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The LP decoding for LDPC codes
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 Introduction to LDPC codes

๏ LDPC codes are well-known Error 
Correction Codes working on blocs,

- K information bits;

- N transmitted values, 

- (N-K) redundant values,

๏ The LDPC code structure is defined 
by a H matrix,

- Provides VN/CN involved in parity equations,

- Visually represented as a Tanner graph.

๏ State-of-the-art works for LDPC 
decoding are based on MP algorithm;

- Propagate message between CNs and VNs,

- MP algorithm is iterative.
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H =









V0 V1 V2 V3 V4 V5 V6 V7

C0 1 1 1 0 0 0 0 0
C1 0 0 0 1 1 1 0 0

C2 1 0 0 1 0 0 1 0
C3 0 1 0 0 1 0 0 1









V0

C0 C1 C3C2

V1 V2 V3 V4 V5 V6 V7

1 Tanner graph representation.
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 Related works on LDPC decoding

๏ During the last decade, lots of works 
focused on LDPC codes. For instance :

- Find an « efficient » SPA approximation ,

‣ SPA algorithm is efficient but complex to implement,

‣ MS, OMS, NMS, 2NMS, lambda-min,  ANMS, etc.

- Reduce computation complexity through 
different computation schedules,

‣ Flooding, TDMP, conditional activation, etc.

- Efficient implementation of LDPC decoders,

‣ Hardware (ASIC, FPGA) for efficiency,

‣ Software (CPU & GPU) for flexibility.

๏ Linear Programming (LP) approach for 
LDPC decoding is a « recent » way.
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 LP decoding of LDPC codes

๏ Linear programming formulation of 
LDPC decoding problem,

- First, proposed by in [1],

- Huge memory & computation complexities,

- Limited to very short frames (N << 200),

๏ Interesting FER performance
- Especially in Error floors (Even against SPA),

- ML certificate when frame is successfully decoded 
(not decoded otherwise).

๏ Lower complexity formulation,
- Initial LP ADMM algorithm [2],

- Good FER performance ADMM-l2 against SPA [3],

- Reduced complexity s-ADMM-l2 [4]

๏ LP LDPC decoding is affordable for 
implementation purpose.
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[1]  J.  Feldman,  Decoding  Error-Correcting  Codes  via  Linear 

Programming. PhD thesis, Massachussets Institute of Technology, 2003. 

Increase mainly according 
to N, N-K and deg(Ci) 

parameters
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 LP decoding of LDPC codes

๏ Linear programming formulation of 
LDPC decoding,

- First, proposed by in [1],

- Huge memory & computation complexities,

- Limited to very short frames (< 200 bits),

๏ Interesting FER performance
- Even against SPA algorithm,

- ML certificate when frame is successfully decoded 
(not decoded otherwise).

๏ Lower complexity formulation,
- Initial LP ADMM algorithm [2],

- Improved ADMM-l2 against SPA [3],

- Computation complexity reduction [4],

๏ LP LDPC decoding becomes now 
realistic for implementation purpose.
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Fig. 1. FER comparison of ADMM-l2 penalized decoders with SPA

decoders on AWGN channel.

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes 

with alternating direction method of multipliers,” IEEE International Symposium on 

Information Theory (ISIT), 2013.

[3] X. Jiao,  H. Wei,  J.  Mu, and C. Chen,  “Improved ADMM penalized decoder for 

irregular low-density parity-check codes,” IEEE Communications Letters, June 2015. 

[4]  H.  Wei,  X.  Jiao,  and J.  Mu, “Reduced-complexity linear  programming decoding 

based on ADMM for LDPC codes,” IEEE Communications Letters, June 2015. 
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The ADMM decoding algorithm
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 Formulation of the ADMM decoding algorithm

๏ The ADMM algorithm is a MP-based 
formulation of the LP problem,

- Proposed in [2] and correction improved in [3],

- Traditional flooding schedule,

- The key element is the Euclidian projection;

- Formulation maintains LP properties,

๏ Based on 4 distinct kernels

- Kernel 1, initializes the decoder;

- Kernel 2, processes all VNs;

- Kernel 3, processes all CNs;

- Kernel 4, takes hard decision;

๏ Kernels 2 and 3 are iterated k times 
(# iterations)

