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Abstract. The importance of stencil-based algorithms in computational science has focused
attention on optimized parallel implementations for multilevel cache-based processors. Temporal
blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates
and approach theoretical peak performance. A key ingredient is the reduction of data traffic across
slow data paths, especially the main memory interface. In this work we combine the ideas of multi-
core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show
large reductions in memory pressure compared to existing approaches. The resulting schemes show
performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes
per lattice update case of variable coefficients. Our thread groups concept provides a controllable
trade-off between concurrency and memory usage, shifting the pressure between the memory interface
and the CPU. We present performance results on a contemporary Intel processor.

1. Introduction.

1.1. Stencil codes. The evaluation of stencil operators on Cartesian lattices is
a classic kernel in computational science and engineering, arising from systems that
are born discrete and from discretizations of PDEs, both explicit and implicit. In the
implicit case the iteration index is analogous to explicit time and stencil evaluation
becomes a case of sparse matrix-vector multiplication with special structure. Lattice
values are updated from neighbors at a previous level with concurrency that scales
linearly with the number of degrees of freedom. However, low flop-per-byte ratios put
a premium on locality. Regular access patterns allow high spatial locality, in the sense
of packing cache blocks. The modest temporal locality within a single iteration level
from reuse of a value within several adjacent stencils can be enhanced across iteration
levels.

A major demarcation exists between stencils whose coefficients are constant in
space and time and those that vary, since variable coefficients can shift the dominant
workingset from the lattice values being updated to the coefficients, themselves. In the
PDE context, coefficient variability can arise from constitutive parameters (conduc-
tivities, elastic moduli, etc.) that depend upon space or time intrinsically or through
dependences on the evolving field values, themselves, the typical nonlinear case. Some
models can be scaled so that the variability affects only the diagonal term of the sten-
cil, which is then an important case to which to specialize. Whether to compute
coefficients on-the-fly is a decision that affects the hardware resource balance, since
it both releases all of the memory bandwidth to the lattice values and increases the
flop intensity of the typical lattice update.

Locality is also affected in a major way by the truncation order of the discretiza-
tion, which manifests itself in the stencil size, each lattice value appearing in more
stencil evaluations. Trends in PDE modeling towards high-order discretizations and
high fidelity physics shift interest beyond the low-order constant-coefficient models
to which most computer science optimizations have been directed to date. For in-
stance, seismic models used in oil exploration are typically eighth-order and variable
coefficients are the norm. Traditional means of obtaining high truncation order by
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expanding the spatial extent of the stencil tax distributed memory parallelization of
stencil evaluation by expanding the halo region. More spatially compact means of
obtaining high order are therefore of interest.

The aforementioned issues put once-humble stencil evaluation in the cross-hairs
of co-design and motivate our examination of several shared-memory (multi-core) and
distributed-memory (message-passing) optimizations of a variety of stencils (see Fig-
ure 3.1) on state-of-the-art hardware. We are especially concerned with the degrada-
tion of memory bandwidth per core forecast at tomorrow’s extreme scale. We combine
classical and novel techniques and test them on a range of star-like stencils accom-
modating up to eighth-order, constant and variable coefficient (without on-the-fly
recomputation), noting their salutary effects on memory pressure, power consump-
tion, and obtainable performance, and noting the transition of hardware bottlenecks.

This paper merely scratches the surface of co-design for the fundamental kernel
of Cartesian lattice updates. Pipelined or s-step Krylov solvers, time-parallelism,
and high-order temporal discretizations that are obtained by using the governing
PDE to estimate high time derivatives with high space derivatives are all potentially
stencil-expanding (and halo-expanding) decisions made at an upstream algorithmic
stage. Their downstream consequences on stencil update performance and hardware
balance can be examined using the analyses and software tools introduced herein, but
it remains to close the loop with analyses and tools that allow how to design the best
discrete schemes in the first place.

1.2. Contribution. This work makes the following contributions: We combine
two previously known concepts for optimizing stencil computations, diamond tiling
and multi-core aware temporal wavefront blocking, and show our method to be more
efficient in terms of flexibility, cache requirements, and main memory pressure than
either concept by itself on a modern Intel 10-core CPU. Our method shows best
performance for stencil types with low computational intensity, such as long-range
stencils with variable coefficients. The reduced memory bandwidth pressure has a
positive side effect of significant energy savings in memory. We also show that MPI
parallelization of the method is straightforward and enables natural overlapping of
computation and communication.

The rest of this paper is organized as follows: After an overview of related work
in Sect. 2 we introduce the test system, define some basic terminology, and study
a variety of stencil update schemes together with baseline performance data without
temporal blocking but otherwise minimal code balance in Sect. 3. In Sect. 4 we briefly
review multi-core wavefront temporal blocking and diamond tiling before elaborating
on the combination of the two concepts in Section 5. In Sect. 6 we present performance
results, and Sect. 7 provides a summary and an outlook to possible future work.

2. Related work. The importance of stencil computations and the ineffi-
cient performance of their näıve implementations on modern processors motivates
researchers to study them extensively. The optimizations required to achieve the
desired performance depend on the properties of the stencil operator and the capa-
bilities of different resources in the processor. This case is made by Datta [5], where
the performance of several combinations of optimization techniques, processors, and
stencil operators is reported.

The high bytes per lattice site update (LUP) requirement of many stencil com-
putations and the increasing performance gap between the arithmetic operations and
the data transfer are the major concerns in achieving high performance. Spatial and
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temporal blocking improve the performance by increasing the data reuse in the cache
memory of modern processors.

Spatial blocking is an established technique that changes the grid traversal order
to maximise the data reuse in the desired memory level [6, 7]. Temporal blocking
allows more data reuse in the cache memory by reordering grid traversal across space
iterations, where blocks of grid points are accessed multiple times before completing
the traversal of a single spatial grid level.

Temporal blocking techniques require careful handling of data dependencies acoss
space iterations to ensure correctness. Several tiling techniques are proposed in the lit-
erature including: parallelepiped, split, overlapped, diamond, and hexagonal. These
block shapes optimize for data locality, concurrency, or both. Reviews of these tech-
niques can be found at Orozco et al. [22] and Zhou [33]. We believe that diamond
tiling is promising for efficiently providing both concurrency and data locality over
the problems and computer architectures of our interest. Its attractiveness in recent
years is evident in: [22], [33], Strzodka et al. [26], Bandishti et al. [1], and Grosser et
al. [10], where a GPU implementation of hexagonaltiling is proposed, then a study of
hexagonal and diamond tiling is performed [11].

The wavefront technique, which is introduced by Lamport [15] (using the name
“hyperplane”), performs temporal blocking at adjacent grid points. This technique
has been combined with other tiling approaches using single-thread wavefront tem-
poral blocking as in [26], Wonnacott et al. [31], and Nguyen et al. [20], and using
multi-threaded wavefront temporal blocking, as in Wellein et al. [29].

Cache optimization techniques can be classified into cache-oblivious and cache-
aware techniques. Cache-oblivious techniques [8, 27, 25] do not need prior knowledge
or tuning to find optimal cache block size to achieve high performance stencil com-
putations. On the other hand, cache-aware techniques utilize auto-tuning as in [5],
which performs parameter search over the optimization techniques to achieve best
performance. Another cache-aware algorithm is introduced in [26], where cache block
size calculations are used to set the cache block size that achieves best performance.

