
Multicore Simulation of
Transaction-Level Models
Using the SoC Environment
Weiwei Chen, Xu Han, and Rainer Dömer
University of California, Irvine

�MODERN EMBEDDED-SYSTEM platforms often inte-

grate various types of processing elements into the

system, including general-purpose CPUs, application-

specific instruction-set processors (ASIPs), digital-

signal processors (DSPs), and dedicated hardware

accelerators. The large size and great complexity of

these systems pose enormous challenges to tradi-

tional design and validation. System designers are

forced to move to higher abstraction levels to cope

with the many problems, which include many hetero-

geneous components, complex interconnects, sophis-

ticated functionality, and slow simulation.

At the electronic system level (ESL), system design

and verification aim at a systematic top-down design

methodology that successively transforms a given

high-level specification model into a detailed imple-

mentation. As one example, the system-on-chip envi-

ronment (SCE) is a refinement-based framework for

heterogeneous multiprocessor SoC (MPSoC) design.1

The SCE, beginning with a system specification

model described in the SpecC language,2 implements

a top-down ESL design flow based on the specify-

explore-refine methodology. The SCE automatically

generates a set of transaction-level models (TLMs)

with an increasing amount of implementation details

through stepwise refinement, resulting in a pin- and

cycle-accurate system implementation.

Each TLM in the design flow

explicitly specifies key ESL concepts,

including behavioral and structural

hierarchies, potential for parallelism

and pipelining, communication

channels, and timing constraints.

Having these intrinsic features of the

application made explicit in the

model enables efficient design

space exploration and automatic refinement by

CAD tools.

We have exploited the existing explicit parallelism

in ESL models to speed up the simulation needed to

validate TLM and virtual prototype system models.

Thus far, model validation has been based on tradi-

tional discrete-event (DE) simulation (see the ‘‘DE

Simulator Progress’’ sidebar). The traditional SCE sim-

ulator implements the existing parallelism in the de-

sign model in the form of concurrent user-level

threads within a single process. Its multithreading

model is cooperative (i.e., nonpreemptive), which

greatly simplifies communication through events

and variables in shared memory. Unfortunately, how-

ever, this threading model cannot use any available

parallelism in multicore host CPUs, which today are

common and readily available in regular PCs. (Our

focus here has been on accelerating a single simula-

tion instance, not on parallel simulation of multiple

models or multiple test vectors).

In comparison to earlier work,3 we here signifi-

cantly extend the discussion of proper channel

protection; we also explain a new optimization tech-

nique that reduces the number of context switches in

the simulator and results in higher simulation perfor-

mance as well as significantly reduced simulation

time. Finally, we show new results for a complete

Transaction-Level Validation of Multicore Architectures

Editor’s note:

To address the limitations of discrete-event simulation engines, this article

presents an extension of the SoC simulation kernel to support parallel simula-

tion on multicore hosts. The proposed optimized simulator enables fast valida-

tion of large multicore SoC designs by issuing multiple simulation threads

simultaneously while ensuring safe synchronization.

��Prabhat Mishra, University of Florida

0740-7475/11/$26.00 �c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers20

set of SCE-generated TLMs at different levels of

abstraction.

Multicore parallel simulation
Design models with explicitly specified parallelism

make it promising to increase simulation performance

by parallel execution on the available hardware

resources of a multicore host. However, care must

be taken to properly synchronize parallel threads.

Here, we review the scheduling scheme in a tradi-

tional simulation kernel that issues only one thread at

a time. We present our improved scheduling algo-

rithm with true multithreading capability on symmet-

ric multiprocessing (multicore) machines and discuss

the necessary synchronization mechanisms for safe

parallel execution. Without loss of generality, we as-

sume the use of SpecC here.

Traditional DE simulation

Both SystemC and SpecC simulators use a tradi-

tional DE approach. Threads are created for the

explicit parallelism described in the models

(e.g., par{} and pipe{} statements in SpecC, and

SC_METHODS and SC_THREADS in SystemC). These

threads communicate via events and advance simula-

tion time using wait-for-time constructs.

To describe the simulation algorithm, we define

five data structures and operations (for a formal defi-

nition of semantics, see Mueller et al.4).