- Computation complexity is located there;
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2
2,

Algorithm 1 Flooding based ADMM -l2 Algorithm.
1: Kernel 1: Initialization
2: ∀j ∈ J , i ∈ Nc(j) : z

(0)
j→i = 0.5, λ

(0)
j→i = 0

3: ∀i ∈ I : ni = γi

µ

4: for all k = 1 → q when stop criterion = false do

5: Kernel 2: For all variable nodes in the code
6: for all i ∈ I, j ∈ Nv(i) do

7: t
(k)
i =

P

j∈Nv(i)

(z
(k−1)
j→i − λ

(k−1)
j→i )

8: L
(k)
i→j = Π[0,1](

1
dvi

−2 α

µ

(t
(k)
i − ni −

α

µ
))

9: end for

10: Kernel 3: For all check nodes in the code
11: for all j ∈ J , i ∈ Nc(j) do

12: z
(k)
j→i = ΠPdcj

[ρL
(k)
i→j + (1− ρ)z

(k−1)
j→i + λ

(k−1)
j→i ]

13: λ
(k)
j→i = λ

(k−1)
j→i + ρL

(k)
i→j + (1− ρ)z

(k−1)
j→i − z

(k)
j→i

14: end for

15: end for

16: Kernel 4: Hard decisions from soft-values

17: ∀i ∈ I : ĉi =

 

P

j∈Nv(i)

Li→j

!

> 0.5

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes with 

alternating  direction  method  of  multipliers,”  IEEE  International  Symposium  on 

Information Theory (ISIT), 2013.

[3]  X.  Jiao,  H.  Wei,  J.  Mu,  and  C.  Chen,  “Improved  ADMM  penalized  decoder  for 

irregular low-density parity-check codes,” IEEE Communications Letters, June 2015. 
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 Formulation of the ADMM decoding algorithm

๏ The ADMM algorithm has a flooding-
based formulation of the LP problem,

- Proposed in [2] and correction improved in [3],

- Traditional flooding schedule,

- Based on Euclidian projection;

- Formulation maintains LP properties,

๏ Based on 4 distinct kernels

- Kernel 1, initializes the decoder;

- Kernel 2, processes all VNs;

- Kernel 3, processes all CNs;

- Kernel 4, takes hard decision;

๏ Kernels 2 and 3 are iterated k times 
(# iterations)

- Decoding computation complexity is located 
there;
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 The VN and CN computation kernels
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 The VN and CN processing kernels
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 The « Euclidian projection » task

๏ Euclidian projection operation is not 
trivial at all,

- Lots of arithmetic operations,

- 4 conditional statements, that break computation 
parallelism,

- Many sequential sections exist due to data 
dependencies between computations,

๏ Except arithmetic operations,
- Data clipping in [0.0, 1.0] range,

- Data sorting (deg_cn) required twice,

➡ { sorted values, initial positions } = SORT( values )

๏ It is already the simplified version of 
the Euclidian projection…

- Less straightforward than Min-Sum algorithm,
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Algorithm 2 Projection to the convex polytope.
1: function Projection(xj : float values)
2: if 8j 2 [0, dc[, xj  0 then

3: return {0, 0, . . . , 0}
4: else if 8j 2 [0, dc[, xj � 1 then

5: return {1, 1, . . . , 1}
6: end if

7: {xr, pr} = Sort in Ascending Order and Store Positions (x)
8: xrc = clamp( xr, [0, 1])

9: cp =
dc−1
P

i=0

xrc
i

10: f = bcpc � bcpc mod 2

11: sc =
f
P

i=0

xrc
i �

dc−1
P

i=f+1

xrc
i

12: if sc  r then

13: return reorder({xrc, pr})
14: end if

15: 8j 2 [0, dc[, yj =

⇢

(xrc
j � 1) if j  f

�xrc
j otherwise

16: {yr, pr} = Sort in Ascending Order and Store Positions (y)
17: Set βmax = 1

2
(yr

f+1 � yr
f+2)

