALU

j, Rj is used for the
input of the preceding instructions that cannot be issued. The
corresponding condition is described above in parentheses.

The proposed architecture needs no check for Write-
After-Read and Write-After-Write dependencies, in contrast
to a general superscalar machine. Indeed, the instruction
MALU() is a fixed-length multicycle instruction and, hence,
we can skip those dependencies in checking the sequence of
point/divisor operations.

As the zeroth instruction MALU
0 is issued unconditionally,

the number of conditions to check ILP becomes
4ðILPD � 1Þ2. This fact indicates that the hardware com-
plexity for ILP grows quadratically in a large ILPD, but, in
exchange, further parallelism can be exploited. The choice
of the ILPD is discussed in Section 4.4.

4 PERFORMANCE EVALUATION

4.1 Design Platform

The proposed design is constructed on the GEZEL hard-
ware/software codesign platform with the ARM Instruction
Set Simulator (ISS) [27]. The cryptoprocessor is described in
an FSM with Data Path (FSMD) manner. The platform
provides cycle-accurate simulations for various hardware/
software system configurations. As mentioned in Section 3,
the cryptoprocessor is attached to the memory-mapped
interface of the ARM. Thus, various types of system
configurations are examined to verify the functionality
and estimate the system-level performance quickly. The
GEZEL codes are automatically translated into very high
density logic (VHDL) codes that can be used to prototype
the proposed cryptoprocessor on an FPGA.

4.2 Instruction Set for the Cryptoprocessor

Table 1 shows some of the primary instructions for the
cryptoprocessor. For a 32-bit CPU such as the ARM, storing
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Fig. 7. Example of parallel issue of instructions for three MALUs (IF/D: instruction fetch/decode, EX: execution of MALU, and R/W: read/write from/to

the RF). The consecutive write cycles depend on the number of instructions issued in parallel. The execution cycle is determined by the MALU

configuration.



data to the address dst requires four STORE() instruc-
tions for HECC over GFð297Þ. After all operands are set at
the corresponding addresses of the RF, the main CPU
sends the instructions MALU(). By using the �-code RAM
in the cryptoprocessor, it is possible to define an
instruction that consists of a series of MALU() instruc-
tions. In this paper, all necessary point/divisor operations
are preprogrammed in the �-code RAM and the main
CPU uses these instructions (for example, ECC_PA() and
ECC_PD()) for scalar multiplication.

4.3 Configuration of the MALU Cores

The system performance is heavily dependent on the
number of MALU cores and the data path configuration
in each MALU core. They also determine the supported
range of field sizes. The field sizes of interest in this paper
are 163 and 193 bits for ECC because they offer a security
level greater than or equal to a 1,024-bit RSA [16]. The
corresponding field sizes for HECC are 83 and 97 bits.
Therefore, it is reasonable to use the MALU cores with a
data path of length n ¼ 97. As for the digit size, d ¼ 12 is
chosen as an example case. This data path is denoted as
MALU97�12 and one modular multiplication over GFð297Þ
can be computed in dn=de or nine cycles.

In [28], the EC Digital Signature Algorithm (ECDSA)
standard is designed and the recommended curve para-
meters and irreducible polynomials are listed for several
field sizes of up to 571 bits. Therefore, we also investigate
the performance of our cryptoprocessor for a 571-bit ECC.

Suppose that six cores with the data path MALU97�12

are allocated in the cryptoprocessor. Various data path
configurations can be supported. Table 2 summarizes
selected hardware configurations and the number of clock
cycles for one MALU instruction ðdn=deÞ over different field