Several frameworks have been developed to produce optimized stencil codes.
PLUTO [2] is a source-to-source transformation tool that uses polyhedral model,
CATS [26] is a library, Pochoir [27] uses cache-oblivious algorithms in Domain Spe-
cific Languages (DSL), PATUS [4] uses auto-tuning with a DSL, and Henretty et

al. [14] develop a DSL that uses split-tiling. Unat et al. [28] introduced Mint, a pro-
gramming model that produces highly optimized GPU code from a user’s annotated
traditional C code. Physis, a DSL that generates optimized GPU codes with the
necessary MPI calls for heterogeneous GPU clusters, was proposed by Maruyama et

al. [17]. A recent review paper of stencil optimization tools that use polyhedral model
has been prepared by Wonnacott [32].

3. Detailed analysis of various stencil operators.

3.1. Definitions and terminology. In iterative stencil computations, each
point in a multi-dimensional spatial grid (Ω) is updated using weighted contributions
from its neighbor points, defined by the stencil operator. The stencil operator speci-
fies the relative coordinates of the contributing points and their weights. The weights
can be constant or variable in space and/or time with some or no symmetry to be
exploited around the updated point. The grid update operation over the complete spa-
tial domain (one “sweep”) is repeated T times (time steps or iterations). We consider
three-dimensional grids in this work (Ω := {1, . . . , Nx} × {1, . . . , Ny} × {1, . . . , Nz}),
where x is the leading dimension, followed by the y and z dimensions. A grid location
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(x1,y1,z1) at time step t can be expressed as Ωt
z1,y1,x1

. We also follow the common
practice regarding the mapping of the spatial and temporal domain to a data structure
in the C language: Ωt

z,y,x is stored as Ω[t][z][y][x], where the spatial indices x, y,
and z can assume integer values in the range 0 . . . Ni − 1 so that the innermost loop
accesses memory with a stride of one. The time index can only assume the values 0
and 1, so the data from time step t−1 is overwritten by the new data for t+1 in each
grid update. PDE discretizations higher than first order in temporal truncation error
can often be accommodated by employing the original underlying PDE to replace
higher-order-in-time derivatives in the truncation error with their spatial equivalent.
This expands the spatial stencil while keeping the number of domain copies at min-
imum. Figure 3.1 shows several examples of stencil computation kernels that use a
“Jacobi-like” update scheme where the stencil array (i.e., the data structure with read
access to neighboring grid points) is not written to during the same sweep. Another
possible variant is “Gauss-Seidel” update scheme, where the stencil array is adapted
during the same sweep. The latter is relevant in practice but beyond the scope of this
paper. All stencils considered here are “star stencils” of various spatial differential
or truncation orders. “Box stencils”, “diamond stencils”, and multicomponent sten-
cils, in which multiple discrete fields interact on the same (or interlaced, staggered)
lattices, are also important in practice, and can be handled with similar techniques.

3.2. Test systems. All benchmark tests were performed on a cluster of dual-
socket Intel Ivy Bridge (Xeon E5-2660v2) nodes with a nominal clock speed of 2.2GHz
and ten cores per chip. The “Turbo Mode” feature was disabled. Each CPU has a
25MiB L3 cache which is shared among all cores, and core-private L2 and L1 caches
of 256KiB and 32KiB, respectively. All data paths between the cache levels are
half-duplex, 256-bit wide buses, so the transfer of one 64-byte cache line between ad-
jacent caches takes two CPU cycles. The core architecture supports all Intel Single
Instruction Multiple Data (SIMD) instruction sets up to AVX (Advanced Vector Ex-
tensions). With AVX, one core is able to sustain one full-width (32 byte) load and one
half-width (16 byte) store per cycle. In addition, one AVX multiply and one AVX add
instruction can be executed per cycle. Since one AVX register can hold either four
double precision (DP) or eight single precision (SP) operands, the peak performance
of one core is eight flops per cycle in DP or sixteen flops per cycle in SP.

Each node is equipped with 64GB of DDR3-1600 RAM per socket and has a
maximum attainable memory bandwidth of bS ≈ 40GB/s per socket (as measured
with the STREAM COPY [18] [19] benchmark). The nodes are connected by a full
non-blocking, fat-tree QDR InfiniBand network.

For compiling and linking, the Intel C compiler in version 13.1.3 was used together
with the Intel MPI library 4.1.3. Hardware performance counter measurements were
done with likwid-perfctr from the LIKWID multicore tools collection [16].

3.3. Performance prediction and measurements for pure spatial block-

ing. In this section we analyze two basic stencil update schemes for their requirements
on the hardware. It is not our goal to provide a comprehensive coverage of all possible
variations in stencil algorithms; we rather wish to motivate that our selection includes
relevant corner cases. We use (LUP/s) as a basic performance metric, since it does
not contain any uncertainty as to how many flops are actually done during one stencil
update. Specific implementations have a fixed ratio of LUPs to flops and other rel-
evant hardware events (such as bytes transferred, instructions executed, etc.), which
are discussed as required. Unless otherwise noted, the working set does not fit into
any CPU cache.
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for t = 0 to T − 1

for x = 1 to Nx

Ωt+1
x = w1 ∗ Ω

t
x

+w2 ∗ (Ω
t
x−1 +Ωt

x+1)

(a) 1st order in time 3-point constant-
coefficient stencil in one dimension, with
symmetry.

for t = 0 to T − 1

for z = 1 to Nz

for y = 1 to Ny

for x = 1 to Nx

Ωt+1
z,y,x = w1 ∗ Ω

t
z,y,x

+w2 ∗ (Ω
t
z,y,x−1 +Ωt

z,y,x+1)

+w2 ∗ (Ω
t
z,y−1,x +Ωt

z,y+1,x)

+w2 ∗ (Ω
t
z−1,y,x +Ωt

z+1,y,x)

(b) 1st order in time 7-point constant-coefficient
isotropic stencil in three dimensions, with symmetry.

for t = 0 to T − 1

for z = 1 to Nz

for y = 1 to Ny

for x = 1 to Nx

Ωt+1
z,y,x =

W0,z,y,x ∗ Ωt
z,y,x

+W1,z,y,x ∗ Ωt
z,y,x−1

+W2,z,y,x ∗ Ωt
z,y,x+1

+W3,z,y,x ∗ Ωt
z,y−1,x

+W4,z,y,x ∗ Ωt
z,y+1,x

+W5,z,y,x ∗ Ωt
z−1,y,x

+W6,z,y,x ∗ Ωt
z+1,y,x

(c) 1st order in time 7-point variable-
coefficient stencil in three dimension,
with no coefficient symmetry.

for t = 0 to T − 1

for z = 1 to Nz

for y = 1 to Ny

for x = 1 to Nx

Ωt+1
z,y,x = W0,z,y,x ∗ Ωt

z,y,x

+W1,z,y,x ∗ (Ωt
z,y,x−1 +Ωt

z,y,x+1)

+W2,z,y,x ∗ (Ωt
z,y−1,x +Ωt

z,y+1,x)

+W3,z,y,x ∗ (Ωt
z−1,y,x +Ωt

z+1,y,x)

+W4,z,y,x ∗ (Ωt
z,y,x−2 +Ωt

z,y,x+2)

+W5,z,y,x ∗ (Ωt
z,y−2,x +Ωt

z,y+2,x)

+W6,z,y,x ∗ (Ωt
z−2,y,x +Ωt

z+2,y,x)