18: Construct a set of breakpoints B = {yr
i | 0  i  dc−1; 0 

yr
i  βmax}

19: 8j 2 [0, dc[, y
r
j (β) =

⇢

clamp(yr
j � β,[0, 1]) if j  f

clamp(yr
j + β,[0, 1]) otherwise

20: March through the breakpoints to find i |
dc−1
P

j=0

yr
j (β)  r

21: Find βopt 2 [βi−1, βi] by solving Equation (4.28) in [39]
22: return reorder(yr(βopt) , pr)
23: end function
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 Comparison with traditional LDPC decoding algorithms
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Code SNR=1.5dB SNR=2dB

VN CN Proj. Sort VN CN Proj. Sort

576 × 288 15 85 53 38.5 16 84 50 41

1152 × 288 14 86 60 45 15 85 59 44

2304 × 1152 15 86 54 36 16 84 49 38.5

2640 × 1320 15 85 52 38 17 83 47.5 41

4000 × 2000 15 85 51 38 18 82 46 41.5

Inter-CN 
processing

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

From a decoding point of view CN processing 
consume more than 80% of the execution time

Amount of computations involved in VN/CN processing for different LDPC decoding algorithms
MSA SPA ADMM [30] ADMM-l2 [37]

VN CN VN CN VN CN VN CN

add & sub 2dv − 1 2dv − 1 2dv 4dc 2dv + 2 4dc
multiply & div 4dc 1 2dc 2 2dc

arctan1/−1 2dc
min, max, abs, xor, cmp 9dc 6dc 2 2

projection∗ 1 1

Memory access 2dv + 1 2dc 2dv + 1 2dc 2dv + 2 5dc 2dv + 2 5dc
Memory reads − − − − 2dv + 1 3dc 2dv + 1 3dc
Memory writes − − − − 1 2dc 1 2dc

Execution time profiling of a « naive » ADMM software implementation (% of the total decoding time)
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 Comparison with traditional LDPC decoding algorithms
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 Comparison with traditional LDPC decoding algorithms
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Code SNR=1.5dB SNR=2dB

VN CN Proj. Sort VN CN Proj. Sort

576 × 288 15 85 53 38.5 16 84 50 41

1152 × 288 14 86 60 45 15 85 59 44

2304 × 1152 15 86 54 36 16 84 49 38.5

2640 × 1320 15 85 52 38 17 83 47.5 41

4000 × 2000 15 85 51 38 18 82 46 41.5

Inter-CN 
processing

Execution time profiling of a « naive » ADMM software implementation (% of the total decoding time)

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

Both data sorting task consumes 
80% of the Euclidian projection time

Amount of computations involved in VN/CN processing for different LDPC decoding algorithms
MSA SPA ADMM [30] ADMM-l2 [37]
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add & sub 2dv − 1 2dv − 1 2dv 4dc 2dv + 2 4dc
multiply & div 4dc 1 2dc 2 2dc

arctan1/−1 2dc
min, max, abs, xor, cmp 9dc 6dc 2 2

projection∗ 1 1

Memory access 2dv + 1 2dc 2dv + 1 2dc 2dv + 2 5dc 2dv + 2 5dc
Memory reads − − − − 2dv + 1 3dc 2dv + 1 3dc
Memory writes − − − − 1 2dc 1 2dc
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Software implementation of the ADMM-l2 
decoding algorithms

16



ICASSP 2016 - Implementation of Signal Processing SystemsB. Le Gal March 23, 2016

 Features of targeted multi-core architecture (Intel Core-i7)

๏ Work focuses on multicore (Intel x86),

- Efficient as (or more than) GPUs for ECCs [5,  6],

๏ Two parallel programming features,
- SIMD programming model  

(Single Instruction, Multiple Data),

- SPMT/MPMT programming model 
(Single Program, Multiple Threads),

๏ Targeted INTEL Core-i7 device:
- SIMD => 8 floats can be processed per cycle;

- SPMT => 4 physical processor cores

๏ Implementation challenges,
- Take advantage of parallelization features 

(usage rate of SIMD and SPMT) cores;

- Minimize computation complexity and 
memory footprint.

17

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

Parallel e/e
addition

Parallel 
division

E1 E2 E3 E4

F1 ? ? ?

Parallel tree
addition

D1 D2 D3 D4

REG1

REG2

REG1

REG3

REG1

REG1

fREG D1

No cost float 
extraction

+

/

(sum)

(extr)

[5] B. Le Gal, C. Leroux and C. Jego. Multi-Gb/s software decoding of Polar Codes. IEEE Transactions on Signal Processing, pages 349 – 359, January 2015.