sizes. The throughput of the MALU instruction can be

estimated with

l � n

dn=de þ lþ 1
½bits=clock� ðl ¼ 1; 2; 3; 4Þ; ð8Þ

where l is the degree of parallelism (that is, the execution of
l-way parallelism). Although the number of data paths used
in parallel varies from 1 to 6, depending on the field lengths,
we exploit at most four-way parallelism in this paper in
order to reduce the logic complexity in the IBC. Fig. 8
illustrates the minimal and maximal throughput of the
MALU operation as a function of the field size. As can be
seen in the figure, this configuration can offer a high
throughput for a field size of around 97, 195, and 293 bits
because we use MALU97�12 as a building block of the data
path. The maximum throughput can be obtained only if all
of the data paths are used in parallel. When no parallelism
can be found in the MALU instructions (that is, in the case
of single execution of the MALU instruction), our crypto-
processor performs at the minimum throughput. In other
words, by exploiting parallelism for n � 293 in the MALU
instructions, the throughput can be improved, depending
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TABLE 1
Primary Instructions for the Proposed Cryptoprocessor and the Computation Costs

in the Case of the Operation Form AðBþDÞ þ C

Here, wðkÞ denotes the Hamming weight of the positive integer k.

TABLE 2
Possible Configurations of the Data Path with Six Cores of
n ¼ 97 and d ¼ 12 ðMALU97�12Þ and the Execution Cycles

for One MALU Instruction over a Binary Field

Fig. 8. Throughput for different configurations of the data path with six

MALU97�12.



on the degree of parallelism. However, the throughput is
almost constant for n > 293.

4.4 Degree of Parallelism in ECC and HECC

As the performance of the superscalar architecture is
dependent on the degree of parallelism, it is also important
to determine ILPD, which is an appropriate number of
instructions to search for ILP, as well as the number of
MALU cores. Fig. 9 shows the number of clock cycles for a
scalar multiplication when setting ILPD from 1 to 8.

Up to eight copies of the MALU cores with MALU97�12

are instantiated in the cryptoprocessor to evaluate the
performance improvement by the superscaling feature for
ECC163, ECC_M163, and HECC83. Here, we assume that
enough RFs are allocated in the cryptoprocessor, that is,
RF97�32 is assigned for each MALU core with MALU97�12 so
that the cryptosystem has no limitations on the supported
field sizes and the type of cryptosystem. As a result of the
GEZEL system-level simulation, we observe that, for both
operation forms, the overall performance improves as the

number of MALU97 increases. Also, a large ILPD helps
exploit more parallelism and leads to higher performance.
We can also see the effectiveness of an operation if the form
is AðBþDÞ þ C. The results of using this operation with
ILPD ¼ 6 are also summarized in Table 3.

In order to investigate the performance bottleneck of
ECC and HECC, the number of clock cycles for a scalar
multiplication is split by the degree of parallelism. Fig. 10
shows the results for ECC163, ECC_M163, and HECC83 by
changing the number of MALU cores and the type of the
operation. Note that the same performance is obtained for
ECC_M163, regardless of the type of the operation.

We consider the utilization of the MALU cores in order
to know if the data paths are effectively used in parallel. If a
parallel execution utilizes all data paths, then the utilization
is defined as 100 percent during execution of the parallel
operations. On the other hand, the utilization is 50 percent
when half of the data paths are used: For example, a two-
way computation is executed on a configuration with four
data paths. Note that memory accesses are included as a
part of a parallel execution. The figures in percentage
marked on the bars indicate the utilization of the MALU
cores defined as

Plmax

i¼1 i � Ri

lmax

Plmax

i¼1 Ri

ðlmax ¼ 1; 2; 3; 4Þ; ð9Þ

where lmax is the maximum degree of parallelism under the
given hardware configuration and Ri is the number of clock
cycles required for i-way computations. As can be seen in
Fig. 10, the proposed superscalar feature can reduce the
overall number of clock cycles. However, utilization of the
MALUcores decreases as the value of lmax increases. This fact
indicates that area and performance trade-offs are getting
worse for a larger lmax and it can be exploited by inherent data
dependencies in ECC and HECC. From this observation, we
decide to employ lmax � 3 for ECC and lmax � 4 for HECC to
maintain high utilization of the MALU cores.