+W7,z,y,x ∗ (Ωt
z,y,x−3 +Ωt

z,y,x+3)

+W8,z,y,x ∗ (Ωt
z,y−3,x +Ωt

z,y+3,x)

+W9,z,y,x ∗ (Ωt
z−3,y,x +Ωt

z+3,y,x)

+W10,z,y,x ∗ (Ωt
z,y,x−4 +Ωt

z,y,x+4)

+W11,z,y,x ∗ (Ωt
z,y−4,x +Ωt

z,y+4,x)

+W12,z,y,x ∗ (Ωt
z−4,y,x +Ωt

z+4,y,x)

(d) 1st order in time 25-point variable-coefficient
anisotropic stecil in three dimensions, with symmetry
across each axis.

for t = 0 to T − 1

for z = 1 to Nz

for y = 1 to Ny

for x = 1 to Nx

Ωt+1
z,y,x = 2 ∗ Ωt

z,y,x − Ωt−1
z,y,x + αz,y,x ∗ [w0 ∗ Ω

t
z,y,x

+w1 ∗ ((Ω
t
z,y,x−1 +Ωt

z,y,x+1) +(Ωt
z,y−1,x +Ωt

z,y+1,x) +(Ωt
z−1,y,x +Ωt

z+1,y,x))

+w2 ∗ ((Ω
t
z,y,x−2 +Ωt

z,y,x+2) +(Ωt
z,y−2,x +Ωt

z,y+2,x) +(Ωt
z−2,y,x +Ωt

z+2,y,x))

+w3 ∗ ((Ω
t
z,y,x−3 +Ωt

z,y,x+3) +(Ωt
z,y−3,x +Ωt

z,y+3,x) +(Ωt
z−3,y,x +Ωt

z+3,y,x))

+w4 ∗ ((Ω
t
z,y,x−4 +Ωt

z,y,x+4) +(Ωt
z,y−4,x +Ωt

z,y+4,x) +(Ωt
z−4,y,x +Ωt

z+4,y,x))]

(e) 2nd order in time 25-point constant-coefficient isotropic stencil in three dimensions, with symmetry
across each axis.

Fig. 3.1: Examples of iterative stencil computations, starting with initial domain Ω0.
The stencil operators in b, c, d, and e are analyzed in this paper. w represents scalar
coefficients and W represents domain-sized coefficients.
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In the following we describe in detail two “corner cases” of stencil update
schemes: a three-dimensional seven-point stencil with constant coefficients (Jacobi-
type smoother, see Fig. 3.1b) and a three-dimensional 25-point stencil with constant
coefficients (see Fig. 3.1e). These examples were picked because they are simple to
model for memory-bound situations but only the first is a good candidate for tempo-
ral blocking, as will be shown in the following two subsections. Later we will show
the effectiveness of temporal blocking for the Jacobi smoother, the variable-coefficient
7-point stencil shown in Fig. 3.1c, and the variable-coefficient 25-point stencil shown
in Fig. 3.1d.

3.3.1. Three-dimensional seven-point stencil with constant coefficients.

The standard two-grid three-dimensional “Jacobi” update scheme in Fig. 3.1b is prob-
ably the best analyzed stencil algorithm to date. From a data flow perspective the
spatial loop nest reads one array (Ω[0][][][]) and updates another (Ω[1][][][]).
In double precision, the minimum code balance is thus BC = 24bytes/LUP: eight
bytes for loading one new element of the previous time step data, eight bytes for
the write-allocate transfer on the new time step, and eight bytes for evicting the up-
dated data back to memory. The write-allocate transfer may be avoided by the use
of “non-temporal stores,” which bypass the memory hierarchy, thereby reducing the
code balance to 16 bytes/LUP. Since this optimization is of minor importance for the
practically relevant cases shown below, we will not discuss it here any further.

Depending on the grid size and the cache size, spatial blocking may be required
to achieve the minimum code balance of 24 bytes/LUP. If three successive “layers” of
size Nx ×Ny grid points fit into a cache, the only load operation within a lattice site
update that causes a cache miss goes to Ω[0][z+1][y][x], and all other loads can be
satisfied from the cache. If C is the cache size, we assume (as a rule of thumb) that
only about C/2 is available for the previous time step data, and the layer condition
for double precision is

3×Nx ×Ny × 8 bytes <
C

2nthreads

. (3.1)

This assumes that OpenMP parallelization is done along the z axis with static
scheduling. If this condition is violated, at least the loads to Ω[0][z+1][y][x],
Ω[0][z-1][y][x], and Ω[0][z][y+1][x] will cause cache misses, which leads to a
code balance of 40 bytes/LUP. If the cache is too small to even hold three successive
rows of the grid, the only loads that come from the cache will be to Ω[0][z][y][x-1]
and to Ω[0][z][y][x]. The code balance for this case is 56 bytes/LUP.

The layer condition (3.1) is independent of Nz. Hence, it is sufficient to introduce
spatial blocking in the x and/or y dimensions in order to arrive at the minimum code
balance. In practice one should try to keep the inner (x) block size larger than about
one OS page in order to avoid frequent TLB misses and excess data traffic due to
hardware prefetching [13]. Additionally, we use “static,1” OpenMP scheduling, which
relaxes the layer condition to

(nthreads + 2)×Nx ×Ny × 8 bytes <
C

2
, (3.2)

since each thread shares both neighboring layers of its current z layer with its neigh-
boring threads (except the first and the last thread, which only share one layer with
their respective neighbor).
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Note that the layer condition can be satisfied for any cache in the hierarchy if the
block sizes are chosen appropriately; for memory-bound implementations one usually
tries to establish it for the outer-level cache (OLC) to ameliorate the impact of the
memory bandwidth bottleneck. In case of temporal blocking, however, the bottleneck
may not be main memory and the smaller caches need to be taken into account.
Since the overhead at block boundaries becomes significant at small block sizes, the
optimum code balance is a goal that is all but impossible to achieve in this case.

Figure 3.2a shows the performance of the seven-point stencil algorithm in double
precision on one Ivy Bridge chip with up to ten cores for a grid of 9603 points (circles)
and the memory bandwidth as measured by likwid-perfctr (triangles), together
with the estimated saturated performance (solid line) and ideal scaling (dashed line).
With appropriate spatial blocking the expected saturated performance as given by
the roofline model is

Proof =
bS
BC

=
40GB/s

24 bytes/LUP
= 1.67GLUP/s . (3.3)

The performance saturates at 6–7 cores, and the available memory bandwidth is
utilized by up to 95%. Since there is strong saturation, we expect a strong benefit
from temporal blocking.

3.3.2. Three-dimensional 25-point stencil with constant coefficients.

The considerations about layer conditions as shown above for the seven-point stencil
apply in a similar way for long-range stencils. In the particular case of the algorithm
shown in Fig. 3.1e, one sweep of the grid updates one array (read/modify/write) and
reads two more arrays, one of which is accessed in a radius-four (semi-bandwidth
of four) stencil pattern. The minimum code balance for double precision is thus
BC = 32bytes/LUP.

Due to the long-range stencil the layer condition is changed as compared to the
previous case. With “static,1” scheduling, each thread can share the eight neighboring
layers Ω[0][z-4][][]. . . Ω[0][z-1][][] and Ω[0][z+1][][]. . . Ω[0][z+4][][] with
its eight neighboring threads (four in either z direction), but the top and bottom
threads have less sharing. Consequently, the layer condition is

(nthreads + 8)×Nx ×Ny × 8 bytes <
C

2
. (3.4)

If this condition is fulfilled, Ω[z+4][y][x] is the only element from the stencil array
that has to come from main memory.