First, we define queues of threads th in the

simulator:

� Queues ¼ {Ready, Run, Wait, Waitfor, Complete},

� Ready ¼ {th | th is ready to run},

� Run ¼ {th | th is currently running},

DE Simulator Progress

Most ESL frameworks today rely on regular DE-based

simulators that issue only a single thread at any time to

avoid complex synchronization of concurrent threads.

As such, the simulator kernel becomes an obstacle to

improving simulation performance on multicore host

machines.1

A well-studied solution to this problem is parallel

discrete-event simulation (PDES).2�4Li et al.5andNaroska6

have described the PDES solution, as implemented with

hardware description languages VHDL and Verilog. To

apply PDES solutions to today’s system-level description

languages (SLDLs) and allow parallel execution on multi-

core processors, the simulator kernel must be modified

to issue and properly synchronize multiple operating-

system kernel threads in each scheduling step. Chopard

et al.7 and Chandran et al.8 have extended the SystemC

simulator kernel accordingly. Chopard et al. has tar-

geted clusters with single-core nodes,7 using multiple

schedulers on different processing nodes and defining

a master node for time synchronization.

Chandran et al. demonstrated a parallelized SystemC

kernel for fast simulation on SMP machines, in which

multiple runnable operating-system kernel threads were

issued in each simulation cycle.8 Our scheduling

approach is similar; however, we propose a detailed syn-

chronization protection mechanism that we automatically

generate for any user-defined and hierarchical channels,

and we discuss an implementation optimization as well.

Moreover, instead of synthetic benchmarks, we provide

results for an actual H.264 video decoder and a JPEG

encoder.

References

1. K. Huang et al., ‘‘Scalably Distributed SystemC Simulation for

Embedded Applications,’’ Proc. Int’l Symp. Industrial

Embedded Systems, IEEE CS Society, 2008, pp. 271-274.

2. K. Chandy and J. Misra, ‘‘Distributed Simulation: A Case

Study in Design and Verification of Distributed Programs,’’

IEEE Trans. Software Eng., vol. SE-5, no. 5, 1979, pp. 440-452.

3. R. Fujimoto, ‘‘Parallel Discrete Event Simulation,’’ Comm.

ACM, vol. 33, no. 10, 1990, pp. 30-53.

4. D. Nicol and P. Heidelberger, ‘‘Parallel Execution for Serial

Simulators,’’ ACM Trans. Modeling and Computer Simulation,

vol. 6, no. 3, 1996, pp. 210-242.

5. T. Li, Y. Guo, and S.-K. Li, ‘‘Design and Implementation of a

Parallel Verilog Simulator: PVSim,’’ Proc. 17th Int’l Conf.

VLSI Design, IEEE CS Press, 2004, pp. 329-334.

6. E. Naroska, ‘‘Parallel VHDL Simulation,’’ Proc. Design, Auto-

mation and Test in Europe Conf. (DATE 98), IEEE CS

Press, 1998, pp. 159-165.

7. B. Chopard, P. Combes, and J. Zory, ‘‘A Conservative

Approach to SystemC Parallelization,’’ Int’l Conf. Computa-

tional Science, part 4, LNCS 3994, Springer, 2006, pp. 653-

660.

8. E.P.P. Chandran et al., ‘‘Parallelizing SystemC Kernel for Fast

Hardware Simulation on SMP Machines,’’ Proc. ACM/IEEE/

SCS 23rd Workshop Principles of Advanced and Distributed

Simulation (PADS 09), IEEE CS Press, 2009, pp. 80-87.

21May/June 2011

� Wait ¼ {th | th is waiting for some events},

� Waitfor ¼ {th | th is waiting for time advance},

and

� Complete ¼ {th | th has completed its execution}.

Second, we define the simulation invariants: Let

Threads be the set of all threads that currently

exist. Then, at any time, the following conditions

hold:

� Threads ¼ Ready [Run [Wait [Waitfor [

Complete.

� 8 A [Queues, 8 B [Queues, A 6¼ B : A \ B ¼ �.

Third, we define operations on threads th:

� Go(th): let thread th acquire a CPU and begin

execution.

� Stop(th): stop execution of thread th and release

the CPU.

� Switch(th1, th2): switch the CPU from the execu-

tion of thread th1 to thread th2.