5 IMPLEMENTATION

The cryptoprocessor discussed in Section 3 has been
synthesized with a 0:13-�m CMOS technology by using
the Synopsys Design Vision. From the performance evalua-
tion discussed in Section 4, we allocate up to eight
instantiations of the MALU cores with MALU97�12 with an
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Fig. 9. The number of clock cycles for scalar multiplication of ECC163,
ECC_M163, and HECC83 for different ILPDs when allocating one to

eight MALU97�12. (a) Operation form is ABþ C. (b) Operation form is

AðBþDÞ þ C.

TABLE 3
The Number of Clock Cycles for a Scalar Multiplication with d ¼ 12, ILPD ¼ 6, and the Operation Form AðBþDÞ þ C

The numbers in parentheses are the speedup ratio compared to the single-scalar configuration.



operation AðBþDÞ þ C. For the size of the instruction

window, ILPD ¼ 6 is selected. The trade-offs between cost

and performance are discussed for ECC, ECC_M, and

HECC with different RF configurations. The synthesis

results show that all designs meet with the timing

constraint of 292 MHz.
A pair of MALU97�12 can be reconfigured as one

MALU195�12 by changing the interconnection between the

MALU cores. This way, both HECC97 and ECC193 can be

supported by allocating 2 �MALU97�12 in the cryptopro-

cessor. As for the RF, we need to prepare either a pair of

RF97�32 or a pair of RF97�16 to support the field lengths.
As explained previously, HECC requires RFn�32,

whereas ECC can be computed with RFn�16, where n is

the field size of ECC and HECC. Therefore, depending on

the configuration of the RF, the supported field lengths and

the degree of parallelism are differently determined, as

shown in Table 4. In other words, the configuration using

6 � RF97�32 offers enough registers for both ECC and HECC

and, hence, a better degree of parallelism can be expected.

Moreover, we can apply the NAF4 (NAF with a width-4

window) for ECC by utilizing the redundant 16 entries in

the RF. In contrast, 6 � RF97�16 can be considered as an ECC-

centric configuration because it can save redundant

registers when ECC is performed. The drawback of this

configuration is that the degree of parallelism in HECC is

restricted by the number of RF97�16, that is, the cryptopro-

cessor can exploit at most a three-way parallelism for HECC

in this case.
Figs. 11 and 12 show the average time for an ECC

and an HECC scalar multiplication for the configuration

of � �MALU97�12 þ � � RF97�32, where � ¼ 1; 2; 3; 4; 5; 6; 8

(CONFIG-I). Figs. 13 and 14 show the results for the

configuration of � �MALU97�12 þ � � RF97�16, where � ¼

2; 3; 4; 5; 6; 8 (CONFIG-II). Here, we use a 1-Kbyte �-code
RAM in order to support ECC and HECC.

As can be seen in the figures, the cost of supporting
ECC571 with CONFIG-I is 393 Kgates, which is more
expensive than that with CONFIG-II, whose gate size is
244 Kgates. However, CONFIG-II shows a slightly lower
performance for HECC. This performance degradation is
more apparent for a larger field size. For example, in the
case of � ¼ 6, the performance of HECC139 decreases from
284 to 670 �s when changing the configuration.
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Fig. 10. The profile graphs of the number of clock cycles in ECC/HECC scalar multiplication for different hardware settings of the cryptoprocessor

ðd ¼ 12Þ.

TABLE 4
Configurations of the Data Path with Six Cores, Each of which Has MALU97�12

Fig. 11. The number of clock cycles required for different configurations

of the MALU and the RF, that is, � �MALU97�12 þ � � RF97�32.



The computation cost for modular inversion is summar-

ized in Table 5 for CONFIG-I. The ratio of the inversion cost

to the computation cost for the scalar multiplication varies

from 7 percent to 18 percent in ECC and ECC_M. This is

due to the fact that we use the MALU instructions for

modular squarings in the Itoh-Tsujii algorithm. However,

considering the flexibility of the proposed hardware

architecture, the inversion cost can be regarded as low

enough. In the case of HECC, the cost for modular inversion

is negligible.