Figure 3.2c shows the performance and memory bandwidth for ideal spatial block-
ing on a ten-core Ivy Bridge chip. The roofline model predicts an upper performance
limit of

Proof =
bS
BC

=
40GB/s

32 bytes/LUP
= 1.25GLUP/s . (3.5)

In contrast to the Jacobi-type stencil there is no clear saturation. The data transfers
within the cache hierarchy and the execution of the loop code with data from the L1
cache take so much time that there is no sufficient pressure on the memory interface to
saturate the bandwidth even with ten cores, which makes this stencil a bad candidate
for temporal blocking unless there is an opportunity to save significant time with more
efficient in-core execution. A thorough analysis of this effect would exceed the scope
of this work and will be published elsewhere [24].
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Fig. 3.2: Performance scaling across the cores of a chip with purely spatial block-
ing and data sets larger than L3 cache for the stencil algorithms shown in Fig. 3.1.
Problem sizes: 9603, 6803, 9603, and 4803 for subfigures a, b, c, and d, respectively.
STREAM COPY memory bandwidth bS ≈ 40GB/s.

3.3.3. Other stencils. Figures 3.2b and 3.2d show the saturation characteristics
and maximum performance levels for the seven-point stencil with variable coefficients
(ideal code balance of 80 bytes/LUP) and the 25-point stencil with axis-symmetric
variable coefficients (ideal code balance of 128 bytes/LUP) listed in Figs. 3.1c and 3.1d,
respectively. Both show strong saturation close to the performance levels predicted by
the roofline model, and are thus viable targets for temporal blocking optimizations.

3.4. Upper performance bounds for in-cache execution. To find the ex-
pected performance of ideal temporal blocking (i.e., when performance has completely
decoupled from the memory bottleneck), we have measured the performance at prob-
lems fitting completely in the last-level cache without temporal blocking. The results
for the stencils discussed in the previous section are shown in Figs. 3.3a–3.3d. Prob-
lem sizes have been chosen so that work decomposition across threads is easy (no
“artificial” load imbalance) and the inner loop length is not too short.

We see that all stencil algorithms scale very well across the cores, which is expected
since the Ivy Bridge architecture does not have a hardware bottleneck except the main
memory interface. It also shows that our implementation has no serious issues with
OpenMP overhead or load balancing even with in-cache data sets.

4. Wavefront and diamond tiling temporal blocking.

4.1. Wavefront temporal blocking. Typical applications have larger grid size
than a processor’s cache memory. If one sweep is completed before the next starts,
each time step involves loading each grid point and writing the result from/to main
memory. We call this the “näıve” approach. As a result, “näıve” stencil computa-
tions are typically memory-bound due to their low flops/byte ratio [6] (see Sect. 3
for a quantitative analysis). Temporal blocking alleviates the memory pressure by
increasing the in-cache data reuse, i.e., several time step updates are performed to a
grid point before evicting the data to main memory.

Figure 4.1a shows the näıve update order of a 3-point stencil in one dimension
(see the pseudo-code in Fig. 3.1a). The fading gray color represents recently updated
grid points, with the darkest assigned to the most recent update. The three “upward
pointing” arrows in time steps three and four display the data dependency at each grid
point, which is important to consider at temporal blocking optimizations. Wavefront
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Fig. 3.3: Performance scaling across the cores of a chip without blocking and data
sets fitting in the L3 cache for the stencil algorithms shown in Fig. 3.1. Problem
sizes: 96×96×96, 64×64×48, 128×64×64, and 64×32×32 for subfigures a, b, c,
and d, respectively. Smaller grids fit in L3 at variable-coefficient stencils because they
require more bytes per grid point to hold the coefficeints values.

temporal blocking is a well known technique in the literature [15, 31, 26]. Compared
to the näıve approach, the grid points update order maximizes the reuse of the most
recently visited grid points while respecting the data dependencies. Figure 4.1b shows
the basic idea of wavefront temporal blocking for the 3-point stencil in one dimension.
A wavefront line (“frontline”) traverses a space-time block in the direction of the
arrows. The slope S of the frontline is determined by the radius of the stencil operator
R , where higher order (i.e., longer range) stencils require a smaller frontline slope
to respect the data dependency (S = −1/R). For example, the 3-point stencil has
S = −1. The data in the frontline has to fit in the cache memory (along with the
surrounding grid points touched by the stencil operator) to achieve the desired cache
memory data reuse in the wavefront approach. The time dimension is blocked in a
size that allows the frontline to fit in the desired cache. For example, three time steps
are blocked in Figure 4.1b to illustrate the idea.

The wavefront can be executed sequentially (“1-thread wavefront”). On multi-
core systems one can perform 1-thread wavefronts on separate space-time tiles, with
no need (nor use) for any cache sharing among the threads. This approach was
demonstrated in detail in [26].

An explicitly multi-core aware wavefront scheme leveraging the shared cache
among the threads was proposed in [29] (Similar concept in exploiting parallelism
within the cache block was recently performed by Shrestha et al. [23]). In [29] ap-
proach the frontline update is pipelined over a group of threads sharing an outer-level
cache. This has the advantage of reducing the memory bandwidth pressure and the
total cache size requirement compared to the 1-thread wavefront. Figure 4.1c shows
the multi-thread wavefront variant used in this paper: at each time step in the multi-
frontline update, each thread performs an update of one or more grid points before
proceeding to the next time step. All threads have to update the same number of
frontlines for load balancing, and they must be synchronized after each time step
update to ensure correctness. A global barrier is the simplest solution for this, but a
relaxed synchronization scheme may result in better performance if the workload per
thread is small [30].
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Fig. 4.1: Different stencil update approaches for the 3-point stencil in one dimension.
Fading gray boxes represent the last three updates.

Fig. 4.2: Diamond tiling on a one-
dimensional space grid, with arrows
representing inter-tile data depen-
dencies. The number of diamond
tiles per row represents the maximum
attainable concurrency, as the tiles
in the row can be executed indepen-
dently of each other. Space	  
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4.2. Diamond tiling. Diamond tiling has received much attention in recent
years. Figure 4.2 shows the basic idea for the one-dimensional 3-point stencil. Arrows
represent the data dependency across the diamond tiles. Diamond tiles that start at
the same time step compose a “row of diamonds”, in which the diamond tiles are
independent of each other. Each interior diamond tile has a data dependency on the
two diamond tiles that share edges with it in the lower row of diamonds (“parents”).
Half-diamond tiles at the boundaries of the spatial domain have only one parent.
The slope of the tile edges depends on the stencil radius, where S = ±1/R. We
consider atomic update of the diamond tiles in this work, i.e., a tile does not perform
synchronization with other tiles until it is completely updated. Several advantages
of diamond tiling make it favorable in shared memory systems: it maximizes the
data reuse of the loaded data block [21], has low synchronization requirements, allows
concurrent start-up in updating the diamond tiles, and uses a unified tile shape, which
simplifies the implementation.

4.3. 1-thread wavefront diamond blocking. A multi-dimensional tiling al-
gorithm called “cache accurate time skewing” (CATS) was proposed at [26]. They use
space-time tiles larger than the cache size and employ wavefront temporal blocking
inside the tiles to improve the data reuse in the cache memory (similar to [20, 29] in
combining wavefront with large tiles). In CATS, the leading space dimension is not
tiled and left for vectorization, while one other space dimension is used for wavefront
and blocking (When running at more than one dimensional grid).