Fourth, we define operations on threads with set

manipulations: Suppose th is a thread in one of the

queues, and A and B are queues [Queues. Then

� th¼ Create(): create a new thread th and put it in

set Ready.

� Delete(th): kill thread th and remove it from set

Complete.

� th¼ Pick(A, B): pick one thread th from set A and

put it into set B. (For formal selection and match-

ing rules, see Mueller et al.4)

� Move(th, A, B): move thread th from set A to B.

Finally, we define the initial state at the simulation’s

beginning:

� Threads ¼ {throot},

� Run ¼ {throot},

� Ready ¼ Wait ¼ Waitfor ¼ Complete ¼ �, and

� time ¼ 0.

DE simulation is driven by events and simulation

time advances. Whenever events are delivered or

time increases, the scheduler is called to move the

simulation forward. At any time, as Figure 1a shows,

the traditional scheduler runs a single thread picked

from the Ready queue. Within a delta cycle, the

choice of the next thread to run is nondeterministic

(by definition). If the Ready queue is empty, the

scheduler will fill the queue again by waking threads

that have received events they were waiting for. These

are taken out of the Wait queue, and a new delta

cycle begins.

If the Ready queue is still empty after event deliv-

ery, the scheduler advances the simulation time,

moves all threads with the earliest time stamp

from the Waitfor queue into the Ready queue,

and resumes execution. At any time, there is only

one thread actively executing in the traditional

simulation.

Multicore discrete event simulation

The scheduler for multicore parallel simulation

works the same way as the traditional scheduler,

with one exception: in each cycle, it picks multiple

operating-system kernel threads from the Ready

queue and runs them in parallel on the available

cores. In particular, it fills the Run set with multiple

threads up to the number of CPU cores available. In

other words, it keeps as many cores as busy as possible.

Figure 1b shows the extended control flow of the

multicore scheduler. Note the extra loop on the left,

which issues operating-system kernel threads as

long as CPU cores are available and the Ready

queue is not empty.

Synchronization for multicore simulation

The benefit of running more than one thread at

the same time comes at a price: explicit synchroniza-

tion becomes necessary. In particular, shared data

structures in the simulation engine��including

the thread queues and event lists, and shared varia-

bles in communication channels of the application

model��must be properly protected by locks for

mutually exclusive access by the concurrent threads.

Protecting scheduling resources. To protect all

central scheduling resources, we run the scheduler

in its own thread and introduce locks and condition

variables for proper synchronization. More specifi-

cally, we use

� one central lock L to protect the scheduling

resources,

� a condition variable Cond_s for the scheduler, and

� a condition variable Cond_th for each working

thread.

Transaction-Level Validation of Multicore Architectures

22 IEEE Design & Test of Computers

When a working thread executes a wait or waitfor

instruction, we switch execution to the scheduling

thread by waking the scheduler��signal(Cond_s)

��and putting the working thread to sleep:

wait(Cond_th, L). The scheduler then uses the

same mechanism to resume the next working

thread.

Protecting communication. Communication be-

tween threads must also be explicitly protected,

because SpecC channels are defined to act as moni-

tors (the SpecC Language Reference Manual v2.0

explicitly states in section 2.3.2.j that channel meth-

ods are protected for mutually exclusive execution).

That is, only one thread at a time can execute

wait(��������)

signal(�����
���)

Start

End

No

Yes

No

No

Yes

Yes

Yes

No

wait(��������)
No

Yes

Start

Ready == ∅ ?

Ready == ∅ ?

Ready == ∅ ?

Ready == ∅ ?

Run == ∅ ?

Ready == ∅ ?

End

No

Yes

No

No

Yes

Yes

Delta cycle

Timed cycle

signal(�����
���)

Start

End

No

Yes

No

No

Yes

Yes

Yes

No

wait(������
�����)

No

Yes

No
Yes

(a) (b)

(c)

th = Pick(Ready, Run); Go(th)

th = Pick(Ready, Run);
Go(th)

th = Pick(Ready, Run);
if(th ! = curTh) Go(th)

curTh is picked?