For achieving faster performance, other configurations
are also considered by fixing the field length and the
irreducible polynomial and supporting either ECC or
HECC only. In these configurations, one fixed-size RF can
be shared with the MALU cores. For instance, we can
consider the configuration of 4 �MALU83�12 þRF83�32 for
HECC83. In addition, we use ROM for storing the �-code
program. These configurations offer a higher performance
with lower cost compared to CONFIG-I and CONFIG-II at
the cost of reduced flexibility and programmability. The
results of this configuration are also discussed in Section 6.

6 RESULTS

Table 6 summarizes the performance of ECC and HECC
scalar multiplication for selected field sizes and different
hardware configurations. Our proposed cryptoprocessor
can provide various choices of area and performance. The
observed performance maintains high overall for all
supported field sizes.

When implementing the cryptoprocessor based on
CONFIG-I, the highest flexibility and performance can be
obtained for both ECC and HECC, as shown in Table 6,
with a gate size of 393 Kgates. On the other hand, for
CONFIG-II, the gate size becomes 244 Kgates, with some
performance penalty for ECC and HECC. In both config-
urations, the performance of HECC is lower than the
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Fig. 12. Magnified image of Fig. 11.

Fig. 13. The number of clock cycles required for different configurations

of the MALU and the RF, that is, � �MALU97�12 þ � � RF97�16.

Fig. 14. Magnified image of Fig. 13.

TABLE 5
Computation Cost of Modular Inversion with CONFIG-I

(at the Clock Frequency of 292 MHz)



performance of ECC and ECC_M overall when comparing

the field sizes that have the same security strength for ECC

and HECC.
By fixing the field size and the irreducible poly-

nomial, the gate size of the cryptoprocessor for ECC163,

ECC193, and HECC83 requires only 115, 135, and 65

Kgates and performs a scalar multiplication in 29, 40,

and 63 �sec, respectively, with the configuration of

4 �MALU163�12 þ RF163�16, 4 �MALU193�12 þ RF193�16, and

4 �MALU83�12 þ RF83�32.
Comparing with previous work, our HECC implementa-

tion results are faster than the implementation reported by

Wollinger [13], which was one of the fastest HECC

implementations. Furthermore, our implementation can

support both ECC and HECC. Our ECC implementation

results also show better performance than other previous

work, except an ECC_M implementation of Sozzani et al.

[29]. This is because their ASIC design uses the 163-bit fixed

field size and a hardwired controller, which offers less

scalability and flexibility than our reconfigurable design. In

fact, our design with a fixed irreducible polynomial shows

better performance than their result while supporting both

ECC and ECC_M.

7 CONCLUSIONS

This paper presented a multicore cryptoprocessor for ECC

and HECC to support a wide range of field sizes and to

accelerate the scalar multiplication of ECC and HECC of

genus 2 over GFð2nÞ by exploiting ILP on the fly. The

superscaling feature is facilitated by defining a single

instruction that is flexibly defined as ABþ C or AðBþ

DÞ þ C and can be used for all field operations such as

modular multiplications, modular additions, and point/

divisor operations. We conclude that the operation AðBþ

DÞ þ C is effective to decrease the number of clock cycles

for scalar multiplication.
The fully programmable cryptoprocessor can handle

various curve parameters and an arbitrary irreducible

polynomial. In addition, a wide range of the field size of

modular operations can be supported by reconfiguring the

data path in the MALU cores. Thus, the trade-off between

performance and security can be obtained simply by
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TABLE 6
Performance Comparison of HECC/ECC Hardware Implementations over a Binary Field

y: The ECC performance is denoted as ECC/ECC_M. z: Estimate based on their result of the number of LUTs.
]: Estimate based on their results of 0.47 mm2 and 0.59 mm2.



changing the program and reconfiguring the MALUs. The
synthesis results show that scalar multiplication can be
performed at 292 MHz, with a gate size of 244 Kgates, while
supporting ECC over GFð2571Þ and HECC over GFð2283Þ. In
our design, ECC offers better cost and performance trade-
offs than HECC.

The compact and fastest configuration of our design
shows that scalar multiplication of ECC over GFð2163Þ and
HECC over GFð283Þ can be performed in 29 and 63 �s,
respectively. This speedup is achieved by exploiting
parallelism in ECC and HECC.
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