10



We are interested in the CATS2 variant, where “2” stands for diamond tiling
in one dimension plus wavefront in another dimension. It is suitable for three-
dimensional problems and for distributed memory parallelization, which will be de-
scribed in Section 5. Figure 5.1a shows one extruded diamond block of the CATS2
algorithm applied to a three-dimensional problem. The wavefront traverses along the
z dimension. The diamond tiling is performed across the y dimension, allowing the
diamond tile to perform spatial blocking to satisfy the layer condition. The x dimen-
sion is left intact for efficient hardware data prefetching and minimum TLB misses.
Hence, each grid point in Fig. 5.1a extends along the full x range.

5. Approach: multi-thread wavefront diamond blocking. The implemen-
tation of our approach can be found in [9]. We use it to produce the results of this
work.

5.1. Tiling and threading scheme. The CATS2 algorithm has the advantage
of efficiently utilizing the performance of multi-core processors with minimal thread
synchronization and very efficient data reuse. However, we believe that two particular
aspects of CATS can be potentially improved.

First, CATS2 relies on a large domain size in the diamond tiling dimension to have
sufficient concurrency for the available threads. If this condition cannot be met, [26]
proposes reverting to CATS1, which uses wavefront traversal in the same dimension
of space-time parallelogram tiles. This prevents the CATS algorithm from taking ad-
vantage of diamond tiling as an efficient domain decomposition strategy in distributed
memory. They also propose using higher-dimensional tiling to extract parallelism for
many-core processors, which can increase the code complexity. Moreover, with the
emergence of many-core architectures like the Intel Xeon Phi, it would be difficult to
find sufficient concurrency for 60–240 threads in a reasonable grid size.

Second, no cache sharing among threads is assumed in the CATS2 algorithm, so
each thread requires space in the cache memory and bandwidth from main memory for
its own use. As a result, memory-starved stencil computations run out of cache and
memory bandwidth, as will be shown in the results section. Moreover, it is unclear
whether the cache size and memory bandwidth per thread as seen in contemporary
multi-core designs will be available in future architectures. For example, the Intel
Xeon Phi has 128KiB and 8KiB cache per thread in the L2 and L1 caches, respectively,
and it achieves only about 3GB/s per core of memory bandwidth in full saturation. A
temporal blocking scheme should be flexible enough to accommodate such hardware
limitations if required.

We propose an approach that reduces the cache size and memory bandwidth
requirements and reduces the concurrency limitations while retaining the advantages
of CATS2. The basic idea is to use the multi-threaded wavefront temporal blocking
proposed in [29] in place of the CATS2 1-thread wavefront. We call our concept
multi-threaded wavefront diamond blocking (MWD), where CATS2 is a special case
with 1-thread wavefront diamond blocking (1WD). Figure 5.1b shows one block of
the MWD algorithm. Load-balancing is important here as the number of stencil
updates in the frontline varies across time steps according to the diamond width. The
multi-thread wavefront updates are performed in the same manner as described in
Sect. 4.1. The parallelization of each time step of the multi-frontline update ensures
load balancing among the threads.

Threads are assigned to the extruded diamond in groups (“thread groups”). For
example, two-threads wavefront diamond blocking (2WD) is used in Figure 5.1b.
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space grid, using two frontlines per thread.

Fig. 5.1: Diamond tiling with wavefront temporal blocking.

Multiple thread groups can run concurrently, working on different diamonds tiles and
respecting inter-diamond dependencies.

One advantage of MWD over CATS2 is controllable cache sharing among the
threads. When multiple threads update an extruded diamond together, they share
the memory bandwidth and the cache memory block, reducing the pressure on these
resources. Moreover, less concurrency is required across multiple diamonds (i.e., in
the y dimension), since some concurrency is moved to the wavefront dimension. This
allows for smaller domain sizes without sacrificing concurrency.

Threads can be scheduled to the extruded diamonds in a variety of ways. Orozco
et al. [21] use global synchronization after each row of diamonds update to respect
the inter-diamond dependencies. The diamond tiles in [26] are preassigned to threads
before starting the stencil computations, taking the inter-diamond data dependency
during tile updates into account. These approaches are sufficient to avoid idling
threads as long as the workload is balanced. Workload variation can result from
domain boundary handling: In this work, diamond tiles at the boundary of the sub-
domain exchange data and synchronize with neighbor processes. This causes load
imbalance in processing diamond tiles, which varies according to the used network
interconnect. To resolve this issue, we schedule the diamond tiles dynamically to the
thread groups. A FIFO queue maintains a list of available tiles for update. When
a thread has completed updating a tile, it pushes its dependent diamond tile(s) to
the queue if those tiles have no other unmet dependencies. “Pop” operations are
performed to assign available tiles to thread groups. The FIFO queue is protected
from concurrent updates by an OpenMP critical region. Since the queue updates are
performed infrequently, the synchronization overhead is negligible.

Proper choices of the diamond tile size and the number of multi-frontline updates
are crucial for good performance. In particular, maximizing the diamond tile size
in the L3 cache increases the data reuse in the L3 cache. The diamond tile size in
[26] is computed based on the processor’s cache memory size and the stencil operator
specification. This approach does not guarantee best cache utilization to maximize
the data reuse. The optimal cache block size can vary based on the cache memory
architectural features, such as associativity, and the data access patterns of the used
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stencil operator. Auto-tuning is used in this work to select the diamond tile size and
number of multi-frontline wavefront updates. The parameter search space is narrowed
down to diamond tiles that fit within a predefined cache size range. The cache block
size is computed based on diamond size, number of wavefronts, grid size, and stencil
type, as will be described in Section 5.3. Several constraints are considered in selecting
valid cache block size, for example, having sufficient concurrency and integer number
of diamond tiles in each row of diamond tiles.

5.2. Distributed-memory parallelization. Parallelizing stencil computa-
tions over distributed memory nodes is quite straightforward if no temporal blocking
is involved. Each time step update is followed by halo data communication. In such
a bulk-synchronous scheme, strong scalability is naturally limited by data transfer
overhead. A partial remedy is provided by the halo-first update scheme, in which
domain boundaries are updated first, and then asynchronous message passing is
performed while updating the bulk of the domain.

Distributed memory parallelization can be combined with diamond tiling as shown
in Figure 5.2. The arrows represent the data dependencies across subdomains, and
the same number of adjacent tiles is assigned to each process except the rightmost
one (largest y coordinate). To maintain load balance in terms of computation and
communication, the leftmost half diamond tile is assigned to the rightmost process.
Regular diamond tiles are used at the boundary of subdomains, with the difference of
performing communication before and after the tile update. Thread groups handling
boundary diamond tiles are blocked until their MPI communication is complete. Extra
delay can occur if no thread group is updating the diamond tile at the other end of
the communication. Adding priority in scheduling the tiles at the boundary to thread
groups can alleviate this issue, which is left for future work.

Since domain decomposition is performed along the middle space dimension (y),
the boundary data to be communicated does not reside in contiguous memory loca-
tions. User-defined strided MPI data types are not efficient in our multi-threaded
implementation, as MPI implementations handle the required packing/unpacking op-
erations purely sequentially. We use explicit multi-threaded halo data packing/un-
packing to resolve this issue.