∀th∈Wait, if th’s event is notified;
Move(th, Wait, Ready); Clear notified events

∀th∈Wait, if th’s event is notified;
Move(th, Wait, Ready); Clear notified events

∀th∈Wait, if th’s event is notified;
move(th, Wait, Ready); Clear notified events

Ready == ∅ ?

Update the simulation time;
move the earliest th∈Waitfor to Ready

Update the simulation time;
move the earliest th∈Waitfor to Ready

Update the simulation time;
move the earliest th∈Waitfor to Ready

sleep

sleep

sleep

|Run| <= #CPUs
&& Ready != ∅ ?

|Run| <= #CPUs
&& Ready != ∅ ?

sleep

Run == ∅ ?

Ready == ∅ ?

Ready == ∅ ?

Ready == ∅ ?

Figure 1. Discrete-event (DE) simulation algorithms: traditional DE scheduler (a); multicore DE scheduler (b);

and optimized multicore DE scheduler (c).

23May/June 2011

code wrapped in a specific channel instance. To

ensure this, we introduce, for each channel in-

stance, a lock ch ! Lock, which is acquired

at entry and released upon leaving any

method of the channel. Figure 2a shows this

for the example of a simple circular, fixed-size

buffer.

Channel locking scheme. In general, however,

channels can be more complex with multiple

nested channels and methods calling one another.

For such user-defined channels, we automatically

generate a proper locking mechanism as follows.

Figure 2b shows an example of a channel, ChnlS,

wrapped in another channel, ChnlP. ChnlP has

a method, ChnlP::f(), that calls another channel

method, ChnlP::g(). The inner channel, ChnlS, has

a method, ChnlS::f(), that calls back the outer

method, ChnlP::g().

To avoid duplicate lock acquiring and early

releasing in channel methods, we introduce a

counter th! ch ! lockCount for each channel in-

stance in each thread th, and a list th ! list of

acquired channel locks for each working thread. In-

stead of manipulating ch! Lock in every channel

method, th ! ch ! lockCount is incremented at

the entry, and is decremented before leaving the

method, and ch! Lock is only acquired or released

when th ! ch ! lockCount is zero. Also, ch ! Lock

is added into curTh ! list of the current thread

when it is first acquired, and removed from the

list when the last method of ch in the call stack

exits. Note that, to avoid the possibility of dead lock-

ing, channel locks are stored in acquisition order.

The working thread always releases them in reverse

order and keeps the original order when reacquir-

ing them. Figure 3 illustrates the refined control

flow in a channel method with a proper locking

scheme.

The combination of a central scheduling lock and

individual locks for channel and signal instances, to-

gether with proper locking scheme and well-defined

ordering, ensures safe synchronization among many

parallel-working threads. The careful ordering, along

with the natural order of nested channels, ensures

that locks are always acquired in acyclic fashion

and, thus, deadlock cannot occur. Figure 4 summa-

rizes the detailed use of all locks and the thread-

switching mechanism for the life cycle of a working

thread.

Transaction-Level Validation of Multicore Architectures

1. send(d) receive(d)

{ {

3. Lock(this!Lock); Lock(this!Lock);

while(n >= size){ while(!n){

5. ws ++; wr ++;

wait(eSend); wait(eRecv);

7. ws - -; wr - -;

} }

9. buffer.store(d); buffer.load(d);

if(wr){ if(ws){

11. notify(eRecv); notify(eSend);

} }

13. unLock(this!Lock); unLock(this!Lock);

} }

(a)

1. channel chnlS; channel chnlP;

interface itfs

3. {

void f(chnlP * chp);

5. void g();

};

7. channel chnlP() implements itfs

{

9. chnlS chs;

void f(chnlP * chp){

11. chs.f(this); //(a)inner channel function call

g(); //(b)call another member function

13. }

void g() { }

15. };

channel chnlS() implements itfs

17. {

void f(chnlP * chp){ chp!g();}

19. //(c) outer channel function call back

};

(c)

chnlP

chnlS
f()

f(), g()

(b)

Figure 2. Protecting synchronization in channels for multi-

core parallel simulation. Queue channel implementation

for multicore simulation (a), example of user-defined

hierarchical channels (b), and SpecC description of the

channels used in this example (c).