[6] B. Le Gal and C. Jego. High-throughput multi-core LDPC decoders based on x86 processor. IEEE Transactions on Parallel and Distributed Systems, May 2015.
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 The parallelism levels available for SIMD parallelization
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V0
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V1 V2 V3 V4 V5 V6 V7

V0
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1 Tanner graph representation.
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An « easy » parallelization is possible inside CN and VN 
elements. For instance, compute all in/out messages in 
parallel using SIMD feature. 

However, efficiency depends on CN/VN degree.

A « more complex » parallelization is also possible across 
CN and VN. For instance, execute the same computations 

with data from 8 different CNs. 

Needs an offline computation and message reordering.

An another « quite easy » parallelization way consists in 
decoding multiple frames in parallel with SIMD feature. 

However, complex conditional statements in Euclidian 
projection discard this approach for SIMD parallelization.
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 The first (naive) decoder implementation

๏ In 1st implementation parallelization 
was performed inside CNs/VNs,

๏ For VN elements,

➡Semi-// sum of message input messages,

➡Seq. message generations,

๏ For CN elements,

➡Semi-// ωi computations from messages,

➡Semi-parallel Euclidian projection,

➡Semi-// message generation,

๏ Speed-up the processing but,

- Usage rate of SIMD unit is lower than 100%,

‣ VN degree usually in {2, 3, 4 6},

‣ CN degree usually in {6, 7, 8, 11, 12},

- Some processing parts (eg. sorting) generate or 
process scalar results and cannot be parallelized.

19

γi =

⇣
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⌘
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 The second (improved) decoder implementation

๏ In 2nd implementation parallelization 
inside and across CNs/VNs,

๏ For VN elements,

➡Fully-// sum of message input messages,

➡Fully-// message generations,

๏ For CN elements,

➡Fully-// ωi computation and message,

➡Semi-parallel Euclidian projection,

✓ Fully-// 1st data sorting (done before projection),

➡Fully-// message generation,

๏ Speed-up the processing but,
✓Usage rate of SIMD unit is often equal to 100%,

✓ Some processing parts remain un-parallelized,
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 Common optimizations for the parallelization approaches
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Algorithm 2 Projection to the convex polytope.
1: function Projection(xj : float values)
2: if 8j 2 [0, dc[, xj  0 then

3: return {0, 0, . . . , 0}
4: else if 8j 2 [0, dc[, xj � 1 then

5: return {1, 1, . . . , 1}
6: end if

7: {xr, pr} = Sort in Ascending Order and Store Positions (x)
8: xrc = clamp( xr, [0, 1])

9: cp =
dc−1
P

i=0

xrc
i

10: f = bcpc � bcpc mod 2

11: sc =
f
P

i=0

xrc
i �

dc−1
P

i=f+1

xrc
i

12: if sc  r then

13: return reorder({xrc, pr})
14: end if

15: 8j 2 [0, dc[, yj =

⇢

(xrc
j � 1) if j  f

�xrc
j otherwise

16: {yr, pr} = Sort in Ascending Order and Store Positions (y)
17: Set βmax = 1

2
(yr

f+1 � yr
f+2)

18: Construct a set of breakpoints B = {yr
i | 0  i  dc−1; 0 

yr
i  βmax}

19: 8j 2 [0, dc[, y
r
j (β) =

⇢

clamp(yr
j � β,[0, 1]) if j  f

clamp(yr
j + β,[0, 1]) otherwise

20: March through the breakpoints to find i |
dc−1
P

j=0

yr
j (β)  r

21: Find βopt 2 [βi−1, βi] by solving Equation (4.28) in [39]
22: return reorder(yr(βopt) , pr)
23: end function
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Fig. 2. Average number of cycles of (a) Reference sorting functions

of 6 floats (b) Sorting functions of 6 floats keeping input positions.

Euclidian projection was implemented and accelerated thanks to 
SIMD feature, however: 

- Reach only a partial SIMD usage (degc is often < SIMD width); 

- Requiers horizontal computations that are slow in SIMD mode. 

- Parts cannot be parallelized using SIMD (scalar or sequential processing).