Diamond tiling offers several advantages in distributed memory parallelization.
The tessellation of the diamond tiles allow using a unified tile structure everywhere.
It also allows maximum stencil updates in space-time without relying on exchanging
boundaries with neighbor processes after each grid sweep. Finally, there is a natu-
ral overlap of computation with communication. Communication does not block all
threads, and no thread has to be sacrificed for asynchronous communication. Threads
can handle communication or perform stencil updates as needed.

5.3. Wavefront diamond blocking cache block size requirement. Four
parameters are used to calculate the cache block size of the wavefront: the diamond
width Dw in the y axis, the number of additional wavefront frontlines NF , the number
of bytes in the x axis Nxb, and the stencil operator properties (see below). The
wavefront widthWw is determined by the diamond width and the number of frontlines:
Ww = Dw + NF − 1. The stencil operator properties include the stencil radius. for
example, the 7- and 25-point stencils have R=1 and R=4, respectively. They also
include the number of additional domain-sized streams used in the stencil operator,
ND. For example, the 7-point stencil with constant coefficients uses two domain-
sized streams (Jacobi style update). The 7-point stencil with variable coefficients
uses seven additional domain-sized streams to hold the coefficients. Total number of
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Fig. 5.2: Distributed memory parallelization with diamond tiling for a one-
dimensional space grid. Arrows represent the data dependencies across subdomains.
The leftmost column of half diamonds is assigned to the rightmost process to achieve
load balance in computation and communication.

bytes required in the cache block for a stencil with R=1, with some approximations,
is:

Nxb ·

[

ND ·

(

D2
w

2
+Dw ·NF

)

+ 2 · (Dw +Ww)

]

. (5.1)

Here, Nxb is the size of the “untiled” leading dimension, and D2
w/2 + Dw · NF is

the diamond area in the y-z plane as shown in the top view of Figures 5.1a and
5.1b. The perimeter of the rectangle containing the cache block in the y-z plane is
2 · (Dw +Ww). For example, we have Dw = 8 and NF = 0 in Figure 5.1a, so Ww =
8−1+0 = 7 and the total block size is Nxb ·((8

2/2+8 ·0)+2 ·(8+7)) = 70 ·Nxb bytes.
Figure 5.1b differs with NF = 3, so Ww = 8− 1 + 3 = 10 and the cache block size is

Nxb · ((
8
2

2
+ 8 · 3) + 2 · (8 + 10)) = 92 ·Nxb bytes.

Higher-order stencils (with R > 1) have a steeper frontline slope in the wavefront
to satisfy the data dependency across time steps. This results in different wavefront
lengths (Ww = Dw − 2 · R +NF + 1). Also the required cache block size changes as
follows:

Nxb ·

[

ND ·Dw ·

(

Dw

2
−R+NF + 1

)

+ 2 ·R · (Dw +Ww)

]

. (5.2)

Examples of wavefront cache block size requirements for the 7-point constant-
coefficient and the 25-point variable-coefficient stencils are shown in Figure 5.4. Con-
sidering that each thread group requires a separate cache block, the 25-point stencil
with variable coefficients needs a lot of cache on modern multi-core processors, even
at the smallest diamond tile size. When using the 1WD algorithm on a ten-core CPU,
50MiB of cache memory are required, which is beyond the capacity of current designs.
On the other hand, the 7-point stencil with constant coefficients can be used with a
sufficiently large diamond tile size and still fulfill the cache demand even with 1WD.
Since each data set in Fig. 5.4 represents the cache size for only one thread group,
it is evident that, all other parameters being equal, MWD allows for larger tile sizes
than 1WD.

6. Results. In this section we compare the performance of spatially blocked code
with our MWD variants. On the ten-core Intel Ivy Bridge processor, four thread group
sizes are investigated: 1WD, 2WD, 5WD, and 10WD. Since we perform parameter
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Fig. 5.4: Model of
MWD cache block
size requirements per
thread group at dif-
ferent diamond tile
sizes. Each data set
corresponds to a dif-
ferent grid size.

auto-tuning and dynamic scheduling of diamond tiles to threads, our 1WD approach
is an improved version of CATS2.

We show performance results for those stencils that were analyzed in the previous
sections and shown to be strongly memory bound so that temporal blocking is a vi-
able optimization: 7-point constant-coefficient (Fig. 3.1b), 7-point variable-coefficient
(Fig.3.1c), and 25-point variable-coefficient (Fig. 3.1d).

Three sets of results are presented: OpenMP thread scaling performance on a
single socket (Sect. 6.1), increasing cubic grid size performance in a single socket
(Sect. 6.2), and distributed memory strong scaling performance (Sect. 6.3). For all
performance results we chose the grid size that fits in 32GiB of memory, which is the
memory size per socket in the benchmark system.

6.1. Thread scaling performance. Although we present scaling runs from 1 to
10 threads on an Intel Ivy Bridge socket, with fixed grid size, auto-tuning is performed
at 10 threads only. To further improve the results, a brute-force parameters search
is perform at the 10 threads experiments for better results. For each of the thread
scaling results, the same diamond width and number of frontlines of the corresponding
10-threads experiment is used.

6.1.1. 7-point stencil with constant coefficients. All thread scaling results
are shown in Figures 6.1a and 6.1d.

As shown in Figure 6.1a, 1WD achieves a 2.6× speedup compared to spatially
blocked code, with about 92% threads parallel efficiency and 95% of the in-L3 perfor-
mance (see Fig. 3.3a) using 10 cores. 2WD, 5WD, and 10WD achieve 4%, 8%, and
12% less performance compared to 1WD, respectively. Since all MWD variants are
decoupled from main memory, the core performance and the intra-cache data trans-
fers become the bottleneck. The 1WD implementation has some advantage here since
it does not require OpenMP parallelism in the wavefront update, and the OpenMP
barrier overhead increases at larger thread groups.

In terms of memory bandwidth usage, as shown in Figure 6.1d, 1WD, 2WD,
5WD, and 10WD save about 40%, 39%, 63%, and 68% of the memory bandwidth,
respectively. 10WD requires roughly 47% less memory bandwidth compared to 1WD,
which makes it a better candidate on future, more bandwidth-starved architectures:
Since 10WD uses 32% of the available memory bandwidth, it can theoretically main-
tain the same performance on processors with a bandwidth that is a factor of three
lower than on the benchmark system (assuming the same core performance). This
result also raises expectations of 10WD showing more benefit or stencils with a higher
code balance (see below).
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Fig. 6.1: Performance (top row) and memory bandwidth (bottom row) scaling vs.
number of threads of three stencil types (columns) on a 10-core Intel Ivy Bridge socket.
Problem sizes: 9603, 6803, and 4803 for 7-point constant-coefficient, 7-point variable-
coefficient,and 25-point variable-coefficient, respectively. Ideal scaling is based on 1
thread 1WD performance at the three stencil types.

In Table 6.1 we show power dissipation and energy to solution measurements
taken with likwid-perfctr (which uses the RAPL facility available in modern Intel
processors). When considering aggregate DRAM and processor power, 10WD draws
13% less power compared to 1WD, which is mostly due to reduced DRAM bandwidth
usage. Due to its slightly lower performance, 10WD can still not achieve significant
energy savings compared to 1WD. However, future architectures are expected to show
a much larger contribution to overall power from memory transfers, which will make
MWD approaches more attractive also in terms of energy consumption. Note also
that all variants with temporal blocking dissipate more power on the CPU but less in
the DRAM compared to spatial blocking. Together with the much improved time to
solution this results in considerable energy savings, even when running the spatially
blocked version with only six cores, i.e., at the performance saturation point. For code
with saturating performance characteristics, this is the point with minimal energy to
solution [12].