24 IEEE Design & Test of Computers

Implementation optimization for multicore

simulation

As Figure 1b and Figure 4 show, the threads in the

simulator undergo context switches as a result of

event handling and time advancement. A dedicated

scheduling thread introduces context switch over-

head when a working thread needs scheduling.

This overhead can be eliminated by letting the cur-

rent working thread perform the scheduling task it-

self. In other words, rather than using a dedicated

scheduler thread, we define a function schedule()

and call it in each working thread when scheduling

is needed.

At this point, the condition variable Cond_s is no

longer needed. The scheduler thread (which is now

the current working thread curTh itself) ‘‘sleeps’’ by

waiting on Cond_curTh. In the left loop of Figure 1b,

if the thread picked from the Ready queue is the

same as curTh, the sleep step is skipped and

curTh continues. After the sleep step, the current

working thread will continue its own work rather

than entering another scheduling iteration. In

Figure 4, Go (schedule) is replaced by the function

call schedule(), and the sleep step is no longer

needed. Figure 1c shows the refined multicore

scheduler with this optimization applied.

Our experiments show that this optimization

reduces simulation time by about 7.8%.

Case study: H.264 video decoder
To demonstrate the improved runtime of our multi-

core simulator, our first case study involved a video

decoder application based on the H.264 Advanced

Video Coding (AVC) standard.

H.264 Advanced Video Coding (AVC)
standard

The H.264 standard, widely used in video appli-

cations such as Internet streaming, disk storage,

and television services,5 provides high-quality

video at less than half the bit rate of its predeces-

sors H.263 and H.262. At the same time, however,

it requires more computing resources for both

video encoding and decoding. To implement

H.264 on resource-limited embedded systems, it is

highly desirable to exploit available parallelism in

its algorithm.

The H.264 decoder’s input is a video stream se-

quence of encoded video frames. A frame can be fur-

ther split into one or more slices during H.264

encoding, as the upper right part of Figure 5 shows.

Notably, slices are independent of one another in

the sense that decoding one slice will not require

any data from the other slices (although it might

need data from previously decoded reference

frames). For this reason, parallelism exists at the

slice level, and parallel slice decoders can decode

multiple slices in a frame simultaneously.

ch!lockLocal()

2. {

if(curTh!ch!lockCount ==0){

4. lock(ch!Lock);

curTh!list.Append(ch!Lock);

6. }

curTh!ch!lockCount ++;

8. }

10. ch!unlockLocal()

{

12. curTh!ch!lockCount - -;

if(curTh!ch!lockCount == 0){

14. curTh!list.Remove(ch!Lock);

unlock(ch!Lock);

16. }

}

(b)

Figure 3. Synchronization protection for the member functions

of communication channels.

Start

lockLocal()

Perform channel tasks

Schedule?

Acquire central lock L;
Release acquired channel locks in reverse order of acquiring.

Scheduling

Release central lock L;
Re-acquire channel locks in original order.

End

unlockLocal()

Channel

Scheduler

Channel

Yes

No

(a)

25May/June 2011

H.264 decoder model with parallel-slice

decoding

We specified an H.264 decoder model on the basis

of the H.264 AVC JM reference software (http://

iphome.hhi.de/suehring/tml). In the reference code,

a global data structure (img) stores the input stream

and all intermediate data during decoding. To paral-

lelize the slice decoding, we have duplicated this

data structure and other global variables so that

each slice decoder has its own copy of input stream

data and can decode its own slice independently. As

an exception, the output of each slice decoder is still

written to a global data structure (dec_picture). This

is valid because the macroblocks produced by differ-

ent slice decoders do not overlap.

Figure 5 shows the block diagram of our model.

Frame decoding begins with reading new slices

from the input stream. These are then dispatched

into four parallel slice decoders. Finally, a synchron-

izer block completes the decoding by applying a

deblocking filter to the decoded frame. All the blocks

communicate via FIFO channels. Internally, each slice

decoder consists of the regular H.264 decoder func-

tions, such as entropy decoding, inverse quantization

and transformation, motion compensation, and

intraprediction.