The both sort processing that are sequential 
tasks were optimized in terms of latency. 

Selection of the best data sorting algorithm 
according to the need (value, position).
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 The parallelism levels available for SPMD parallelization

๏ INTEL Core-i7 has many physical 
cores having each a SIMD unit,

๏ Processing different VN/CN in //,

✓Necessitate costly synchronization at runtime,

- Reduce the decoder throughput compared to a 
single thread implementation.

๏ Processing different frames in //,

✓No synchronization required during decoding,

✓ Easily sciable to other multicore targets,

✓ Increase memory footprint (cache misses),

22

ADMM LDPC decoder 1
ADMM LDPC decoder 1

ADMM LDPC decoder 1
ADMM LDPC decoder 1

One decoder per 
physical core
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Experiments
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 The targeted platform for experiments (a laptop computer)

๏ Evaluation plateform,

✓ INTEL Haswell Core-i7 4960HQ CPU,

✓ 4 Physical Cores (PC) and 4 Logical Cores (LC),

✓Turbo boost @3.6GHz when one core is 
switched on 3.4GHz otherwise.

✓ 256 KB of L2 cache, 6 MB of L3 cache,

๏ Software decoders are compiled with 
Intel C++ compiler 2016,

๏ Experimental setup,

✓ IEEE 802.16e (2304 × 1152 and 576 × 288),

✓ 200 decoding iterations are executed (max.),

✓ 32b floating point data format.

24
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 Measure of the ADMM-l2 decoder throughputs
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Fig. 4. Average number of iterations Vs throughput evolution (a)

2304× 1152 LDPC code (b) 576× 288 LDPC code.
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Fig. 3. ADMM-l2 optimized decoder measured throughputs wrt the

number of threads (a) 2304× 1152 code (b) 576× 288 code.

Throughput increases according to the SNR 
value thanks to the stopping criterion

Evaluation on a single processor core

Throughputs reach about 3Mbps@2.0dB and 
up to 6Mbps@4.0dB for both codes

Low throughputs for low SNR values due to 
the high number of executed iterations

Evaluation on P processor cores

Throughputs scale quite well with the amount 
of physical processor cores [1 => 4]

xP speed-up are not strictly reached due to L3 
cache pollution between processor cores

8 core experiment shows that logical cores 
slightly improve the decoding throughput
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 Measure of the ADMM-l2 decoder throughputs
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Fig. 4. Average number of iterations Vs throughput evolution (a)

2304× 1152 LDPC code (b) 576× 288 LDPC code.
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Fig. 3. ADMM-l2 optimized decoder measured throughputs wrt the

number of threads (a) 2304× 1152 code (b) 576× 288 code.

Throughput increases according to the SNR 
value thanks to the stopping criterion

Low throughputs for low SNR values due to 
the 200 decoding iterations

Evaluation on a single processor core

Throughputs reach about 3Mbps@2.0dB and 
up to 6Mbps@4.0dB for both codes

Evaluation on P processor cores

Throughputs scale quite well with the amount 
of physical processor cores [1 => 4]

xP speed-up are not strictly reached due to L3 
cache pollution between processor cores

8 core experiment shows that logical cores 
slightly improve the decoding throughput
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Conclusion & Future works
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 Current work conclusion

๏ ADMM-l2 algorithm is of great interest 
due to its high correction 
performances,

๏ ADMM-l2 is composed of massively 
parallel computations,

- Flooding schedule makes parallelization quite 
straightforward,

๏ ADMM-l2 has a high-computation 
complexity of the CN kernels,

- Mainly due to Euclidian projection,

๏ Throughput performances are 
honorable on x86 target for medium 
SNR values.

28

Continuous research effort to reach higher 
throughputs for a large set of applications !

Sources in open-source : http://github.com/blegal

http://github.com/blegal
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 Since the submission … & future works

๏ Reducing the decoding computation 
complexity,

- Layered scheduling technique  
(horizontal [7] or vertical [8]),

- Simplifying the Euclidian projection processing ???

๏ Switching to many-core devices ?

- More computation parallelism but other 
hardware constraints to manage:

• Instruction replay,

• Memory latency, etc.

๏ Switching to hardware design ?

- ADMM works well with float values not yet with 
fixed-point ones…
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