A more detailed energy consumption analysis is left to future work.

6.1.2. 7-point stencil with variable coefficients. All thread scaling results
are shown in Figures 6.1b and 6.1e.
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Method Spt. Blk. 1WD 2WD 5WD 10WD
Threads 10 6 10 10 10 10

Power CPU 52.9 44.1 58.5 59.0 57.4 56.6
[W] DRAM 42.5 39.8 32.6 33.5 24.4 22.4

Total 95.4 83.9 91.1 92.4 81.7 79.0
Energy CPU 33.9 29.6 14.7 15.5 15.8 16.2

[J] DRAM 27.3 26.8 8.2 8.8 6.7 6.4
Total 61.2 56.4 22.9 24.4 22.5 22.7

Table 6.1: Power dissipation and energy to solution for the 7-point stencil with con-
stant coefficients on a 10-core Intel Ivy Bridge socket at a grid size of 9603.

2WD achieves the best performance, as shown in Figure 6.1b, with a speedup
of about 2.55× compared to spatially blocked code. The performance saturation
and decay of 1WD beyond 7 threads deserves an explanation. Since the memory
bandwidth scales almost linearly up to 10 threads, one must conclude that the code
balance increases. Experiments with half the inner domain size (i.e., 340×680×680)
show that scaling continues up to 10 threads, topping at about 1.5GLUP/s. It turns
out that for 1WD the required cache block size at ten threads is very close to the
available cache size at the selected diamond size (see Sec. 6.1.4 for details). This
problem can be remedied by split tiling in the leading dimension, which we leave for
future work.

2WD, 5MWD, and 10WD decouple from main memory, saving up to about two
thirds of the memory bandwidth in case of 10WD.

Similar memory bandwidth usage of 2WD and 5WD is measured in Figure 6.1e
because the same diamond tile size (Dw = 8) is selected by the auto-tuner, compared
to 10WD that has a larger diamond tile size (Dw = 20). 5WD has the same diamond
tile size as 2WD in this case because the next larger valid diamond size would require
more cache than is available.

6.1.3. 25-point stencil with variable coefficients. All thread scaling results
are presented in Figures 6.1c and 6.1f.

Since this stencil has a very large code balance of 120 bytes/LUP, we expect larger
thread groups to perform better. The memory bandwidth of the spatial blocking,
1WD, and 2WD codes cannot decouple from memory and saturate at eight threads,
as shown in Figure 6.1f. On the other hand, 5WD and 10WD save roughly 12.5% and
25.5% of the memory bandwidth, respectively, which allows them to have scalable
performance as shown in Figure 6.1c. 5WD and 10WD achieve about 1.23× speedup
compared to the spatially blocked code.

The 1WD algorithm achieves worse performance compared to spatially blocked
code due to cache capacity misses, since it requires 93MiB of cache even at the smallest
possible diamond tile size.

6.1.4. Thread scaling diamond tile size analysis. The 7-point stencil with
constant coefficients achieves the best performance with Dw = 12 at 1WD and 2WD.
Although 2WD has less cache size and memory bandwidth requirements than 1WD,
it uses the same diamond width because the next larger diamond width (Dw = 16)
does not fit in the L3 cache. 2WD requires 25.4MiB cache block size at Dw = 16
compared to 17.5MiB at Dw = 12, so Dw = 16 can cause a lot of capacity misses to
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the main memory. The best performance at 5WD and 10WD is achieved at Dw = 24.
Figure 6.1d shows that the same memory bandwidth usage is obtained when the same
diamond width is used.

The 7-point stencil with variable coefficients uses Dw = 8 at 1WD, 2WD, and
5WD, and Dw = 20 at 10WD. 1WD uses more memory bandwidth than 2WD and
5WD, although they have the same code balance. The best performance in 1WD
is obtained at a diamond width that causes many capacity misses to main memory,
because the selected cache block size is large. Although the next smaller diamond
width (Dw = 4) can avoid these cache misses in 1WD, it achieves lower performance
due to the higher code balance. 1WD has similar memory bandwidth usage to 2WD
and 5WD at eight threads, where the cache block size does not cause many cache
capacity misses.

The 25-point stencil with variable coefficients uses Dw = 16 at 1WD, 2WD, and
5WD, and Dw = 32 at 10WD. The cache block size at 1WD and 2WD is larger than
the available cache size even with smallest possible diamond width (Dw = 16), causing
the memory bandwidth to saturate in these cases.

6.2. Performance at increasing grid size. Here we compare the performance
of problems with increasing cubic grid size. The grid size in each dimension is set to
a multiple of 64.

Performance and memory bandwidth measurements are shown in Figures 6.2. In
all cases with temporal blocking, but especially for the 7-point stencil with variable
coefficients, a gradual decline of performance with growing grid size can be observed.
This can be attributed to the same cause as the bad thread scaling for 1WD beyond
7 threads in Fig. 6.1a.

6.2.1. 7-point stencil with constant coefficients. All results are shown in
Figures 6.2a and 6.2d.

1WD achieves the best performance at most of the grid sizes, as it decouples from
main memory and does not have the OpenMP overhead in the kernel, which is de-
scribed in the thread scaling results. The MWD achieves similar relative performance
to 1WD as in the thread scaling results. Also, larger thread groups consistently use
less memory bandwidth at all domain sizes as seen in Figure 6.2d.

The observed fluctuations in the performance are the results of the variation in
the selected diamond tile sizes at different grid sizes. The requirement of having an
integer number of diamond tiles in the row of diamonds prevents the autotuner from
selecting the optimal diamond size. Instead, it selects the nearest smaller diamond
size that allows integer number of diamonds in the given grid size.

In contrast to spatial blocking and 1WD, the other algorithms do not achieve
high performance for in-cache domain sizes. This is mainly due to the OpenMP
synchronization overhead, which becomes significant at small problem sizes, and also
probably due to the high data sharing among the threads, which results in invalidating
many lines in the private caches.

6.2.2. 7-point stencil with variable coefficients. All results are shown in
Figures 6.2b and 6.2e.

All the MWD approaches achieve similar performance at all grid sizes. 1WD
outperforms the other variants at most of grid sizes up to a domain size of 5123, then
2WD takes the lead.

6.2.3. 25-point stencil with variable coefficients. All results are shown in
Figures 6.2c and 6.2f.

18



0 200 400 600 800 1000 1200

Size in each dimension

0

1

2

3

4

5

G
L
U

P
/s

Spt.blk.

1WD

2WD

5WD

10WD

Spt.lim.

(a) 7-point constant-coefficient
stencil performance.

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.5

1.0

1.5

2.0

(b) 7-point variable-coefficient
stencil performance.

0 100 200 300 400 500 600

Size in each dimension

0.0

0.1

0.2

0.3

0.4

(c) 25-point variable-coefficient
stencil performance.

0 200 400 600 800 1000 1200

Size in each dimension

0

5

10

15

20

25

30

35

40

45

G
B

y
te

s
/s

(d) 7-point constant-coefficient
stencil measured memory band-
width.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

5

10

15

20

25

30

35

40

45

(e) 7-point variable-coefficient
stencil measured memory
bandwidth.