Using the SCE, we partitioned the H.264 decoder

model by, first, mapping the four slice decoders

onto four custom hardware units, and then mapping

the synchronizer onto an ARM7TDMI processor at

Transaction-Level Validation of Multicore Architectures

unLock(�);

if (! = _root) {

 Lock(L); signal(�������	
��);
 wait(�������
����); unLock (�); }

unLock(�);Lock(�);
Lock(�);
Lock(�);
Lock(�);

notify Add notified event e to events’ list N

Start

End

Yes
No

Re-acquire

released

channel locks;

signal(������);
unLock(�);

Lock(�);
Parent->NumAliveChildren == 0?

Move(Parent, Joining, Ready);

Go(schedule)

Exit(sim)

par

NumAliveChildren = 0
For any children, ti = Create(),

NumAliveChildren ++;
Move(this, Run, Joining)

wait Move(this, Run, Wait)

Execute

end this == root?
Move(this, Run, Complete);

Parent->NumAliveChildren --;

waitfor Move(this, Run, Waitfor)

Yes

Yes

Yes

Yes Yes

Yes

No

No

No

No

No

No

signal(������);
wait(�������
����);

unLock(L);

Delete(this)

Go(schedule)

sleep

Go(schedule)

sleep

Release acquired channel locks;

signal(������);
wait(�������
����);

unLock(�);

Figure 4. Life-cycle of a thread in the multicore simulator.

26 IEEE Design & Test of Computers

100 MHz, which also implemented the overall control

tasks and cooperation with the surrounding test-

bench. We chose round-robin scheduling for pro-

cessor tasks and allocated an AMBA (Advanced

Microcontroller Bus Architecture) AHB (AMBA high-

performance bus) for communication between the

processor and the hardware units.

Experimental results

In the first experiment, we used the standard

‘‘Harbour’’ video stream of 299 video frames, each

with four equally sized slices. As we estimated in

other work,3 68.4% of the total computation time

was in the slice decoding, which we have parallelized

in our decoder model.

We calculated the maximum possible perfor-

mance gain as follows:

MaxSpeedup ¼
1

ParallelPart

NumOfCores
þ SerialPart

For four parallel cores, the maximum speedup is

MaxSpeedup4 ¼
1

0:684

4
þ ð1� 0:684Þ

¼ 2:05

The maximum speedup for two cores was, accord-

ingly, MaxSpeedup2 ¼ 1.52.

Table 1 compares simulation results for several

transaction-level models (TLMs) that were generated

with SCE. We obtained these results with our multi-

core simulator on a host PC with a 3-GHz Intel

quad-core CPU using the Fedora 12 Linux operating

system, compiled with optimization enabled. The

table compares the elapsed simulation time against

the single-core reference simulator (and also includes

the CPU load reported by the operating system).

Although simulation performance decreases when

issuing only one parallel thread because of additional

mutexes for safe synchronization in each channel

and the scheduler, our multicore parallel simulation

effectively reduced the simulation time for all models

when multiple cores in the simulation host were

used.

Table 1 also lists the measured speedup and max-

imum theoretical speedup for the models we created

following the SCE design flow. The greater the num-

ber of parallel threads issued in each scheduling

step, the more speedup is gained. The ‘‘No. of delta

cycles’’ column shows the total number of delta

cycles executed when simulating each model. This

number increases when the design is refined

and is the reason we gain less speedup at lower

abstraction levels. Also, at lower abstraction levels

more communication overhead is introduced, and

the increasing need for scheduling reduces the

Slice reader

Slice
decoder 0

Slice
decoder 1

Synchronizer

Slice
decoder 2

Slice
decoder 3

Proceed to next frame

Detailed structure inside a slice decoder

A frame divided into four slices

Slice 1

Slice 0

Slice 2

Slice 3

Entropy
decode

Slice
decoder

Inverse quantization
and

transformation

Motion
compensation

Intra-
prediction

S
lic

e

S
yn

c
h

ro
n

ize
r

Figure 5. Parallelized H.264 decoder model.

27May/June 2011

parallelism. However, the measured speedups are

somewhat lower than the maximum, which is reason-

able, given the overhead introduced, because of par-

allelizing and synchronizing the slice decoders.

The comparatively lower performance gain

achieved with the comm model in simulation with

four threads is probably due to the unbalanced

cache utilization in our Intel Core2 Quad machine.

Table 2 compares the simulation times of our ear-

lier implementation, described elsewhere,3 with the

one we optimized for the work we describe here.

The number of the context switches in the optimized

simulation dropped to about half and resulted in an

average performance gain of about 7.8%.

Using a video stream with four slices in each frame

is ideal for our model with four hardware decoders.

We can achieve simulation speedup, however, even

for less-ideal cases. Table 3 shows the results when

the test stream contains different numbers of slices.

We also created a test stream file with four slices

per frame, where the size of the slices was imbal-

anced (the ratio of slice sizes was 31%, 31%, 31%,

and 7%). Here, the speedup of our multicore simula-

tor versus the reference one is 0.98 for issuing one

thread, 1.28 for two threads, and 1.58 for four threads.

As expected, the speedup decreased when the avail-

able parallel workload was imbalanced.

Case study: JPEG encoder
We conducted a second experiment on a JPEG

encoder.6 Table 4 shows the simulation speedup for

a JPEG encoder example,1 which performed the

Transaction-Level Validation of Multicore Architectures

Table 1. Simulation results of the H.264 decoder (with the ‘‘Harbour’’ video stream: 299 frames, 4 slices each, 30 fps).

Reference

(single-

core) Multicore simulator

simulator 1 parallel thread 2 parallel threads 4 parallel threads No. of

SCE design

model

Simulation

time

Simulation

time Speedup

Simulation

time Speedup

Simulation

time Speedup

delta

cycles

No. of

threads

Spec 20.80s (99%) 21.12s (99%) 0.98 14.57s (146%) 1.43 11.96s (193%) 1.74 76,280 15

Arch 21.27s (97%) 21.50s (97%) 0.99 14.90s (142%) 1.43 12.05s (188%) 1.76 76,280 15

Sched 21.43s (97%) 21.72s (97%) 0.99 15.26s (141%) 1.40 12.98s (182%) 1.65 82,431 16

Net 21.37s (97%) 21.49s (99%) 0.99 15.58s (138%) 1.37 13.04s (181%) 1.64 82,713 16

Tlm 21.64s (98%) 22.12s (98%) 0.98 16.06s (137%) 1.35 13.99s (175%) 1.55 115,564 63

Comm 26.32s (96%) 26.25s (97%) 1.00 19.50s (133%) 1.35 25.57s (138%) 1.03 205,010 75

Maximum

speedup

1.00 1.00 132 2.05 NA NA

Table 2. Comparison of our earlier implementation with our current optimized implementation for four

parallel-issued threads.

Unoptimized simulator3 Optimized simulator

SCE design

model

Simulation

time (s)

No. of context

switches

Simulation

time (s)

No. of context

switches Gain (%)

Spec 13.18 161,956 11.96 81,999 10

Arch 13.62 161,943 12.05 82,000 13

Sched 13.44 175,065 12.98 85,747 4

Net 13.52 178,742 13.04 88,263 4

Tlm 15.26 292,316 13.99 140,544 9

Comm 27.41 1,222,183 25.57 777,114 7

28 IEEE Design & Test of Computers

DCT, quantization, and zigzag modules for the three

color components in parallel, followed by a sequen-

tial Huffman encoding module at the end. Significant

speedup is gained by our multicore parallel simulator

for the higher-level models (Spec, Arch). Simulation

performance deteriorated for the models at the

lower abstraction levels (Sched, Net) because of the

high number of bus transactions and arbitrations

that were not parallelized, which introduce signifi-

cant overhead because of the necessary synchroniza-

tion protection.

IN CONCLUSION, WHILE our optimized multicore simu-

lation kernel allows the system designer to validate

large SoC design models faster by about an order of

magnitude, much research work lies ahead for CAD

tools like SCE to cope with the major challenges of

ESL design. While researchers collaboratively work

on system design, synthesis, and verification aspects,

we will focus on further improving the modeling and

validation of SoC design models. In future work, we

plan to optimize our model analysis and multicore

simulator in particular by better grouping and parti-

tioning the parallel threads and exploiting CPU affili-

ation to reduce communication cost and cache

misses. We also plan to avoid synchronization inser-

tion in special situations when it is not necessary. �

Acknowledgments
This work has been supported in part by funding

from the National Science Foundation under research

grant NSF Award #0747523. We thank the NSF for this

valuable support. Any opinions, findings, and conclu-

sions or recommendations expressed in this material

are those of the authors and do not necessarily reflect

the views of the NSF. We also thank the reviewers and

editors for valuable suggestions to improve this

article.