0 100 200 300 400 500 600

Size in each dimension

10

15

20

25

30

35

40

45

(f) 25-point variable-coefficient
stencil measured memory
bandwidth.

Fig. 6.2: Performance (top row) and memory bandwidth (bottom row) vs. grid size
of three stencil types (columns) on a 10-core Intel Ivy Bridge socket. At 7-point
constant-coefficient stencil, all MWD algorithms achieve between 2× and 3× speedup
compared to the spatially blocked code, with 10WD using less than one third of the
available memory bandwidth.

1WD does not have results at small domain sizes because there is no sufficient
concurrency for all the available threads, even with the smallest diamond size (Dw =
16). 2WD achieves the best performance up to domain size 1923, where it starts
hitting the memory bandwidth limit at larger grid sizes.

The performance-optimal diamond width selected by the auto-tuner varies with
stencil type and grid size. Smaller grid sizes tend to get larger diamond tiles, as
the leading dimension size is smaller. Stencils with variable coefficients have larger
storage requirements per grid point, which limits the size of the performance-optimal
diamond tile. At experiments with N > 100, the median diamond width ranged
between 16 and 32 at the 7-point constant-coefficient, between 8 and 16 at the 7-
point constant-coefficient, and between 16 and 32 at the 25-point variable-coefficient
stencil.

6.3. Distributed memory strong scaling performance. Strong scaling per-
formance experiments were performed for the 7-point variable-coefficient and 25-point
variable-coefficient stencils. We present only the 7-point results here because they are
not qualitatively different from the 25-point case. Domain decomposition across the
y axis is achieved through MPI message passing, as described in Sect. 5.2. An Intel
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Fig. 6.3: Distributed memory strong scaling performance of the 7-point stencil with
variable coefficients at a grid size of 7683. A full 10-core Intel Ivy Bridge socket was
used per MPI process.

Ivy Bridge socket is assigned to each MPI process, using ten OpenMP threads per
socket. All results are shown in Figure 6.3.

1WD does not work beyond 16 processes because smaller subdomains in the y axis
cannot provide sufficient concurrency to run all the available threads (“concurrency
condition”). To run 1WD at 24 MPI processes the minimum subdomain size would
be 4 [min. diamond width] * 10 [threads/process] * 24 [processes] = 960 grid points
along the y axis. Other MWD algorithms have less concurrency requirements in the
diamond tiling dimension, as another dimension of concurrency is introduced in the
wavefront blocking direction. The concurrency condition can be satisfied at 2WD,
5WD, and 10WD using 50%, 20%, and 10% of the minimum grid size that satisfies
the concurrency condition at 1WD.

2WD achieves less performance compared to 5WD and 10WD at 24 and 32 pro-
cesses due to the restrictions imposed by the concurrency condition, which limits 2WD
to small diamond tile sizes (Dw = 4 at 24 and 32 processes, compared to Dw = 8
at 16 processes). On the other hand, 5WD and 10WD can use larger tile sizes while
satisfying the concurrency condition. For example, 5WD and 10WD use Dw = 12
and Dw = 24, respectively, at 32 processes. The same concurrency limitation causes
the performance of 1WD to drop at 12 and 16 processes, where Dw = 4 compared to
Dw = 8 at 8 processes.

Timing routines are used in the code to profile the major parts. As shown in
Figure 6.3b, the run time is mainly spent in performing stencil updates (“Compute”),
communicating the halo data across MPI processes (“Communicate”), and thread
groups idle time when the task queue is empty in the MWD implementation (“Idle”).
Thread groups can have different time distribution as they perform their tasks inde-
pendently from each other. Error bars are used in Figure 6.3b to present the standard
deviation of the thread groups’ run time for each component.

When the concurrency limit is approached in the MWD implementation, the idle
time percentage increases, as can be seen in Figure 6.3b. For example, the subdomain
of 1WD at 16 processes has 12 diamond tiles in the row (Ny/(Dw×P ) = 768/(4×16) =
12 diamond tiles/row, where P is the number of processes), which is very close to the
concurrency limit of the ten thread groups. Handling boundary tiles takes more time
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compared to interior tiles because of the data exchange. When the interior diamond
tiles of a row are updated before the boundary tiles, less concurrency will be available.
This causes some thread groups to remain idle when the subdomain size is near the
concurrency limit.

As shown in Figure 6.3a, the MWD implementation scales well up to 16 processes.
The large surface-to-volume ratio of the subdomains at 24 and 32 processes results in
large communication overhead, as shown in Figure 6.3b. Performing domain decom-
position at additional dimensions would allow the code to have scalable performance
at more processes, which is left for the future work.

7. Conclusion and future work. In this work we have combined the concepts
of diamond tiling and multi-core aware temporal wavefront blocking to construct
multi-threaded wavefront diamond blocking (MWD), a new temporal blocking scheme
for improving the performance of stencil computations on contemporary multi-core
CPUs. Using three different stencil types (short range with constant coefficients,
short range with variable coefficients, and long range with variable coefficients) we
have demonstrated that our solution exerts considerably less pressure on the mem-
ory interface for all stencils considered compared to single-thread diamond tiling. It
is also more flexible in terms of assigning parallel resources to grid tiles since mul-
tiple threads work concurrently on updates within a diamond tile using the shared
cache. Finally, the cache size requirements are also reduced. However, depending
on the diamond tile size, OpenMP and synchronization overhead may be relevant,
although we use a relaxed synchronization scheme that avoids global barriers across
tiles. MPI-based distributed-memory parallelization of the MWD scheme is free of
global synchronization and lends itself to natural overlapping of computation and
communication.

Performance results on a modern 10-core Intel CPU show that MWD can out-
perform single-thread diamond tiling when the code balance of the purely spatially
blocked code is large (such as for a 25-point long-range stencil with variable coeffi-
cients). Future, more bandwidth-starved architectures will benefit even more strongly
from the reduced pressure on the memory interface. We have also shown that the en-
ergy consumption in the DRAM is considerably smaller with MWD, leading to savings
in energy to solution even if there is no performance gain.

These results open the possibility for future work in multiple directions. First
of all, our MPI implementation still suffers from idle threads when boundary tiles
in an MPI process are updated late. This could be corrected by giving these tiles
higher priority within the subdomain. Furthermore, the one-dimensional domain
decomposition limits strong scalability and leads to a performance decay for large
problem sizes. It should be improved by introducing tiling in the other dimensions.

Some possible optimizations are marginal on mainstream multi-core CPUs but
may be decisive on future many-core CPUs like the Intel Xeon Phi, where thread
synchronization is costly and efficient SIMD vectorization is absolutely required. Al-
though some steps have already been taken to reduce thread synchronization overhead,
barriers are still used inside the multi-core wavefront to ensure correctness. These
could be eliminated by a relaxed synchronization scheme along the lines of Wittmann
et al. [30]. Finally, alignment optimizations and data layout transformations could be
imposed to allow for fully aligned data accesses and thus enable more efficient SIMD
vectorization.

The implications of performance and memory transfer volume for power dissipa-
tion and energy to solution have as yet not been investigated thoroughly. As shown
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in Sect. 6.1.1, the MWD algorithms show interesting power behavior because it is
possible to end up in a situation where energy to solution is minimal at a non-optimal
performance. Detailed energy models like the model introduced by Choi et al. [3] may
lead to valuable insights concerning this issue.
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