Table 3. Simulation speedup for H.264 streams with different numbers of slices per frame for the specification

model.

No. of slices

Reference

(single-core) Multicore simulator

per frame simulator 1 parallel thread 2 parallel threads 4 parallel threads

1 1.00 0.98 0.98 0.95

2 1.00 0.98 1.40 1.35

3 1.00 0.99 1.26 1.72

4 1.00 0.98 1.43 1.74

5 1.00 0.99 1.27 1.53

6 1.00 0.99 1.41 1.68

7 1.00 0.98 1.30 1.55

8 1.00 0.98 1.39 1.59

Table 4. Simulation results of a JPEG encoder.

Reference

(single-core) Multicore simulator

SCE simulator 1 parallel thread 2 parallel threads 4 parallel threads

design

model

Simulation

time

Simulation

time Speedup

Simulation

time Speedup

Simulation

time Speedup

Spec 5.54s (99%) 5.97s (99%) 0.93 4.22s (135%) 1.31 3.12s (187%) 1.78

Arch 5.52s (99%) 6.07s (99%) 0.91 4.28s (135%) 1.29 3.15s (188%) 1.75

Sched 5.89s (99%) 6.38s (99%) 0.92 5.48s (108%) 1.07 5.47s (113%) 1.08

Net 11.56s (99%) 49.3s (99%) 0.23 40.63s (131%) 0.28 37.97s (128%) 0.30

29May/June 2011

�References
1. R. Dömer et al., ‘‘System-on-Chip Environment: A

SpecC-Based Framework for Heterogeneous MPSoC

Design,’’ EURASIP J. Embedded Systems, 2008,

doi:10.1155/2008/647953.

2. D.D. Gajski et al., SpecC: Specification Language and

Design Methodology, Kluwer Academic Publishers, 2000.

3. W. Chen, X. Han, and R. Dömer, ‘‘ESL Design and Multi-

core Validation Using the System-on-Chip Environment,’’

Proc. 15th IEEE Int’l High Level Design Validation and

Test Workshop (HLDVT 10), IEEE CS Press, 2010,

pp. 142-147.

4. W. Mueller, R. Dömer, and A. Gerstlauer, ‘‘The Formal

Execution Semantics of SpecC,’’ Proc. 15th Int’l Symp.

System Synthesis, IEEE Press, 2002.

5. T. Wiegand et al., ‘‘Overview of the H.264/AVC Video

Coding Standard,’’ IEEE Trans. Circuits and Systems for

Video Technology, vol. 13, no. 7, 2003, pp. 560-576.

6. L. Cai et al., Design of a JPEG Encoding System, tech.

report ICS-TR-99-54, Information and Computer Science

Dept., Univ. California, Irvine, 1999.

Weiwei Chen is a PhD candidate in the Electrical

Engineering and Computer Science Department at

the University of California, Irvine, where she is also

affiliated with the Center for Embedded Computer Sys-

tems (CECS). Her research interests include system-

level design and validation, and execution semantics

of system-level description languages. She has an

MS in computer science and engineering from Shang-

hai Jiao Tong University, Shanghai, China.

Xu Han is a PhD candidate in the Electrical Engineer-

ing and Computer Science Department at the Univer-

sity of California, Irvine, where he is also affiliated with

the CECS. His research interests include system-level

modeling and exploration of embedded systems. He

has an MS in electrical engineering from the Royal

Institute of Technology, Sweden.

Rainer Dömer is an associate professor in electrical

engineering and computer science at the University of

California, Irvine, where he is also a member of the

CECS. His research interests include system-level de-

sign and methodologies, embedded computer sys-

tems, specification and modeling languages, SoC

design, and embedded hard- and software systems.

He has a PhD in information and computer science

from the University of Dortmund, Germany.

�Direct questions and comments about this article

to Weiwei Chen, Dept. of Electrical Engineering and

Computer Science, University of California, Irvine,

CA 92697-2625; weiwei.chen@uci.edu.

Transaction-Level Validation of Multicore Architectures

30 IEEE Design & Test of Computers

